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Cyclin-dependent kinase 10 (CDK10) is a CDC2-related serine/threonine kinase involved in
cellular processes including cell proliferation, transcription regulation and cell cycle
regulation. CDK10 has been identified as both a candidate tumor suppressor in
hepatocellular carcinoma, biliary tract cancers and gastric cancer, and a candidate
oncogene in colorectal cancer (CRC). CDK10 has been shown to be specifically involved
in modulating cancer cell proliferation, motility and chemosensitivity. Specifically, in CRC, it
may represent a viable biomarker and target for chemoresistance. The development of
therapeutics targeting CDK10 has been hindered by lack a specific small molecule inhibitor
for CDK10 kinase activity, due to a lack of a high throughput screening assay. Recently, a
novel CDK10 kinase activity assay has been developed, which will aid in the development of
small molecule inhibitors targeting CDK10 activity. Discovery of a small molecular inhibitor
for CDK10 would facilitate further exploration of its biological functions and affirm its
candidacy as a therapeutic target, specifically for CRC.

Keywords: colorectal cancer, cyclin-dependent kinases, gastrointestinal cancers, hepatocellular carcinoma,
gastric cancer, biliary tract cancer, CDK10
INTRODUCTION

Cyclin-dependent kinases (CDKs) are a family of serine/threonine protein kinases that play a
critical role in regulating cellular processes, including cell division and cell death (1). Currently,
more than 20 members of the CDK family have been identified by their characteristic ATP-binding
pocket, PSTAIRE-like cyclin-binding domain and activating T-loop motif (1, 2). CDKs become
active when non-covalently bound to their cyclin partner, via association with the PSTAIRE-like
cyclin binding domain. The interaction of a CDK to its cyclin partner forms a heterodimer, in which
the CDK acts as the catalytic subunit and the cyclin functions as the regulatory subunit. Cyclins are
responsible for regulation of a CDK’s kinase activity and substrate specificity. CDKs, their cyclin
interacting partners, and functions are summarized in Table 1.

CDKs are generally categorized into two groups, based on their functions (1): cell cycle
regulators; and (2) transcription regulators. CDKs involved in cell cycle regulation include
CDK1, CDK2, CDK4 and CDK6. These CDKs are regulated through oscillation of expression
throughout the cell cycle (55). CDK1 triggers the G2/M phase transition, while CDK2, CDK4 and
June 2021 | Volume 11 | Article 6554791

https://www.frontiersin.org/articles/10.3389/fonc.2021.655479/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.655479/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.655479/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:itai@bcgsc.ca
https://doi.org/10.3389/fonc.2021.655479
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.655479
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.655479&domain=pdf&date_stamp=2021-06-30


Bazzi and Tai CDK10 in Gastrointestinal Cancers
CDK6 are regulators of the G1/S phase transition (56). CDKs
involved in transcription regulation include CDK7, CDK8,
CDK9, CDK10 and CDK11. Expression of CDKs involved in
transcription regulation do not oscillate and are instead regulated
by protein-protein interactions (56). They regulate transcription
through phosphorylation of RNA polymerase II and through
pre-mRNA splicing regulation.

CDKs often are dysregulated in malignancies, as shown in
Table 1, causing dysregulation to cell cycle and transcription,
leading to abnormal cell proliferation and inhibition of cell death
(56). Genetic aberrations of CDKs and cyclins in tumor cells
result in continuous cell proliferation or unscheduled cell cycle
progression (56). Given their dysregulation in cancer, and their
roles in mediating cell cycle progression, CDKs have been
considered viable therapeutic targets for cancers, including
gastrointestinal cancers.

