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Abstract Self-diffusion coefficient measurements were performed for pure n-alkyl ketone

liquids using the pulsed field gradient NMR spin-echo technique. Ionic conductivities and

dielectric constants of 0.0055 mol�L-1 tetrabutylammonium trifluoromethanesulfonate in

2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, and 2-decanone were also

measured. The temperature-dependent conductivities and diffusion coefficients over the

range 5–80 �C can be described using the compensated Arrhenius formalism. Compensated

Arrhenius equation plots were used to calculate the average activation energy for both sets of

data. The average activation energy from conductivity data is approximately equal to that

from diffusion data. The data for the pure ketones and ketone-based electrolytes are compared

with analogous data for pure n-alkyl acetates and n-alkyl acetate-based electrolytes.

Keywords Ionic conductivity � Diffusion coefficient � Compensated Arrhenius �
Dielectric constant � Ketone electrolyte � Acetate electrolyte

1 Introduction

Mass and charge transport in organic liquid electrolytes have garnered interest due to the

use of these electrolytes in electrochemical devices. Ionic conductivities and self-diffusion

coefficients are important measures of transport phenomena, although these data are

conventionally described with viscosity-related models [1–3] that often predict results that

do not agree with experiment [4–6]. Recently, mass and charge transport have been viewed
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from an entirely different perspective [7, 8], by postulating that the conductivity and

diffusion coefficient assume an Arrhenius-like expression with static dielectric constant (es)

dependence in the exponential prefactor:

rðT ; esÞ ¼ r0fes Tð Þgexp �Ea=RTð Þ ð1Þ

DðT ; esÞ ¼ D0fes Tð Þgexp �Ea=RTð Þ ð2Þ
Here r(T, es) is the ionic conductivity, D(T, es) is the self-diffusion coefficient, r0{es(T)}

and D0{es(T)} are the exponential prefactors for conductivity and diffusion, respectively. In

addition, Ea is the activation energy and T is the temperature.

The prefactors in Eqs. 1 and 2 are temperature dependent due to the inherent temper-

ature dependence of the dielectric constant. The dielectric constant dependence can be

canceled by using a scaling procedure that has been previously described in detail [7–9].

The scaling procedure consists of dividing the temperature-dependent conductivities (or

diffusion coefficients) by conductivities (or diffusion coefficients) at a reference temper-

ature Tr. The two quantities are chosen such that the temperature-dependent quantity and

the reference quantity have the same value of es. This scaling results in compensated

Arrhenius equations (CAE) for conductivity and diffusion:

ln
rðT ; esÞ
rrðTr; esÞ

� �
¼ � Ea

RT
þ Ea

RTr

ð3Þ

ln
DðT ; esÞ
DrðTr; esÞ

� �
¼ � Ea

RT
þ Ea

RTr

ð4Þ

The activation energies for conductivity and diffusion can be calculated from either the

slope or intercept of Eqs. 3 and 4, respectively. Equations 1–4 and the postulates therein

constitute the compensated Arrhenius formalism (CAF).

In this study, activation energies are reported for diffusion data of pure ketones and

conductivity data of 0.0055 mol�L-1 tetrabutylammonium trifluoromethanesulfonate

(TbaTf)–ketone solutions. We have previously reported activation energies from con-

ductivity data for dilute ketone electrolytes that focused on short chain ketones [7]. The

ketones studied here include 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nona-

none and 2-decanone. This paper also compares the conductivity and diffusion data in

ketones with analogous data from dilute acetate electrolytes and pure acetates [10].

Ketones and acetates are both aprotic solvents with carbonyl groups. However, the per-

mittivity of ketones is significantly higher than that for acetates. Because the dielectric

constant plays a prominent role in transport phenomena, it is important to compare con-

ductivity and diffusion data between ketones and acetates.

2 Experimental

2.1 Materials

2-Pentanone (99? %), 2-octanone (98 %), and 2-decanone (97 %) were obtained from

Alfa Aesar, while 2-hexanone (98 % reagent grade), 2-heptanone (99 % reagent plus

grade), and 2-nonanone (99? % reagent plus grade) were from Aldrich. TbaTf (99 %) was

purchased from Aldrich and used as received. The samples were prepared in a glove box

under a nitrogen atmosphere (B1 ppm H2O and approximate temperature 25 �C). TbaTf
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was dissolved in the appropriate amount of ketone to make the 0.0055 mol�L-1 solution,

and then stirred for 24 h before use.

