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INTRODUCTION 
 

As the most common malignant tumor in women, breast 

cancer has exhibited the fifth highest death rate after 

stomach cancer worldwide [1]. With the progressive 

increase of both incidence and mortality, it is crucial to 

evaluate the prognosis in clinical environment and  

to propose an appropriate therapeutic regimen for 

malignant tumor patients. In clinical practice, TNM 

staging is generally used, but it may lead to an entirely 

distinct prognosis in the same situation [2]. Therefore, a 

more precise and valuable method is highly desirable to 

predict outcomes. 

 

The past decade has emerged several novel technologies 

to explore cancer's molecular characteristics, especially 

with the rapid advancement of high-throughput next-

generation sequencing (NGS), bioinformatics analyses, 

www.aging-us.com AGING 2021, Vol. 13, No. 12 

Research Paper 

Identification of differentially expressed genes-related prognostic risk 
model for survival prediction in breast carcinoma patients 
 

Jinyu Li1,*, Gena Huang1,*, Caixia Ren2, Ning Wang3, Silei Sui4, Zuowei Zhao1,5,&, Man Li1 
 
1Department of Breast Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, 
China 
2Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, 
China 
3Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning 
116044, China 
4Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China 
5Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, China 
*Equal contribution 
 
Correspondence to: Zuowei Zhao, Man Li; email: dmuzhaozuowei@163.com, https://orcid.org/0000-0002-2569-3822; 
liman19890930@sina.com, https://orcid.org/0000-0002-6159-7440  
Keywords: breast cancer, differentially expressed genes, prognostic risk model, prognostic outcome, Cox regression 
Received: November 19, 2020        Accepted: May 31, 2021 Published: June 26, 2021 

 
Copyright: © 2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Since the imbalance of gene expression has been demonstrated to tightly related to breast cancer (BRCA) 
genesis and growth, common genes expressed of BRCA were screened to explore the essence in-between. In 
current work, most common differentially expressed genes (DEGs) in various subtypes of BRCA were identified. 
Functional enrichment analysis illustrated the driving factor of deactivation of the cell cycle and the oocyte 
meiosis, which critically triggers the development of BRCA. Herein, we constructed a 12-gene prognostic risk 
model relative to differential gene expression. Subsequently, the K-M curves, analysis on time-ROC curve and 
Cox regression were performed to assess this risk model by determining the respective prognostic value, and 
the prediction performance were ascertained for both training and validation cohorts. In addition, multivariate 
Cox regression was analysed to reveal the independence between risk score and prognostic stage, and the 
accuracy and sensitivity of prognosis are particularly improved after clinical indicators are included into the 
analysis. In summary, this study offers novel insights into the imbalance of gene expression within BRCA, and 
highlights 12 selected genes associated with patient prognosis. The risk model can help individualize treatment 
for patients at different risks, and propose precise strategies and treatments for BRCA therapy. 

mailto:dmuzhaozuowei@163.com
https://orcid.org/0000-0002-2569-3822
mailto:liman19890930@sina.com
https://orcid.org/0000-0002-6159-7440
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 16578 AGING 

machine learning, and gene microarray technique. 

These techniques extremely contributed to early 

diagnosis of tumors, prognosis prediction, and 

individualized treatment. In addition, the 

bioinformatics-based biomarker discovery renders a 

deeper understanding on disease-related regulatory 

pathways and molecular mechanisms. To identify high-

risk patients, gene risk models are established via 

bioinformatics analysis using clinical information and 

gene expression data. More studies have been addressed 

on establishing gene risk models, resulting from the 

measuring capability of mRNA expression by NGS and 

microarray. Particularly, several risk models have 

played an excellent role in predicting the prognosis 

outcomes, including autophagy-related gene models, 

immune cell infiltration-related gene models, 

nomograms, and so on [3–6]. However, these models 

elucidated the prognosis of BRCA from the perspective 

of a single functional genome, which limited their 

prediction results. 

 

The occurrence and development of tumors are highly 

relative to the accumulative changes in tumor 

suppressor genes and oncogenes [7]. The differentially 

expressed genes (DEGs) play varying roles during 

different periods of the occurrence and distinct 

developmental stages of cancer [8]. Genes' abnormal 

expression has been previously reported to accelerate 

the progression of malignancies, and DEGs have been 

targeted as a novel treatment approach in several 

antitumor clinical types of research [9, 10]. 

 

In this study, high-throughput mRNA expression 

profiles from distinct regions and races have been 

investigated, focusing on the differences between breast 

cancer and adjacent mammary tissue hence to identify 

potential genetic biomarkers. The selected DEGs 

profiles were incorporated with TCGA-BRCA clinical 

data to explore DEGs' role in prognosis. Moreover, the 

independent prediction of BRCA patients' outcomes 

was achieved using a risk model based on 12 DEGs-

related signatures. As such, the risk prediction model is 

demonstrated as a reliable prognostic marker in BRCA 

patients. On the other hand, our functional biomarker-

based study also provides a novel alternative to predict 

prognosis in BRCA patients. 

