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Depression is a common comorbidity in Parkinson’s disease (PD) but is underdiagnosed.

We aim to investigate the altered metabolic pathways of Parkinson’s disease-related

depression (PDD) in plasma and to identify potential biomarkers for clinical diagnosis.

Consecutive patients with PD were recruited, clinically assessed, and patients with PDD

identified. Fasting plasma samples were collected from 99 patients and differentially

expressed metabolites and proteins between patients with PDD and PD were

identified using non-targeted liquid chromatography-mass spectrometry (LC-MS)-based

metabolomics and tandem mass tag (TMT)-based proteomics analysis, followed by

an integrated analysis. Based on the above results, enzyme-linked immune sorbent

assay (ELISA) tests were then performed to identify potential biomarkers for PDD. In

clinics, patients with PDD suffered less hypertension and had lower serum low-density

lipoprotein cholesterol and apolipoprotein B levels when compared to the other patients

with PD. A total of 85 differentially expressed metabolites were identified in metabolomics

analysis. These metabolites were mainly lipids and lipid-like molecules, involved in lipid

and glucose metabolic pathways. According to proteomics analysis, 17 differentially

expressed proteins were identified, and 12 metabolic pathways were enriched, which

were predominantly related to glucose metabolism. Integrated analysis indicated that

altered lipid and glucose metabolism in PDD may induce cellular injury through oxidative

stress. Additionally, plasma levels of several proteins were confirmed to be significantly

altered and correlated with depressive severity. NOTCH2 may be a potential blood

biomarker for PDD, with an optimal cut-off point of 0.91 ng/ml, a sensitivity value of

95.65%, and a specificity value of 81.58%. Depressive symptoms are associated with

lipid and glucose metabolism in patients with PD and NOTCH2 may be a potential blood

biomarker for the clinical diagnosis of PDD.
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INTRODUCTION

Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disease following Alzheimer’s disease,
afflicting about 3.15% of people over 40 years old (Pringsheim
et al., 2014). It seriously affects the patient’s quality of life,
increases mortality rate, and places a heavy economic burden
on the family and society (Kowal et al., 2013; Macleod et al.,
2014). Although various studies have been conducted to
identify diagnostic biomarkers (Sharma et al., 2013), the clinical
diagnosis of patients with PD has been primarily based on
cardinal motor features, including resting tremor, bradykinesia,
and rigidity (Postuma et al., 2015). Nonmotor symptoms,
such as constipation (Adams-Carr et al., 2016), hyposmia
(Ponsen et al., 2009), rapid eye movement behavior disorder,

cognition (Aarsland et al., 2005), anxiety (Broen et al., 2016),
and depression (Reijnders et al., 2008) are also reportedly
more prevalent in patients with PD. This is probably due to
the alteration of extensive neurotransmitters and brain regions
in patients with PD (Kalia and Lang, 2015). Those nonmotor
symptoms are often more problematic and distressing than the
cardinal motor symptoms.

Depression is one of the most prevalent nonmotor symptoms
in PD patients, with about 17% of patients with PD suffering from
major depressive disorder (Reijnders et al., 2008). Depression can

exacerbate motor symptoms, induce further cognitive disorders,
deteriorate the quality of life, and increase the suicide rate
in patients with PD (Gustafsson et al., 2015). Worse still,
depression in patients with PD is underdiagnosed and under-
treated, with only approximately 20% of those diagnosed actually
receiving treatments (Goodarzi et al., 2016). Depression can be
easily ignored as its characteristic symptoms, including loss of
appetite and energy, sleep disturbances, and fatigue, overlap

with other symptoms in patients with PD (Marsh, 2013). The
underdiagnosis of depression in patients with PD can lead
to poor outcomes for patients and caregivers. Currently, the
diagnosis of depression in patients with PD is based on a clinical
interview (Goodarzi et al., 2016), and an accurate and objective
way is highly desirable for clinicians. In addition, treatments
for the diagnosis of depression in patients with PD are based
on clinical interviews (Goodarzi et al., 2016). Similarly, patients
with definitive Parkinson’s disease-related depression (PDD) also
should be individualized and multidimensional (Marsh, 2013),
while the underlying pathogenesis of PDD is complex and
remains unclear (Sharma et al., 2013).