Cyclin-dependent kinase 10 (CDK10) is a Cdc2-related kinase
that was discovered based on its homology to the Cdc2 PSTA1RE
amino acid domain (57). CDK10 plays a pivotal role in the
regulation of fundamental cellular processes, including cell
proliferation, transcription regulation and cell cycle regulation.
Initial reports have indicated that CDK10 may act as a tumor
suppressor in breast cancer. CDK10 is significantly downregulated
in breast cancer compared to normal breast tissue (58).
Additionally, CDK10 expression was inversely correlated with
tumor stage and lymph node metastasis (58). Importantly,
CDK10 expression was associated with better overall survival and
may be a predictor of prognosis in breast cancer (58). Additional
studies have demonstrated tumor suppressive and oncogenic roles
for CDK10 in other malignancies. Specifically, CDK10 has been
Frontiers in Oncology | www.frontiersin.org 2
identified as a candidate tumor suppressor in hepatobiliary cancers,
gastric cancer, glioma and nasopharyngeal carcinoma (31, 32, 59–
61). Additionally, CDK10 has been shown to promote
tumorigenesis in colorectal cancer (CRC) (62). Herein, we present
a review of CDK10: its interacting partners, its role in
gastrointestinal malignancies and its viability as a therapeutic target.

Molecular Genetics of CDK10
CDK10 was discovered in 1994 based on its homology to the Cdc2
PSTA1RE amino acid domain. PCR-based cloning was used to
amplify cDNA encoding a novel human Cdc2-related kinase, which
was called PISSLRE, and later termed CDK10 (57). Amino acid
analysis revealed 38-45% identity with other CDKs (57). The
chromosomal location of the gene encoding CDK10 was
determined to be 16q24.3. The gene CDK10 (as designed by
HUGO) consists of thirteen exons, distributed over approximately
15,000 kilobases of genomic DNA.

A putative method of regulation of CDK10 is through alternative
splicing of pre-mRNA transcripts. Several CDK10 alternatively
spliced isoforms have been identified. These alternatively spliced
transcripts differ in exon 11 and in their 5’ and 3’ untranslated
regions (UTRs). Of the differentially spliced transcripts identified,
two produce functional proteins: the full-length transcript, which
encodes for a 360 amino acid protein and a second transcript that
encodes a truncated 272 amino acid variant, as shown in Figure 1.
The latter protein is missing the ATP-binding domain and is
therefore enzymatically inactive. Additionally, the shorter isoform
does not interact with ETS2 and only weakly interacts with Cyclin
M (33). It is therefore thought that alternative splicing is an
important method of regulating CDK10 kinase activity.
TABLE 1 | CDKs in gastrointestinal cancers.

Name Putative Functions Expression in Tumors vs. Normal Tissue References

CRC Gastric
Cancer

Liver
Cancer

¥

Pancreatic
Cancer

Other

CDK1 Regulates the G2/M-phase transition ↑ ↑ ↑ ↑ (3–6)
CDK2 Promotes cell cycle G1/S-phase transition ↑ NS* NS* NS* (7)
CDK3 Involved in G0/G1 transition via phosphorylation of pRb. ↑ ↓* ↓* ↓* (8, 9)
CDK4 Regulates the G1/S-phase cell cycle transition via phosphorylation of Rb ↑ ↑ ↑ ↑ (10–13)
CDK5 No known cell cycle functions Shown to be involved in brain development and

neuronal differentiation
↑ ↓ ↑ ↑ (14–18)

CDK6 Regulates the G1/S-phase cell cycle transition via phosphorylation of Rb ↑ ↑ NS* NS* ↑esophageal (19–21)
CDK7 Activates CDK1, CDK2, CDK4 and CDK6 via phosphorylation of specific threonine

sites; Forms complex with TFIIH to regulate RNA polymerase II transcription
NS* ↑ ↑* ↑ (22, 23)