 

RESULTS 
 

Identification of DEGs in BRCA 
 

To identify DEGs in this study, breast carcinoma 

samples (479 cases) and normal breast tissues (206 

cases) were randomly collected from different regions 

and races. Using the limma package, we identified 

3065 DEGs in GSE29431, 1293 DEGs in GSE32641, 

1315 DEGs in GSE61304, 2252 DEGs in GSE70947 

and 722 DEGs in GSE86374. DEGs in two 

representative samples from each of the five 

expression profiling databases are shown in the 

volcano plots (Figure 1A–1E). In Figure 1F and 1G, 

61 upregulated genes and 90 downregulated genes are 

in common (|log2Fold Change| >1, adj.p < 0.05), 

which are displayed in the heatmap in five databases 

(Figure 1H). 

 

Functional enrichment of DEGs and PPI network 

construction 

 

The biological roles of 151 DEGs were further 

investigated using GO and KEGG pathway analysis. 

There are three functional categories in GO analysis: 1) 

in terms of biological process (BP), upregulated DEGs 

were merely enriched in nuclear division and organelle 

fission, while downregulated ones were enriched in 

peptide hormone and smooth muscle cell proliferation; 

2) in terms of cellular component (CC), upregulated 

DEGs were involved in spindle, condensed 

chromosome and spindle pole, while downregulated 

ones were involved in collagen-containing extracellular 

matrix, lipid droplet and basement membrane; 3) in 

terms of molecular function (MF), microtubule 

motoring and binding activities were remarkably 

relative to upregulated DEGs, while downregulated 

ones were merely involved in integrin and growth factor 

and glycosaminoglycan binding (Figure 2A–2B). 

Additionally, KEGG pathway analysis demonstrated the 

participated roles of most upregulated genes in cell 

cycle and oocyte meiosis. As a contrast, downregulated 

genes were merely involved in PPAR signaling pathway 

and tyrosine metabolism (Figure 2C). The heatmap 

indicated the relationship between DEGs and enriched 

KEGG pathways (Figure 2D). Lastly, there are 151 

nodes and 1169 edges in the PPI network of DEGs (51 

upregulated genes and 90 downregulated genes, p = 

1.0e-16), and the highest degree is determined at 48 

(Supplementary Figure 1). 

 

Creation and validation of OS-related prognostic 

risk signature by cox regression 

 

TCGA-BRCA and GEO databases were employed for 

model training (n = 1076) and validation (n = 408), 

respectively. As indicated in Supplementary Table 1, 

there are 31 genes correlated to OS in the TCGA-BRCA 

cohort upon the univariate Cox regression analysis. 

Furthermore, the significant OS-related DEGs were 

identified using multivariate cox regression, in which 12 

genes could serve as potential prognostic predictors in 
BRCA patients (Figure 3A). In Figure 3B and 3C, the 

correlation analysis suggested that 12 selected genes 

were cross-interacted. 
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Besides, genetic alteration of 12 risk-related genes was 

proceeded to identify their performance in BRCA 

patients (Supplementary Figure 2). PPI results suggested 

that most of the 12 selected genes were significantly 

intercorrelated (p < 1.0e-16, Supplementary Figure 3). 

Subsequently, the survival condition was evaluated in 

Kaplan Meier-Plotter datasets, indicating that all 

selected genes were included in the prognostic risk 

model with a promising survival predicting 

performance (Supplementary Figure 4).  

 

 
 

Figure 1. Foundation of DEGs in five GEO databases. (A–E) The display of DEGs in each database by volcano plots. Datasets from 

GSE29431 (A), GSE32641 (B), GSE61304 (C), GSE70947 (D) and GSE86374 (E). Orange: Up-regulated genes (logFC ≥ 1.0, adj. P < 0.05); Blue: 
Down-regulated genes (logFC ≤ -1.0, adj. P < 0.05); Yellow: Genes with no significance. (F–G) A Total of 61 significantly upregulated genes (F) 
and 90 significantly downregulated genes (G) were screened from the five GEO databases. (H) Hierarchical clustering heatmap showed 
expression of 151 DEGs in five GEO databases. Red: higher expression genes, green: lower expression genes. 
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Lastly, the formula was established for the prognostic 

risk model by referring to multiple Cox regression (Risk 

score = 0.30912 × ANLN expression (Exp-ANLN) + 

0.26714 × Exp-CCNE2 + 0.47389 × Exp-KIF4A – 

0.42876 × Exp-MELK – 0.55747 × Exp-NDC80 – 

0.44425 × Exp-NEK2 – 0.23508 × Exp-TOP2A + 

0.34102 × Exp-TTK + 0.46718 × Exp-UBE2T – 

0.25889 × Exp-FREM1 + 0.29101 × Exp-IGF1 – 

0.20025 × Exp-SORBS1). The respective risk score was 

determined in the training cohort, patients were then 

divided into high-risked group or low-risked group 

(Figure 4A), in accordance to the calculated median risk 

scores. Using Kaplan-Meier survival analysis, high-

risked patients exhibit lower OS rates than that of low-

risked patients in the training cohorts (p < 0.0001, 

Figure 4B). 