Various omics data can extend the understanding of many
diseases and help us make more discoveries (Campbell et al.,
2017). Novel bioinformatics methods further enable integrated
perspectives of pathogeneses and identify clinical biomarkers
(Berger et al., 2013; Mostafa et al., 2016). Metabolomics is
a comprehensive evaluation of total endogenous metabolites
while proteomics expands the understanding of a biological
system at the protein level (Altelaar et al., 2013; Wishart, 2016).
Herein we employed non-targeted liquid chromatography-mass
spectrometry (LC-MS)-based metabolomics analysis and tandem
mass tag (TMT)-based proteomics analysis to investigate the
plasma changes of PDD. An integrated analysis was further

generated to elucidate the probable pathogenesis. Based on the
above results, enzyme-linked immune sorbent assay (ELISA)
tests were then performed to identify potential biomarkers for
PDD. In clinical settings, plasma is a relatively accessible, stable,
and informative biofluid, making it ideal for exploring the
underlying pathogenesis, and facilitating the diagnosis of PDD
(Hu et al., 2016; Dong et al., 2017c).

MATERIALS AND METHODS

Patients
One hundred and ten consecutively recruited patients with
PD were included in the Department of Neurology, the First
Affiliated Hospital of Chongqing Medical University from April
2016 to February 2017 in accordance with the following inclusion
criteria: (i) Parkinson’s disease diagnosed according to the
recommendation from the European Federation of Neurological
Societies (EFNS) and the International Parkinson Movement
Disorder Society’s European Section (MDS-ES) (Berardelli
et al., 2013); (ii) Patients not treated with any drugs other
than dopamine analogs or dopamine receptor agonists. Eleven
patients were then excluded according to the following criteria:
(i) secondary Parkinson disorders or Parkinson-plus syndrome;
(ii) coexistence of severe systemic diseases (e.g., tumor, chronic
heart failure, chronic obstructive pulmonary disease, hepatitis,
and nephritis) or infectious diseases at the time of enrolment;
(iii) history of stroke, brain surgery or injury, Alzheimer’s disease,
motor neuron disease, or other diseases in the central nervous
system (Dong et al., 2017c).

This study was approved by the ethics committee of the
First Affiliated Hospital of Chongqing Medical University and
performed in accordance with the Declaration of Helsinki. All
subjects provided written informed consent prior to inclusion
in this study. Clinical characteristics, metabolomics analysis, and
proteomics analysis were blindly assessed or performed.

Clinical Characteristics
The clinical characteristics of all included patients were recorded.
Fasting plasma samples were obtained by centrifugation at
2,000 × g for 10min at 4◦C after collection with EDTA-
K2 tube at 6:00 a.m. by puncture of the median cubital vein.
Samples were then stored at−80◦C until assay. All patients were
interviewed by experienced physicians and patients with PDD
were diagnosed according to Diagnostic and Statistical Manual
of Mental Disorders (DSM-IV) (Starkstein et al., 2008), with
Hamilton depression scores>17 on the 17-itemHamilton Rating
Scale for Depression (HAMD) (Dissanayaka et al., 2007). All
scales were independently assessed by two physicians.

Metabolomics Analysis
Liquid chromatography-mass spectrometry (LC-MS)-based
metabolomics of plasma samples (23 patients with PDD and
40 randomly selected patients with PD) were performed on a
Waters UPLC I-class system equipped with a binary solvent
delivery manager (Waters Corporation, Milford, USA) (Zhang
et al., 2017a).
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Plasma samples stored at −80◦C were gradually thawed on
ice, 2-chloro-1-phenylalanine dissolved inmethanol (0.3mg/mL)
was served as internal standard. In a 1.5mL Eppendorf tube,
50 µL of sample and 10 µL of internal standard were added
and then vortexed for 10 s. Subsequently, 150 µL of ice-cold
mixture of methanol and acetonitrile (2/1, vol/vol) were added.
The mixtures were vortexed for 1min, ultrasonicated at ambient
temperature (25◦C) for 5min, placed at −20◦C for 10min, and
centrifuged at 15,000 rpm at 4◦C for 10min. 100 µL of the
supernatants from each tube were collected, filtered through
0.22µm microfilters, and transferred to LC vials. The vials were
stored at −80◦C until LC-MS analysis. Quality control sample
was obtained by mixing all the samples equally as a pooled
sample, and then processed using the above method with the
analytic reagents. The quality control samples were injected at
regular intervals (every 10 samples) throughout the analytical run
to provide a set of data from which repeatability can be assessed.