CDK8 Regulates gene expression via phosphorylation of RNA polymerase II ↑ ↑ ↑ ↑ (24–27)
CDK9 Facilitates transcriptional elongation via phosphorylation of RNA polymerase II ↑ ↑ NS* ↑ (28–30)
CDK10 Phosphorylation of ETS2 resulting in ETS2 degradation ↑ ↓ ↓ N/A (31–33)
CDK11 Involved in regulation of pre-mRNA splicing NS* NS* ↑* ↑* ↑esophageal (34, 35)
CDK12 Regulates gene expression via phosphorylation of RNA polymerase II NS* ↓↑ NS* NS* (36, 37)
CDK13 Involved in transcription regulation and pre-mRNA splicing ↑ ↓* ↑ NS* (38)
CDK14 Activator of Wnt signaling pathway ↑ ↑ ↑ ↑ ↑esophageal (39–43)
CDK15 Inhibits TRAIL-induced apoptosis via phosphorylation of survivin ↑* ↓* NS* NS* (44)
CDK16 Promotes skeletal myogenesis and spermatogenesis NS* NS* ↑ NS* (45–47)
CDK17 Involved in neuronal differentiation ↑* NS* NS* NS* (48)
CDK18 Prevents accumulation of DNA damage and genomic instability ↓* ↑ ↓* ↓* (49, 50)
CDK19 Involved in transcriptional regulation of RNA polymerase II ↓* ↑ NS* NS* (44, 51)
CDK20 Promotes transition from G1 to S phase via phosphorylation of CDK2 ↑ NS* ↑ ↓* (52, 53)
June 2021 | Volume 11 | A
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Interacting Partners of CDK10
Binding of a CDK to its partner cyclin is generally required for its
activation and subsequent kinase function. CDK10 stood alone as
the last CDK lacking identification of a cyclin partner. Recently,
cyclin M was identified as a CDK10 binding partner by yeast two-
hybrid screening and immunoprecipitation (33). The binding of
CDK10 to cyclinM is independent of the kinase domain, however,
the interaction of CDK10 with cyclin M was shown to regulate the
kinase activity of CDK10, in STAR syndrome, (Figure 1) (33).
This interaction, however, has not been shown in cancers
involving the GI tract or hepatobiliary system.

Using a yeast interaction trap, CDK10 was shown to bind to
transcription factor ETS2, both in vitro and in vivo, using human
embryonic kidney 293 cells (Figure 1) (65). This interaction
occurs via the N-terminus of ETS2, and mutation of the kinase
Frontiers in Oncology | www.frontiersin.org 3
domain of CDK10 (resulting in CDK10DN variant) did not
impact the binding of ETS2 to CDK10. CDK10 has been shown
to regulate transactivation of ETS2. Mass spectrometric analysis
revealed ETS2 as a substrate for CDK10/cyclinM phosphorylation
(33) and it has been reported that phosphorylation of ETS2 by
CDK10/Cyclin M results in inhibition of ETS2 transactivation.

Subcellular localization of CDK10 and Cyclin M at the base of
the primary cilia, and specific co-localization with centrosomal
proteins, suggests a role for CDK10/Cyclin M in ciliogenesis (33).
Knockdown of CDK10/Cyclin M significantly decreases stress
fiber formation and ciliogenesis in human telomerase reverse
transcriptase retinal pigmented epithelial (hTERT RPE-1) cells
(33). Using an in vitro kinase assay, known core centrosomal
proteins and regulators of ciliogenesis and actin dynamics
were screened as candidate substrates for CDK10/Cyclin M.
A B

D E

C

FIGURE 1 | CDK10 isoforms and interacting partners. (A) Protein sequence alignment of the full length CDK10 isoform (blue) and the splice variant (yellow). (B) Schematics
of the full length CDK10 isoform and splice isoform, showing the ATP binding domain, the Ser/Thr kinase domain and Thr133, which is involved in Pin1 binding. (C) Models of
CDK10 full-length protein and splice isoform with putative binding partners. Figures were created using BioRender. (D) Proposed CDK10 oncogenic signaling pathways.
(E) Proposed CDK10 tumor suppressive signaling pathways. “?” denotes not yet shown in gastrointestinal and hepatobiliary cancers (60, 62–64).
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This method was used to identify protein kinase C-like 2 (PKN2) as
an interacting partner and substrate for CDK10/Cyclin M, both in
vitro and in vivo (33). CDK10/Cyclin M was shown to
phosphorylate residues T121 and T124 of PKN2 and
furthermore, to repress ciliogenesis in a RhoA-dependent manner.
Cyclin M, however, has yet to be shown to be a CDK10 binding
partner in gastrointestinal and hepatobiliary cancers.