 

The predictive risk model on prognosis was further 

investigated, and the established and acquired formula 

was applied for other 408 BRCA patients in separate 

cohorts. The validation cohorts consisted of GSE20685 

(n = 327) and GSE48390 (n = 81) databases, including 

mRNA expression, survival status and survival time. 

Similarly, patients were group-categorized according to 

 

 
 

Figure 2. GO and KEGG analysis of DEGs in BRCA. (A–B) The biological processes, cellular components, and molecular functions of 61 

up-regulated DEGs (A) and 90 down-regulated DEGs (B) were displayed by GO analysis. (C) The signaling pathways of 151 DEGs were 
displayed by KEGG analysis. (D) Heatmap of the significant enrichment results in the KEGG pathway. 
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their calculated risk scores. For patients with higher risk 

score in the validation cohorts (Figure 4C–4D), the 

worse OS rates were observed using Kaplan-Meier 

survival analysis. Moreover, receiver operating 

characteristic (ROC) curves were plotted to investigate 

the time-dependent dependability of the risk model. As 

shown in Figure 4E, the area under curve (AUC) in 5-

year and 10-year survival was 0.74 and 0.72, 

respectively, in TCGA-BRCA training cohort, 

demonstrating the survival predicting capability of as-

constructed risk model. On the other hand, ROC curves 

were utilized in validation cohorts. For example, the 

 

 
 

Figure 3. Multivariable Cox regression and correlation analysis. (A) The multivariable Cox regression analysis of 12 selected DEGs 

were displayed by forest plot. (B–C) The correlation analysis of 12 selected DEGs was displayed by Pearson’s correlation (B) and the bc-
GenExMiner software (C), respectively. 
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representative AUC of 5-year and 10-year survival 

rates were 0.73 and 0.67 in the GSE20685 cohort 

(Figure 4F), and that in the GSE48390 cohort were 

0.81 and 0.72, respectively (Figure 4G). These results 

suggested that our developed risk model was a 

dependable prognostic indicator with improved 

performance. In a nutshell, the combination of the 

12-DEGs-related risk signatures in the validation 

cohorts demonstrated its significant predictive value 

for prognosis. 

 

 
 

Figure 4. OS-related prognostic risk model of BRCA patients. (A) The display of prognostic risk model with risk score, patient survival 

time and status in TCGA-BRCA database. (B–D) The K-M survival curves of the high- and low-risk group of TCGA-BRCA cohort (B) and 
validation GSE20685 cohort (C) and GSE48390 cohort (D). (E–G) The prediction of 5- and 10-year survival in TCGA-BRCA cohort (E) and 
GSE20685 cohort (F) and GSE48390 cohort (G) by Time-ROC. 
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The correlation analysis between DEGs-related risk 

model and clinicopathological variables 

 

Univariate and multivariate Cox regression were 

subsequently analysed to identify the roles of DEGs-

related risk model in predicting prognosis. Univariate 

Cox regression revealed that there are 6 risk factors for 

survival prediction, including advanced age, 

pathological stage, PAM50 molecular subtypes, tumor 

size, lymph node metastasis, and risk score evaluated by 

the DEGs-related model (Figure 5A). In addition, 

multivariate Cox regression analysis demonstrated the 

high consistence between the OS of BRCA patients and 

the abovementioned six factors, especially the risk score 

(Figure 5B). In summary, these Cox regression results 

demonstrated the functions and contributions of risk 

score in predicting prognosis without restrictions from 

tumor clinicopathologic features. 

 

The probability of 5-year and 10-year OS was 

predicted by generating a nomogram. As shown in 

Figure 5C, calibration curves demonstrated the 

favorable consistency in actual and predicted survival 

performance (Figure 5D–5E), especially for 5-year 

survival. In addition, after combination of age, 

pathological stage, PAM50 molecular subtypes, tumor 

size, lymph node metastasis and our risk score, the 

predictive accuracy was significantly improved in 

TCGA-BRCA (Table 1). As evidenced in the time-ROC 

results in Figure 5F, the comprehensive analysis offered 

more accurate predictions on the prognosis in BRCA 

patients (5-year AUC = 0.83, 10-year AUC = 0.79). 