Acquity BEH C18 column (100 × 2.1mm i.d., 1.7µm;
Waters, Milford, USA) was engaged and maintained at 45◦C.
The following gradients were used for separation: 5–20% B over
0–2min, 20–60% B over 2–8min, 60–100% B over 8–12min,
100% B for 2min, 100–5% Bover 14–14.5min, and 14.5–15.5min
holding at 5% B at a flow rate of 0.40 mL/min, where B is
acetonitrile (0.1% (v/v) formic acid) and A is aqueous formic
acid [0.1% (v/v) formic acid]. Injection volume was 3.00 µL and
column temperature was set at 45◦C.

The mass spectrometric data was collected using a Waters
VION IMS Q-TOF Mass Spectrometer equipped with an
electrospray ionization (ESI) source operating in either positive
or negative ion mode. The source temperature and desolvation
temperature were set at 120◦C and 500◦C, respectively, with a
desolvation gas flow of 900 L/h. Centroid data were collected
from 50 to 1,000 m/z with a scan time of 0.1 s and interscan delay
of 0.02 s over a 13min analysis time. The UPLC-Q-TOF/MS
raw data were analyzed by progenesis QI software (Waters
Corporation, Milford, USA) using the following parameters.
Retention time (RT) ranged from 0.5 to 14.0min, mass ranged
from 50 to 1,000 Da, and mass tolerance was 0.01 Da. Isotopic
peaks were excluded for analysis, noise elimination level was set
at 10.00, minimum intensity was set to 15% of base peak intensity,
and RT tolerance was set at 0.01min. Three-dimension data
sets including m/z, peak RT, and peak intensities were exported
into an Excel file, and RT–m/z pairs were used to identify
each ion based on Human Metabolome Database (HMDB,
http://www.hmdb.ca), Metlin (https://metlin.scripps.edu), and
LipidMaps (http://www.lipidmaps.org). The resulting matrix was
further reduced by removing any peaks with missing values
(ion intensity = 0) in more than 60% of samples. The internal
standard was used for data quality control.

The positive and negative data were combined into a
data set and imported into SIMCA-P+ 13.0 software package
(Umetrics, Umeå, Sweden) for multivariate statistical analysis.
An orthogonal partial least squares-discriminant analysis (OPLS-
DA) model was used to exhibit statistical differences and
identify differentially expressed metabolites in patients with
PDD relative to the other patients with PD, and this model
was validated by a permutation test with 200 iterations.
The differentially expressed metabolites were recognized with

variable influence on projection values of greater than 1.0,
fold change values of greater than ±1.5, and p-values (from
Mann-Whitney U-tests) of less than 0.05 (Zheng et al.,
2016; Dong et al., 2017b). The classifications of differentially
expressed metabolites were based on the HMDB database.
Metabolic pathway overrepresentation enrichment analysis was
also performed using Integrated Molecular Pathway Level
Analysis (http://impala.molgen.mpg.de) (Kamburov et al., 2011).
Q values were calculated by Benjamini-Hochberg correction for
multiple testing to adjust the derived p values and significances
were considered at q-values < 0.05 (Hochberg and Benjamini,
1990).

Proteomics Analysis
The details of this process have been described previously
(Dayon et al., 2014; Sogawa et al., 2016). Briefly, six pooled
samples were obtained by the accumulation of 50 µl of
each plasma sample (15 randomized patients with PDD and
30 randomized patients with PD were equally grouped into
three pooled samples, respectively). Most of the abundant
proteins were depleted from those pooled samples using Agilent
Human 14 Multiple Affinity Removal System Column (Agilent
Technologies, California, USA) following the manufacturer’s
protocol. The 10 KDa ultrafiltration tube (Sartorius, Göttingen,
Germany) was used for desalination and concentration of the
low-abundance components. One volume of SDT buffer (4%
SDS, 100mM Tris-HCl, 1mM DTT, pH 7.6) was added. The
mixture was boiled for 15min and centrifuged at 14,000 g for
20min. The supernatant was quantified with the BCA Protein
Assay Kit (Bio-Rad, California, USA). Finally, the sample was
stored at−80◦C until assay.