Pin1 interaction with CDK10 has been documented in ER-
positive breast cancer cells (Figure 1) (63). Pin1 is known to interact
with Ser/Thr-Pro motifs, where the serine or threonine preceding
the proline is phosphorylated. CDK10 does not contain any Ser-Pro
motifs, however, does contain three Thr-Pro motifs. Mutagenesis of
the three Thr-Pro motifs in CDK10 revealed Thr133 as an
important residue for Pin1/CDK10 binding. Furthermore,
treatment of CDK10 with a phosphatase demonstrated that Pin1
interacts with CDK10 in a phosphorylation-dependent manner.
Consequently, interaction of Pin1 with CDK10 results in
ubiquitination of CDK10 and subsequent degradation.

There is also evidence of CDK10 interaction with additional
binding partners in non-human cell types. Specifically, CDK10
was shown to interact with Hsc70, Hsp90 and EcRB1 in
Helicoverpa armigera (66). The interaction between CDK10
and Hsc70 and Hsp90 was augmented upon CDK10
phosphorylation. CDK10 forms a complex with Hsc70 and
Hsp90, which sequentially binds with EcRB1 to facilitate the
interaction between EcRB1 and EcRE to regulate 20E-mediated
gene expression (66). Further studies are warranted to assess
these as candidate binding partners for CDK10 in humans, and
specifically, cancers involving the gastrointestinal tract and
hepatobiliary system.
CDK10 AS A TUMOR SUPPRESSOR IN
GASTROINTESTINAL AND
HEPATOBILIARY CANCERS

Hepatobiliary Cancer
CDK10 has been identified as a candidate tumor suppressor in
hepatobiliary cancers, including hepatocellular carcinoma (HCC)
and biliary tract cancers (BTC) (31, 32, 64, 67). Examination of
HCC tumor tissue revealed decreased expression of CDK10
mRNA and CDK10 protein compared to adjacent normal liver
tissue (31). Immunohistological staining of CDK10 showed weak
or no staining in HCC tissue samples. Significantly, CDK10
abundance was found to be inversely correlated to tumor size
and tumor stage in HCC. In BTC, downregulation of CDK10 gene
expression and CDK10 protein was observed in cancer tissue and
cell lines, and was adversely associated with tumor stage, and
lymph node invasion (64). Specifically, CDK10 was significantly
downregulated in intrahepatic cholangiocarcinoma and
gallbladder cancer, compared to normal tissue.

Several studies have characterized the effects of CDK10 on
proliferation of hepatobiliary cancers in vitro (31, 64). Zhong et
al. found that ectopic expression of CDK10 in the HCC cell line
SMMC-7721 resulted in inhibition of cell proliferation (31).
Frontiers in Oncology | www.frontiersin.org 4
Similarly, in BTC, ectopic expression of CDK10 decreased cell
proliferation, and downregulation of CDK10 expression
significantly increased cell proliferation (64). Furthermore, cell
cycle analysis of HCC cells following CDK10 overexpression
revealed a significant increase in the G0-G1 phase population of
cells, and a decrease in the S phase population (31). Consistently,
BTC cells overexpressing CDK10 had a significant increase in the
population of cells in G1 phase, and a significant decrease in the
population of cells in G2/M phase (64).