 

To verify the effect of DEGs-related risk signature for 

survival on the malignancy of BRCA, our risk model 

was correlated with clinicopathological variables. In 

Figure 6, the risk score was significantly increased, 

when the HER2 subtype and luminal B subtype, the 

later clinical stage, the larger tumor size, and lymph 

node metastasis were taken into consideration, 

confirming the excellent consistency between risk score 

and prognostic outcomes. 

 

Exploration of the mechanism in predicted 

differential risk patients by GSEA 

 

The functional differences among differential risk 

patients by GSEA were explored by comparing patients 

in low-risk and high-risk groups. For instance, high-

risked patients were positively correlated with cell cycle 

(NES = 1.85, p = 0.012), TCA cycle (NES = 1.82, p = 

0.016), and oxidative phosphorylation (NES = 2.05, p = 

0.026). Meanwhile, patients in low-risk groups were 
negatively correlated with basal cell carcinoma (NES 

= –1.80, p = 0.004), Hedgehog signaling pathway 

(NES = –1.69, p = 0.010), and JAK-STAT signaling 

pathway (NES = –1.65, p = 0.035) (Figure 7). 

Therefore, the presence of an intensively regulatory 

role was observed for the development and 

progression in high-risk BRCA patients, exhibiting 

significant changes in pathways. 

 

Prediction of targeted treatment in BRCA patients 

by our risk score 

 

As presented in Figure 8, our DEGs-related risk score 

was closely associated with CDK4 expression (cor = 

0.12, p = 9.9e-05), as well as the expressions of ERBB2 

(cor = 0.14, p < 2.2E-16), EGFR (cor = –0.14, p <4.6e-

06), and KIT (cor = –0.19, p < 4e-10) by Pearson’s 

correlation analysis. In conclusion, patients with higher 

DEGs-related risk score exhibited favorable therapeutic 

response to CDK4- and ERBB2- targeted treatments. 

Otherwise, the lower risk score, patients exhibited better 

response to EGFR and KIT targeted treatments. 

 

Verification of the 12-prognostic mRNA expressions 

between BRCA specimens and adjacent breast 

tissues by qRT-PCR 

 

To avoid false-positive results from public database, 12-

mRNA expressions were further verified based on qRT-

PCR results from 20 frozen tissues from BRCA patients 

(Figure 9). The experimental results indicated that the 

mRNA expressions of ANLN, KIF4A, MELK, NDC80, 

NEK2, TOP2A, TTK and UBE2T were upregulated in 

BRCA tissue in comparison to the adjacent tissues, 

while that of FREM1 and SORBS1 were downregulated 

in BRCA tissues compared to the adjacent tissues. 

These validation results were generally consistent with 

TCGA-BRCA database (Supplementary Figure 2), 

suggesting that these prognostic genes played critical 

roles in the initiative and developing stages of breast 

cancer. 
 

DISCUSSION 
 

The aberrant gene expression is a major threat during 

the progressively developing stages of BRCA, recent 

intensive studies have indicated that some genes could 

be potentially targeted for diagnosis, treatment, and 

prognosis in BRCA. Thus, it is highly desirable to 

discover effective gene signatures to identify patients' 

condition, not only to find applicable prognostic targets 

but also to provide precise therapy for patients at high 

risk for disease recurrence. Nowadays, full-scale genetic 

data from BRCA samples can be obtained using DNA 

microarray and next-generation sequencing, providing 

comprehensive assessment during diseases progression. 
 

Model in the present study was constructed using five 

GEO databases and TCGA-BRCA database. Among the 
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total 151 DEGs, 31 DEGs were significantly correlated 

to the prognosis in BRCA patients, and 12 DEGs 

(ANLN, CCNE2, KIF4A, MELK, NDC80, NEK2, 

TOP2A, TTK, UBE2T, FREM1, IGF1 and SORBS1) 

were recognized and included in the risk model for 

overall survival prediction. For instance, ANLN was 

identified as the target for BRCA patients, which 

correlated with poor survival [11, 12]. CCNE2 

 

 
 

Figure 5. Prognostic nomogram for predicting survival in TCGA-BRCA patients. (A–B) The correlations of the OS risk score and 

clinical variables by Univariate (A) and Multivariate (B) Cox regression. (C) Prognostic nomogram with certain characteristics in TCGA-BRCA 
patients. (D–E) The prediction of 5- (D) and 10-year (E) survival by calibration curves. x-axis, predicted OS; y-axis, observed OS; the solid 
line, predicted nomogram; the vertical bars, 95% confidence interval. (F) Time-ROC curves for the combination of age, stage, PAM50, T, N 
and risk score. 
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Table 1. Comparing of the predictive efficiency of the prognostic risk models in the entire training cohorts (n = 1076). 