2.2 Measurements

Each sample was injected into an Agilent 16452A liquid test fixture with a 2 mm spacer

and immersed in an oil bath whose temperature was controlled from 5 to 85 �C, in

increments of 10 �C, with a Huber Ministat 125. The conductance and capacitance were

measured at each temperature (within 0.3 �C of the set temperature) over the frequency

range 1 kHz to 13 MHz using a HP 4192A impedance analyzer. The conductivity, r, was

calculated from the measured conductance, G, through the equation r = L G A-1, where

L is the electrode gap and A is the electrode area. The cell constant calculated from the cell

geometry is 0.0176 cm-1. The static dielectric constant es was calculated from the mea-

sured capacitance C using the equation es = a C C0
-1, where a is a variable to account for

stray capacitance and C0 is the atmospheric capacitance.

A Varian VNMRS 400 MHz NMR spectrometer was utilized to measure self diffusion

coefficients from 5 to 80 �C. The Larmor frequency for protons was 399.870 MHz using

an Auto-X-dual broad band (5 mm) probe. The Stejskal–Tanner pulsed field gradient NMR

spin-echo sequence was used for the diffusion measurements [11]. At each temperature, the

gradient field strength was arrayed from 6 to 62 G�cm-1 and the integrated intensity of

each attenuated signal was calculated. The diffusion coefficient was calculated from the

slope of the plot ln(intensity) versus square of the gradient strength. The temperature was

controlled using an FTS XR401 air-jet regulator.

2.3 Data Analysis

A high degree of linearity was observed for both simple Arrhenius and compensated

Arrhenius plots for the self-diffusion coefficient data of pure ketones (data are not shown).

Table 1 summarizes the compensated Arrhenius Ea values at five different reference

temperatures (25, 35, 45, 55, 65 �C) for pure 2-hexanone, 2-heptanone, and 2-nonanone. It

is important to note that the value of Ea does not significantly depend on the choice of the

reference temperature.

Table 1 Activation energies for pure ketones from compensated and simple Arrhenius plots of diffusion
data

CAE Ea/kJ�mol-1 Simple Arrhenius Ea/kJ�mol-1

Ketone Tr (�C) Slope Intercept Ketone Slope

2-Hexanone 25 23.8 ± 0.5 23.9 ± 0.5 2-Hexanone 15.2 ± 0.2

35 23.7 ± 0.5 23.8 ± 0.5 2-Heptanone 15.2 ± 0.6

2-Heptanone 25 23.8 ± 0.9 24.0 ± 0.8 2-Octanone 16.1 ± 0.7

35 23.8 ± 0.9 24.0 ± 0.9 2-Nonanone 15.1 ± 0.1

45 23.8 ± 0.9 24.0 ± 0.9 2-Decanone 15.7 ± 0.2

55 23.9 ± 0.9 24.0 ± 0.9

65 23.9 ± 0.9 23.9 ± 0.9

2-Nonanone 65 24.0 ± 0.7 23.9 ± 0.7
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The average CAE activation energy from the data in Table 1 is (23.9 ± 0.8) kJ�mol-1.

Table 1 also lists the simple Arrhenius Ea values for each ketone obtained from a plot of ln

D versus 1/T. The Ea value obtained from the simple Arrhenius plot is lower than the

corresponding CAE activation energies, which is a trend that has been observed in other

systems [8–10]. Figure 1a plots self-diffusion coefficients versus static dielectric constant

for pure ketones. Six well-separated curves are observed, one each for the temperature

dependent data of each ketone.

The exponential prefactors, D0, were calculated from Eq. 2 by dividing the temperature

dependent diffusion coefficients by the Boltzmann factor, exp(–Ea/RT). The plot of

exponential prefactor versus dielectric constant yields a single master curve in Fig. 1b.

This single master curve can be observed only for a narrow range of Ea values

(22.5–25.5 kJ�mol-1). The CAE gives Ea values that are within this range, while the simple

Arrhenius plots yield activation energies that do not result in a master curve.

For conductivity data of 0.0055 mol�L-1 TbaTf–2-ketone systems, CAE plots exhibit

linear behavior while simple Arrhenius plots are approximately linear but do show slight

curvature (data not shown). The resulting CAE and simple Arrhenius Ea values are

reported in Table 2. Similar to the diffusion data, simple Arrhenius Ea values are lower

than those from the CAE. The average CAE activation energy from the data in Table 2 is

(24.1 ± 0.8) kJ�mol-1; this value was utilized to determine the conductivity exponential

prefactors by dividing the temperature-dependent conductivities in Eq. 1 by the Boltzmann

factor.