Studies have also assessed the impact of CDK10 expression on
cell invasion andmigration (31, 64). In HCC, ectopic expression of
CDK10 significantly delayed wound healing (31). Yu et al. also
reported a significant decrease in BTC cell migration upon CDK10
overexpression (64). Consistently, they also reported a significant
increase in BTC cell migration following downregulation of
CDK10 (64). These studies, however, did not examine the
mechanism by which CDK10 inhibits cancer cell invasion and
migration. In glioma, CDK10 was shown to regulate cell motility
through inhibition of epithelial to mesenchymal transition (EMT)
(60). CDK10 knockdown decreased E-cadherin and increased
vimentin and N-cadherin expression. Conversely, overexpression
of CDK10 increased E-cadherin and decreased vimentin and N-
cadherin expression. CDK10 was shown to regulate expression of
the EMT transcription factor, Snail, and the effects of CDK10 on
EMT in glioma were partially reversed by manipulation of Snail
expression (60). Importantly, Snail is a known regulator of EMT in
hepatobiliary cancersCDK10 may regulate cell motility of
hepatobiliary cancer cells through inhibition of EMT via
Snail downregulation.

Therapeutic resistance is a major hindrance on treatment of
gastrointestinal cancers. There is significant evident identifying
CDK10 as an important modulator of tamoxifen sensitivity in
breast cancer, suggesting a potential role for CDK10 in
chemosensitivity in other cancers (63, 68). In patients with ER-
positive breast cancer, low CDK10 expression was associated with
shorter overall survival and clinical resistance to tamoxifen (68).
This study used gene silencing to identify CDK10 as a modulator of
tamoxifen resistance in breast cancer through regulation of p42/p44
MAPK pathway (68). In BTC, Yu et al. found that knockdown of
CDK10 significantly decreased sensitivity to 5-fluorouracil (64).
Furthermore, overexpression of CDK10 increased BTC cell
sensitivity to 5-fluorouracil, adriamycin/epirubicin, cisplatin and
hydroxylcamptothecin in vitro (64). Similar to endocrine resistance
in breast cancer, cell cycle arrest at G1 phase was observed in 5-
fluorouracil-treated cells overexpressing CDK10 (64, 68). In HCC,
overexpression of CDK10 increased chemosensitivity to cisplatin
and epirubicin in SMMC-7721 cells but not HepG2 cells (31).
Furthermore, overexpression of CDK10 increased gall bladder
cancer sensitivity to gemcitabine (69). Anticipating a mechanism
similar to endocrine therapy resistance in breast cancer, CDK10
expression was shown to downregulate c-Raf levels in BTC (64, 69).
Furthermore, in gall bladder cancer, knockdown of c-Raf resulted in
a significant increase in gemcitabine sensitivity in cells
overexpressing CDK10 (69). Downregulation of CDK10 increased
ETS2-mediated transcription of c-Raf, resulting in activation of the
MAPK pathway. Additionally, Khanal et al. investigated the
June 2021 | Volume 11 | Article 655479
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association between CDK10 and Pin1 expression in tamoxifen-
resistant breast cancer cells (63). This study observed a significant
inverse correlation between Pin1 and CDK10 expression in
tamoxifen-resistant breast cancer. Khanal et al. also found that
overexpression of CDK10 increased breast cancer cell sensitivity to
tamoxifen treatment, and decreased Pin1-mediated c-Raf
phosphorylation (63). However, further research is warranted to
delineate the mechanism by which CDK10 regulates c-Raf levels in
gastrointestinal cancers and how that results in cell cycle arrest.

Gastric Cancer
In addition to hepatobiliary cancers, CDK10 has been identified
as a candidate tumor suppressor in gastric cancer. Independent
studies found decreased expression of CDK10 in gastric cancer
compared to normal gastric tissue (32, 67). Consistently, these
studies found a significant correlation between loss of CDK10
expression and advanced tumor stage, lymph node invasion and
distant metastasis, in patients with gastric cancer. Furthermore,
these studies also identified loss of CDK10 expression as an
unfavorable prognostic marker in gastric cancer. However, Fukui
et al. found that CDK10 was upregulated in peritoneal and liver
metastases in human gastric cancer cell lines established
following injection into nude mice (70).

Studies have also assessed the effect of CDK10 on cell
proliferation and cell motility in gastric cancers. Ectopic
expression of CDK10 decreased cell proliferation, while
downregulation of CDK10 expression significantly increased
cell proliferation (32). Treatment of gastric cancer cells with
quercetin, a flavonol shown to induce apoptosis, significantly
decreased expression of CDK10 (71). Additionally, in gastric
cancer, overexpression of CDK10 decreased cell invasion, while
knockdown of CDK10 promoted cell invasion (32).