Factor 
Overall survival 

C-index 95% CI AIC 

Age 0.633 0.576–0.690 1640.11  

Stage 0.693 0.643–0.734 1628.64  

PAM50 0.619 0.567–0.672 1622.68  

T 0.608 0.552–0.663 1655.79  

N 0.657 0.603–0.711 1634.36  

Risk score 0.721 0.670–0.772 1621.76  

Age + stage + PAM50 + T + N 0.782 0.737–0.826 1555.89  

Risk score + age + stage + PAM50 + T + N 0.811 0.768–0.854 1520.41  

Abbreviations: C-index: Harrell's concordance index; CI: confidence interval; AIC: Akaike information criterion. 

 

promoted G1-S transition in HER2+ BRCA, and 

hence resulted in trastuzumab resistance [13]. In 

certain stages of mitosis, KIF4A served as a 

biomarker for predicting clinical prognosis [14, 15]. 

MELK promoted the occurrence and progression of 

colorectal adenocarcinomas [16, 17]. NDC80 was 

also recognized as a potential target in BRCA [18]. 

The expression of NEK2 exhibited its importance 

during the mitotic cell cycle of BRCA [19, 20]. As 

previously reported, the higher the expression of 

 

 
 

Figure 6. The relationship between the risk score and clinicopathological variables. Clinicopathological significance of the 

prognostic index of BRCA. (A) PAM50. (B) Stage. (C) T stage. (D) N stage. 
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Figure 7. GSEA analysis in BRCA patients with high- and low-risk score. (A–B) GSEA displayed the KEGG enrichment pathways in 

BRCA patients with high- (A) and low-risk score (B). 

 

 
 

Figure 8. Correlation between risk score and genes expression for targeted treatment in BRCA. (A–D) Correlation analysis shows 

the results of CDK4, ERBB2, EGFR, KIT, respectively. 
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TOP2A, the better prognosis of BRCA [21]. Also, 

TTK was another promising therapeutic target due 

to it was overexpressed in BRCA [22]. UBE2T 

activated PI3K/Akt signaling pathway and 

stimulated tumor progression [23]. A recent study 

proposed that FREM1 isoform was an effective 

diagnostic and therapeutic marker for BRCA [24]. 

In certain cancer cells, binding of IGF-1 to IGF-1R 

could activate some signaling pathway and then 

promote oncogenic effect [25, 26]. SORBS1 was an 

adaptor protein involved in cell adhesion, growth 

factor signaling, and cancer metastasis [27, 28]. 

Next, our risk model was ascertained to 

independently predict prognosis in BRCA patients. 

As the risk score increased, the prognosis outcomes 

got worsen. The resulting DEGs-related risk model 

exhibited favorable predictive outcomes in both 

training (AUC at 5 year = 74%) and validation 

(AUC at 5 year = 73%) cohorts. 

 

Furthermore, the 12 DEGs-related prognostic model 

was validated as an effective and excellent indicator 

of patients' tumor status and prognostic outcomes. 

Using our risk model, patients with particular 

clinicopathological features can be stratified into 

subgroups with varying clinical outcomes. In 

combination with these results, a nomogram was 

established by incorporating clinical features and risk 

score for DEGs signature, which presented excellent 

performance in survival prediction for BRCA 

patients. GSEA revealed that inhibited cell cycle is 

associated with better outcomes, suggesting the 

critical role of CDK 4/6 inhibitors for the prolonged 

survival time among BRCA patients. Moreover, the 

DEGs-related risk score significantly correlated with 

four targeted therapy genes, providing potential 

guidance for personalized treatments. 

 

Several prognostic risk models have been previously 

developed, for example, Zhao et al. recently 

reported BRCA patients from TCGA cohorts and 

discussed the immune-related genes and the immune 

microenvironment of BRCA [5]. Lin et al. identified an 

autophagy-related genes prognostic model [6]. In our 

study, a DEGs-related signature was constructed 

through the different regions and races databases to 

predict BRCA patients' prognosis, as well as to evaluate 

the essence in BRCA in a comprehensive manner. The 

development and progression of BRCA were elaborated 

from multiple perspectives of differentially expressed 

genes, and few DEGs have been identified and verified 

to have potential application in clinics [29, 30]. 

However, even though external verification was 

performed in this study, validation of other cohorts is 

still necessary to verify the prognostic risk model's 

performance and efficiency. Lastly, the inevitable and 

inherent bias within the retrospective method should 

also be addressed. 