Temperature-dependent ionic conductivities are plotted against temperature-dependent

dielectric constants in Fig. 2a for the 0.0055 mol�L-1 TbaTf–ketone data. Six distinct

curves are observed, one for each ketone electrolyte solution. However, a single master

curve is observed when the exponential prefactors are plotted against the static dielectric

constant, as shown in Fig. 2b. A master curve is only observed for Ea values in the narrow

range from 22 to 27 kJ�mol-1. Similar to the diffusion results, the CAE activation energies

result in a master curve, while those from the simple Arrhenius equation do not.

Fig. 1 Left: Self-diffusion coefficients of pure ketones versus static dielectric constant from 5 to 80 �C for:
(A) 2-pentanone, (B) 2-hexanone, (C) 2-heptanone, (D) 2-octanone, (E) 2-nonanone, and (F) 2-decanone.
Right: Exponential prefactor versus dielectric constant for the diffusion data of pure ketones using
Ea = 23.9 kJ�mol-1
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A comparison of the conductivities of the 0.0055 mol�L-1 TbaTf–ketone solutions in

the present study with the conductivities of 0.0055 mol�L-1 TbaTf–acetate solutions from

an earlier study [10] is shown in Fig. 3a. The conductivities of both ketone and acetate

solutions increase with increasing temperature and decreasing alkyl chain length as

expected. However, despite sharing commonalities in their chemical structures (the car-

bonyl oxygen common to both presumably coordinates the cation in electrolyte solutions),

the conductivities of the TbaTf–ketone solutions are significantly higher than those of the

TbaTf–acetate solutions. What is the origin of this difference?

The CAF provides important insight into this difference. In Eq. 1 there are two factors

that control the conductivity: the exponential prefactor r0 and the Boltzmann factor

exp(–Ea/RT). Figure 4a shows that the exponential prefactors calculated from the con-

ductivity data are very similar for the acetates and ketones. By way of comparison, a

Table 2 Activation energies from compensated and simple Arrhenius plots resulting from conductivity
data for 0.0055 mol�L-1 TbaTf–2-ketones

CAE Ea/kJ�mol-1 Simple Arrhenius Ea/kJ�mol-1

Ketone Tr (�C) Slope Intercept Ketone Slope

2-Hexanone 25 23.1 ± 0.6 23.2 ± 0.6 2-Pentanone 5.0 ± 0.1

35 22.7 ± 0.5 22.8 ± 0.5 2-Hexanone 5.2 ± 0.1

2-Heptanone 25 23.9 ± 1.0 24.1 ± 1.0 2-Heptanone 5.6 ± 0.2

35 24.1 ± 0.9 24.3 ± 0.9 2-Octanone 6.3 ± 0.2

45 23.4 ± 0.8 23.6 ± 0.8 2-Nonanone 7.2 ± 0.2

55 23.0 ± 0.5 23.2 ± 0.6 2-Decanone 8.5 ± 0.2

2-Octanone 45 25 ± 1 25 ± 1

55 25.3 ± 0.9 25.3 ± 0.9

65 24.8 ± 0.9 24.7 ± 0.9

2-Nonanone 80 25.4 ± 0.8 25.1 ± 0.9

Fig. 2 Left: Conductivity versus static dielectric constant for 0.0055 mol�L-1 TbaTf–ketone solutions of
(A) 2-pentanone, (B) 2-hexanone, (C) 2-heptanone, (D) 2-octanone, (E) 2-nonanone, and (F) 2-decanone
over the temperature range 5 to 80 �C. Right: Exponential prefactor versus the dielectric constant for
0.0055 mol�L-1 TbaTf–ketone solutions using Ea = 24.1 kJ�mol-1
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0.004 mol�L-1 solution of TbaTf in 1-hexanol has r0 = 1.10 9 104 S�cm-1 at 5 �C

(es = 15.5) and r0 = 2.70 9 102 S�cm-1 at 85 �C (es = 8.0) (unpublished data).

In a previous study, we found that the average CAE conductivity activation energy for a

series of 0.0055 mol�L-1 TbaTf–acetate solutions was 36.5 kJ�mol-1, which is signifi-

cantly higher than the value of 24.1 kJ�mol-1 for the 0.0055 mol�L-1 TbaTf–ketone

solutions in the present study. Since the values of the prefactors are so similar, the higher

conductivities of the ketone electrolytes originate in their markedly lower activation

energies compared with the acetate electrolytes.