Mechanisms of CDK10 Downregulation
in Gastrointestinal Cancers
As previously mentioned, CDK10 expression is downregulated in
hepatobiliary cancers and gastric cancers (31, 32, 64). Mechanisms
of CDK10 downregulation have not been examined in
gastrointestinal cancers. Chromosomal deletions at the q24
region of chromosome 16 are associated with human cancers,
including gastric cancer and HCC (72, 73). Furthermore, aberrant
methylation of chromosome 16 is a mechanism of gene expression
dysregulation in chronic hepatitis, liver cirrhosis andHCC (74, 75).
Promoter hypermethylation was found to be a mechanism of
CDK10 suppression in breast cancer and nasopharyngeal
carcinoma (61, 68). Therefore, suppression of CDK10 may result
from loss of heterozygosity and hypermethylation at the q24 region
of chromosome 16. Further research is warranted to assess loss of
heterozygosity and promoter hypermethylation as potential
mechanisms of CDK10 downregulation in gastrointestinal cancers.
CDK10 IN COLORECTAL CANCER

A meta-analysis of CRC gene expression profiling studies
identified CDK10 as a gene consistently upregulated in CRC
(76). Consistent with this meta-analysis, Weiswald et al. found
Frontiers in Oncology | www.frontiersin.org 5
overexpression of CDK10 in CRC tissue and CRC cell lines,
compared to matched normal tissue and normal colon cells,
respectively (62). This observation is similar to other studies that
found upregulation of CDK10 in prostate cancer and seminomas
(77, 78). Furthermore, increased expression of CDK10 was found
to be correlated with lymph node positive tumors in CRC (79).

Weiswald et al. also found that CRC growth and survival were
significantly affected by manipulation of CDK10 gene expression.
Specifically, CDK10 knockdown decreased cell survival and
promoted apoptosis in CRC cell lines. Similarly, overexpression
of CDK10 increased cell proliferation and inhibited apoptosis
in vitro, in a Bcl-2/Bcl-XL-dependent manner. Consistently,
suppression of CDK10 in patient-derived xenograft CRC tumors
inhibited tumor growth and decreased expression of Bcl-2 in vivo.
Interestingly,CDK10expressiondidnot affect cell cycleprogression
in CRC, indicating that the impact of CDK10 on cell proliferation
and apoptosis is independent of cell cycle regulation.

Furthermore, Weiswald et al. evaluated the effects of CDK10 on
chemotherapy resistance.CRCcell lines overexpressingCDK10were
significantly less responsive to 5-fluorouracil compared to controls
(62). Additionally, compared to CDK10WT, cell lines expressing
CDK10DN were more sensitive to 5-fluorouracil, indicating kinase
involvement in CDK10-mediated chemoresistance in CRC. Indeed,
CDK10 expression may be a viable biomarker for chemotherapy
resistance and should be assessed as a potential biomarker for CRC
recurrence. Importantly, while this study suggests a kinase-
dependent role for CDK10, an interacting partner to CDK10 has
yet to be identified and implicated in CRC.

The role of CDK10 in CRC cell invasion and migration is yet
to be determined. However, Zehra et al. demonstrated
upregulation of CDK10 and ETS2 in a corneal epithelial
wound healing model (80). This study infers a potential role
for CDK10 in cancer metastasis, as inhibition of CDK10 resulted
in a significant delay in corneal epithelial cell migration.
CDK10 AS A THERAPEUTIC TARGET
FOR GASTROINTESTINAL CANCERS

Research has been dedicated to the development of candidate
CDK small molecule inhibitors, however, the majority of CDK
inhibitors lack specificity and clinical trials have had
disappointing outcomes. Several strategies have been employed
in drug discovery to develop effective CDK inhibitors, including
reversible ATP-competitive and non-competitive inhibition,
reversible and irreversible allosteric inhibition, antibodies, and
CDK-targeted degradation. Non-specific pan-CDK inhibitors
exhibit low anti-cancer activity and high toxicity. Due to their
non-specificity, these inhibitors block several cell processes,
including cell proliferation, transcription, and translation.
Given the tumor suppressive nature of CDK10 in breast
cancer, HCC, BTC and gastric cancer, targeting CDK10 via
pan-CDK inhibitors may have limited the therapeutic response.