 

In conclusion, a DEGs-related risk model was 

successfully constructed for predicting prognosis in 

BRCA, which is beneficial for patients and clinical 

researchers. Our systematic and comprehensive studies 

suggest that 12-DEGs signature might offer a more 

accurate evaluation system for BRCA patients' 

prognosis and provide more personalized therapies. In 

the future, more extended researches should be carried 

out to explore the possible mechanisms for the 

prediction of genes function, as well as the constitutions 

of the prognostic signature. 

 

 
 

Figure 9. The expression of the 12 prognostic genes in clinical breast cancer samples. Clinical samples of breast carcinoma 
tissues and normal breast tissues were collected and followed by RNA extraction for qRT-PCR measurement of relative gene expression of 
ANLN, CCNE2, KIF4A, MELK, NDC80, NEK2, TOP2A, TTK, UBE2T FREM1, IGF1 and SORBS1. Data are means ± SEM. ns, denotes not 
significant. *P < 0.05. **P < 0.001. 
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MATERIALS AND METHODS 
 

Data sources 

 

Firstly, a flow chat was used to illustrate the entire 

process of our studies (Supplementary Figure 5). A total 

of 5 GEO datasets were used to identify DEGs in this 

study. GSE29431, GSE32641, GSE61304, GSE70947, 

and GSE86374 were downloaded from NCBI-GEO, a 

free and public database of transcriptional expression. 

GSE29431 data was obtained with the GPL570 

platforms and collected from 54 breast tumors and 12 

non-tumor breast tissue samples. GPL887 platforms 

were utilized to obtain GSE32641 data from 95 breast 

tumors and 7 normal breast samples. GSE61304 data 

was obtained with the GPL570 platforms and collected 

from 58 breast tumors and 4 normal breast tissues. 

GSE70947 data was obtained with the GPL13607 

platforms and collected from 148 breast tumors and 148 

normal breast samples. GSE86374 data was obtained 

with the GPL6422 platforms and collected from 124 

breast tumors and 35 normal breast tissues. RNA-seq 

and survival information of TCGA-BRCA cohorts were 

retrieved from UCSC Xena [31]. GSE20685 and GSE 

48390 data, including 408 BRCA samples from GEO 

datasets, were used for external validation. Details of the 

GEO datasets was shown in the Supplementary Table 2. 

 

Identification of DEGs 

 

Limma, a package that allows users to compare multiple 

databases in the GEO series under the R environment 

[32]. DEGs between BC and non-tumor breast tissue 

samples are identified. Removing the invalid genes, 

absolute log2 fold change > 1 and adjusted p < 0.05 were 

confirmed as threshold criteria for the genes, to further 

identify significant DEGs. The volcano plots, Venn 

diagrams, and heatmap were made by TBtools, and the 

overlapping DEGs were used to delve deeper [33]. 

 

Functional enrichment analysis of DEGs 

 

Significant DEGs in BRCA were analysed by the 

“clusterProfiler” package [34], including Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analysis [35, 36]. The biological 

processes, cell components and molecular functions were 

evaluated. Significant signaling pathways were 

statistically identified by KEGG analysis, where p < 0.05 

and adjusted p < 0.05 were applied. 

 

Construction of the PPI network  

 

In this study, STRING online database (version 11.0) 

was utilized to construct the protein-protein interaction 

(PPI) network [37]. Cytoscape software (version 3.7.2) 

was employed to paint the integrated regulatory 

networks and analyzed the interaction network of 

different genes [38]. Using the MCODE plug-in 

component of the Cytoscape software, sorted and 

filtered critical modules of the whole network [39]. 
 

Construction and validation of OS related 

prognostic risk model 
 

Univariate Cox regression analysis was firstly carried out 

to obtain the prognostic DEGs in BRCA, the risk model 

was subsequently developed using multivariate Cox 

regression analysis. Final optimization was incorporated 

into the prognostic risk model via stepwise regression. 

The resulting risk score was obtained using this formula: 

Risk score =∑ 𝐶𝑜𝑒𝑓𝑖
𝑛
𝑖=1 ×𝑥𝑖 

where n denotes the number of genes, Coef is the risk 

coefficient, and x indicates the expression level of 

individual DEGs in this risk model. In the light of the 

calculation formula of risk score, the median risk score was 

critical to divide patients into low-risked or high-risked 

category. Kaplan-Meier survival analysis was performed to 

differentiate survival rate between the high-risked and low-

risked patients via log-rank test. Followed by the time-ROC 

analysis, the accurateness of risk model forecast was 

investigated [40], and verified in the independent BRCA 

cohorts (GES20685). In the training and validation cohorts, 

the identical calculation formula was used. Dual Cox 

regression analysis and clinic correlation analysis were 

combined to evaluate the effect of risk signature in 

predicting prognoses of the patients with BRCA. 

 

Breast cancer gene-expression miner 

 

The expression of 12 selected DEGs in different subtypes 

of BRCA were analyzed using the bcGenExMiner 

(version 4.5), by correlating that with the co-expressed 

genes [41]. The correlation of 12 selected genes was 

generated using the correlation module. 