Fig. 3 Left: Conductivity versus temperature for 0.0055 mol�L-1 TbaTf–2-ketone solutions and
0.0055 mol�L-1 TbaTf–n-acetate solutions from 5 to 80 �C. Right: Self-diffusion coefficient versus
temperature for pure ketone and pure acetate solvents

Fig. 4 Left: Exponential prefactor versus dielectric constant for the conductivity data of 0.0055 mol�L-1

TbaTf-acetates and 0.0055 mol�L-1 TbaTf-ketones. Right: Exponential prefactor versus dielectric constant
for the diffusion data of pure acetates and pure ketones. The solvents are designated by: (A) butyl acetate,
(B) pentyl acetate, (C) hexyl acetate, (D) octyl acetate, (E) decyl acetate, (F) 2-pentanone, (G) 2-hexanone,
(H) 2-heptanone, (I) 2-octanone, (J) 2-nonanone, (K) 2-decanone. The units of Ea are kJ�mol-1

J Solution Chem (2013) 42:584–591 589

123



The conductivity of an electrolyte can be expressed as r = Ri ni qi li, where the

summation runs over all charged species in the system and ni is the number density of

charge carriers of type i with charge qi and mobility li. The conductivity difference

between the ketone and acetate solutions cannot be due to the number density of ions since

both electrolytes have the same salt concentration (0.0055 mol�L-1). Numerous studies of

ionic association in various Tba salt solutions have shown that weak, solvent-separated ion

pairing occurs [12–15]. However, the charge-protected Tba cation does not form discrete,

spectroscopically observable ionic species such as are found in lithium and sodium salt

solutions [16–18]. Consequently, TbaTf electrolytes consist only of spectroscopically

‘‘free’’ ions, and ion mobility must be the key factor that controls the conductivity in these

electrolytes. Accordingly, we conclude that the ion mobilities in the ketone electrolytes are

substantially higher than those in the acetate electrolytes.

In contrast to the conductivity data, diffusion coefficients are comparable between pure

ketones and acetates for similar temperatures and chain lengths as shown in Fig. 3b. The

average compensated Arrhenius diffusion activation energy for the pure ketones is

23.9 kJ�mol-1 and that for the pure acetates is 25.5 kJ�mol-1. The diffusion prefactors are

also comparable between acetates and ketones as seen in Fig. 4b; therefore, it is not

surprising that the values of the diffusion coefficients of the ketones and acetates are

similar. Indeed the primary difference between these two solvent families is that the acetate

prefactor master curve is horizontally shifted on the permittivity axis from the ketone curve

for both conductivity and diffusion prefactors in Fig. 4. This shift is due to the difference in

permittivity originating in the difference in dipole moments for these two solvent families.

For example, the gas phase permanent moment of ethyl acetate (C4H8O2) is 1.78 D [19]

while that of 2-butanone (C4H8O) is 2.78 D [20].

The Ea for diffusion in pure ketones is approximately equivalent to the Ea for con-

ductivity in the dilute TbaTf–ketone solutions as indicated in Fig. 4. However, the addition

of a small amount of TbaTf to a pure acetate solvent increases the average activation

energy from 25.5 to 36.5 kJ mol-1 in the 0.0055 mol�L-1 solution. This difference may

originate in the lower permittivities of the acetate systems that lead to stronger ion–solvent

interactions and contribute in large part to the 10 kJ�mol-1 difference in their Ea values.

One of our previous CAF studies involved 0.0055 mol�L-1 TbaTf–ketone solution

conductivity data that included the short chain ketones 2-butanone and acetone. This study

resulted in an average activation energy of *16 kJ�mol-1 [7]. Numerous CAF studies of

other solvent-based systems (alcohols, ketones, acetates, nitriles, acyclic carbonates) have

led to the conclusion that including the shortest alkyl chain members of a solvent family in

the CAF analysis produces activation energies that are somewhat lower than if these

members are omitted. The present work gives an average conductivity activation energy of

24.1 kJ�mol-1 by leaving out the acetone and 2-butanone data. Further, the activation

energies calculated here for 2-hexanone, 2-heptanone, 2-octanone, and 2-nonanone are

remarkably close to each other as seen in Table 2.
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