The development of therapeutics targeting CDK10 has been
hindered by lack of a CDK10 activity assay, and lack of a specific
small molecule inhibitor to identify novel therapies. Discovery of
a small molecule inhibitor for CDK10 would facilitate further
June 2021 | Volume 11 | Article 655479
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exploration of its biological functions and affirm its candidacy
as a therapeutic target, specifically for CRC. Recently, Robert
et al. described a novel CDK10/Cyclin M in vitro activity assay
(81). This luminescence-based assay uses a synthetic peptide
phosphorylation substrate for the CDK10/Cyclin M complex.

Flavopiridol is the most extensively studied pan-CDK inhibitor.
It has been shown to inhibit CDK1, CDK2, CDK4, CDK6, CDK9
and CDK10. While flavopiridol can inhibit CDK10, the IC50 for
flavopiridol inhibition against CDK10/Cyclin M is less potent than
flavopiridol inhibition of other CDKs (81). In vitro studies in
gastrointestinal cells demonstrated that flavopiridol was effective
in inducing apoptosis through blockage of cell cycle progression at
G1 (82, 83). However, clinical trials in patients with gastrointestinal
cancers did not result in favorable outcomes (84, 85) and reported
significant toxicity among patients.

Additional CDK inhibitors such as dinaciclib, SDS-032,
AZD4573, AT7519 and riviciclib were all tested on CDK10/
Cyclin M, however none of these potently inhibited CDK10
kinase activity (81). Ibrahim et al. synthesized novel flavopiridol
analogs and assessed their inhibitory activity on CDK2, CDK5
and CDK9 (86). This series of inhibitors was more potent
towards CDK9 than the other CDKs examined in the study.
Given the close relation between CDK9 and CDK10, these
inhibitors may exhibit inhibitory activity towards CDK10 (2).

The development of therapeutics targeting CDK10 should
account for the tissue-specific biological activity of CDK10. Given
thatCDK10 acts as a tumor suppressor in some gastrointestinal and
hepatobiliary cancers, future drug development should focus on
inhibiting other CDKs, while maintaining activity of CDK10. In
these cancers, CDK10 expression levels may be indicative of
chemoresistance. The promotion of tumorigenesis by CDK10 in
CRC suggests its inhibition is a promising therapeutic strategy.
Given that the kinase domain has been implicated CDK10-
mediated inhibition of apoptosis in CRC, inhibition of CDK10
kinase activity may be an effective therapeutic approach. The
development of a CDK10-specific inhibitor may be a viable
therapeutic target for the treatment of CRC.
Frontiers in Oncology | www.frontiersin.org 6
CONCLUSION

CDK10 has been implicated as both a tumor suppressor and an
oncogene in gastrointestinal and hepatobiliary cancers. CDK10 is
involved in cell proliferation, cell motility, and plays an important
role in chemosensitivity and chemoresistance. Further studies are
warranted to understand the tissue-specific functions of CDK10
and the mechanisms that influence its oncogenic and tumor
suppressive potential in gastrointestinal cancer. Implications of
CDK10 as an oncogene in CRC make inhibition of CDK10 a
viable therapeutic strategy. The development of therapeutics
targeting CDK10 has been hindered by lack of a high throughput
CDK10 activity screening assay. Detection of CDK10 kinase
activity will allow for identification of small molecule inhibitors of
CDK10.Thiswill aid in further understanding the role ofCDK10 in
disease progression, and the development of therapeutics for the
treatment of gastrointestinal cancers.
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