 

Nomogram construction and validation 

 

The “rms” package was used to establish a nomogram 

in R, which can predict patients’ prognosis by 

combining the risk score and multiple clinico-

pathological factors [42]. As for the assessment of 

predictive accuracy of the model, Calibration curves 

were established, the concordance index (C-index) and 

Akaike information criterion (AIC) were further 

conducted to evaluate the influence of prognosis factors. 

 

Gene set enrichment analysis (GSEA) 

 
GSEA4.0.3 (https://www.gsea-msigdb.org/gsea/index.jsp) 

was used to detect which pathways genes are primarily 

https://www.gsea-msigdb.org/gsea/index.jsp
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enriched, that is, gene set enrichment analysis 

differences satisfying the nominal p < 0.05 and the FDR 

< 0.25 were considered statistically significant [43]. 

 

Samples and clinicopathological data 

 

A total of 20 surgically resected breast cancer 

specimens and adjacent breast tissue were collected 

from the Second Hospital of Dalian Medical University 

between January 2010 and January 2018. There are 5 

patients involved in each subtypes (luminal A, luminal 

B, HER2+, and TNBC), identified via pathological 

examination. No chemotherapeutic or radiotherapeutic 

treatments have been applied on patients before the 

surgery. All procedures in this research protocol were 

approved by the ethics committee in the Second 

Hospital of Dalian Medical University. 

 

Isolation of RNA and quantitative reverse 

transcriptase PCR quantification 

 

Extraction of total RNA and synthesis of 

complementary DNA was performed by referring to the 

manufacturers’ instructions. TransStart Tip Green qPCR 

SuperMix (Transgen Biotech) was utilized for real-time 

qRT-PCR with specific primers against ANLN, 

CCNE2, KIF4A, MELK, NDC80, NEK2, TOP2A, 

TTK, UBE2T FREM1, IGF1, SORBS1, and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

using the ABI 7900HT FAST Real-Time PCR System 

(Applied Biosystems, USA). GAPDH was selected for 

normalization. The primer sequences were shown in 

Supplementary Table 3. 

 

Statistical analysis 

 

The Wilcox test was proceeded to identify genes’ 

expression levels of BRCA tissues against that of 

normal tissues. DEGs in the prognostic risk signature 

were screened via Cox regression analyses. The log-

rank test was performed to correlate OS related Kaplan–

Meier survival curve. Time-dependent ROC curve was 

analysed using the “timeROC” package. Step-

comparison for internal-group and external-group was 

conducted using Mann–Whitney–Wilcoxon test and 

Kruskal-Wallis test, respectively. The c-index was 

applied to represent the prognostic nomogram for 5, and 

10 years. Statistical significance was considered when 

two-sided p-values were smaller than 0.05, using R 

software (version 3.6.2). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. PPI network of 151 DEGs was constructed in Cytoscape. Red node indicated the upregulated genes and 

blue node indicated the downregulated genes. The interaction relationship between nodes was connected by lines. 
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Supplementary Figure 2. Synthetical analyses of 12 selected genes in prognostic risk model. (A) OncoPrint demonstrating the 

copy number variations and mRNA expression alterations of 12 selected genes in prognostic risk model. (B) Heatmap of 12 selected genes 
expression across sample type and PAM50 subtypes in the TCGA-BRCA dataset obtained from the UCSC-Xena online tools. (C) Differential 
expression of the 12 selected genes between normal and BRCA tissues. Red and blue indicate malignant tissues and normal tissues, 
respectively. (D) Differential expression of the 12 selected genes among molecular subtypes of TCGA-BRCA. 
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Supplementary Figure 3. PPI analysis of 12 selected DEGs in prognostic risk model by the STRING online dataset. 
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Supplementary Figure 4. Kaplan-Meier survival curves of OS based on 12 genes expression in BRCA patients. (A–I). 

Expression level of ANLN, CCNE2, KIF4A, MELK, KNTC2, NEK2, TOP2A, TTK and UBE2T was markedly correlated with poor OS of BRCA 
patients. (J–L). Expression level of FREM1, IGF1, SORBS1 was markedly correlated with improved OS of BRCA patients. 
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Supplementary Figure 5. The flowchart of data analysis procedures. 
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Supplementary Tables 
 

Supplementary Table 1. Univariate Cox regression analysis of DEGs. 

Gene Coef p HR 95%Cl 95%Cl 

ANLN 0.422 0.013 1.525 1.093 2.129 

CCNE2 0.597 0.001 1.817 1.293 2.554 

KIF4A 0.461 0.006 1.585 1.139 2.206 

MELK 0.411 0.015 1.508 1.082 2.103 

NDC80 0.343 0.042 1.408 1.013 1.959 

NEK2 0.425 0.011 1.53 1.101 2.126 

TOP2A 0.341 0.043 1.406 1.01 1.958 

TTK 0.447 0.008 1.564 1.124 2.176 

UBE2T 0.365 0.029 1.441 1.037 2.002 

SORBS1 -0.479 0.005 0.619 0.442 0.868 

FREM1 -0.357 0.033 0.7 0.504 0.971 

IGF1 -0.35 0.04 0.705 0.505 0.984 

APOD -0.347 0.038 0.707 0.509 0.981 

LYVE1 0.456 0.008 1.577 1.124 2.212 

BUB1 0.375 0.027 1.454 1.043 2.029 

CCNA2 0.412 0.016 1.51 1.08 2.11 

CCNB2 0.45 0.008 1.569 1.122 2.193 

CDC20 0.353 0.036 1.423 1.023 1.978 

CEP55 0.367 0.03 1.443 1.037 2.01 

FOXM1 0.403 0.017 1.496 1.075 2.084 

HSD17B6 0.349 0.036 1.417 1.023 1.964 

KIAA0101 0.47 0.008 1.6 1.132 2.262 

KIF2C 0.561 0.001 1.752 1.256 2.444 

LMNB1 0.419 0.013 1.52 1.092 2.116 

MAD2L1 0.374 0.027 1.454 1.043 2.028 

MMP13 0.412 0.018 1.509 1.074 2.122 

NUF2 0.394 0.019 1.484 1.067 2.063 

SQLE 0.403 0.018 1.496 1.071 2.09 

TK1 0.341 0.043 1.406 1.01 1.958 

TPX2 0.4 0.018 1.492 1.071 2.078 

UBE2C 0.469 0.006 1.598 1.146 2.227 

Abbreviations: Coef: coefficient; HR: hazard ratio; CI: confidence interval. 
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Supplementary Table 2. Characteristics of GEO datasets included in the study. 

Classification Series accession ID Country (region) 
Number of samples 

Platform ID 
Tumor Normal 

Identification of 
DEGs 

GSE29431 Spain 54 12 GPL570 

GSE32641 Taiwan 95 7 GPL887 

GSE61304 Singapore 58 4 GPL570 

GSE70947 USA 148 148 GPL13607 

GSE86374 Mexico 124 35 GPL6422 

External 
verification cohorts 

GSE20685 Taiwan 327 0 GPL570 

GSE48390 Taiwan 81 0 GPL570 

 

 

Supplementary Table 3. Primer sequences for qRT-PCR. 

Gene Name Forward Primer Reverse Primer 

ANLN 5′- TGCCAGGCGAGAGAATCTTC -3′ 5′- CGCTTAGCATGAGTCATAGACCT -3′ 

CCNE2 5′- TCAAGACGAAGTAGCCGTTTAC -3′ 5′- TGACATCCTGGGTAGTTTTCCTC -3′ 

KIF4A 5′- TACTGCGGTGGAGCAAGAAG -3′ 5′- CATCTGCGCTTGACGGAGAG -3′ 

MELK 5′- TATTCACCTCGATGATGATTGCG -3′ 5′- AGAAAGCCTTAAACGAACTGGTT -3′ 

NDC80 5′- TCAAGGACCCGAGACCACTTA -3′ 5′- GGGAGCTTGTAGAGATTTCATGG -3′ 

NEK2 5′- TGCTTCGTGAACTGAAACATCC -3′ 5′- CCAGAGTCAACTGAGTCATCACT -3′ 

TOP2A 5′- ACCATTGCAGCCTGTAAATGA -3′ 5′- GGGCGGAGCAAAATATGTTCC -3′ 

TTK 5′- GTGGAGCAGTACCACTAGAAATG -3′ 5′- CCCAAGTGAACCGGAAAATGA -3′ 

UBE2T 5′- ATCCCTCAACATCGCAACTGT -3′ 5′- CAGCCTCTGGTAGATTATCAAGC -3′ 

FREM1 5′- GCCTGTGGTAACCAGGAACAA -3′ 5′- CGCAGGTGTATCAGGGTCG -3′ 

IGF1 5′- GCTCTTCAGTTCGTGTGTGGA -3′ 5′- GCCTCCTTAGATCACAGCTCC -3′ 

SORBS1 5′- ATTCCCAAGCCTTTCCATCAG -3′ 5′- TTTTGCTGTTCTCGATTGTGTTG -3′ 

GAPDH 5′- GGAGCGAGATCCCTCCAAAAT -3′ 5′- GGCTGTTGTCATACTTCTCATGG -3′ 

Abbreviations: qRT-PCR: quantitative real-time polymerase chain reaction. 

 