For each sample, 20 µg of proteins were mixed with 5X
loading buffer and boiled for 5min. The proteins were then
separated on 12.5% SDS-PAGE gel (constant current 14mA,
90min) and protein bands were visualized by Coomassie Blue
R-250 staining for quality control.

After that, 200 µg of proteins for each sample were
incorporated into 30 µl SDT buffer (4% SDS, 100mM DTT,
150mM Tris-HCl pH 8.0). The detergent, dithiothreitol (DTT),
and other low-molecular-weight components were removed
using UA buffer (8M Urea, 150mM Tris-HCl pH 8.0) by
repeated ultrafiltration. Then 100 µl iodoacetamide (100mM
IAA in UA buffer) was added to block reduced cysteine
residues and the samples were incubated for 30min in darkness.
The filters were washed with 100 µl UA buffer three times
and then 100 µl 100mM TEAB buffer twice. Finally, the
protein suspensions were digested with 4 µg trypsin (Promega,
Wisconsin, USA) in 40µl TEAB buffer overnight at 37◦C, and the
resulting peptides were collected as a filtrate. The peptide content
was estimated by ultraviolet light (280 nm) using an extinction
coefficient of 1.1 of 0.1% (g/l) solution that was calculated
based on the frequency of tryptophan and tyrosine in vertebrate
proteins.

Using TMT reagents according to the manufacturer’s
instructions, 100 µg peptide mixture of each sample was labeled
(Thermo Scientific, Massachusetts, USA). A Pierce high pH
reverse-phase fractionation kit (Thermo Scientific) was used to
fractionate TMT-labeled digest samples into 15 fractions by an
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increasing acetonitrile step-gradient elution carried according to
the instructions.

Each fraction was loaded onto a reverse phase trap column
connected to the C18-reversed phase analytical column in buffer
A (0.1% Formic acid) and separated with a linear gradient of
buffer B (84% acetonitrile and 0.1% Formic acid) at a flow rate
of 300 nl/min controlled by IntelliFlow technology (Thermo
Scientific) for nano LC-MS/MS analysis.

Liquid chromatography-mass spectrometry/MS (LC-MS/MS)
analysis was performed on a Q Exactive mass spectrometer
(Thermo Scientific) that was coupled to Easy nLC for 60min.
The mass spectrometer was operated in positive ion mode.
Mass spectrometric data was acquired using a data-dependent
top 10 method dynamically by choosing the most abundant
precursor ions from the survey scan (300–1,800 m/z) for HCD
fragmentation. Automatic gain control (AGC) target was set to
3E6 and maximum inject time to 10min. Dynamic exclusion
duration was 40 s. Survey scans were acquired at a resolution
of 70,000 at 200 m/z and resolution for HCD spectra was
set to 35,000 at 200 m/z, and isolation width was 2 m/z.
Normalized collision energy was 30 eV and the underfill ratio,
which specifies the minimum percentage of the target value
likely to be reached at maximum fill time, was defined as 0.1%.
The instrument was run with the peptide recognition mode
enabled.

Tandem mass spectrometry (MS/MS) spectra were searched
using MASCOT engine (Matrix Science, London, UK; version
2.2) embedded into Proteome Discoverer 1.4. The differentially
expressed proteins were identified by fold change values of
greater than ±1.2 and p < 0.05 (from Mann-Whitney U-
tests). Gene ontology (GO) enrichment on three ontologies
(biological process, molecular function, and cellular component)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were applied based on the Fisher’s
exact test, considering the whole quantified protein annotations
as background dataset. Benjamini-Hochberg correction for
multiple testing was further applied to adjust derived p values and
significances were considered at q-values < 0.05 (Hochberg and
Benjamini, 1990).

Integrated Analysis
To explore the metabolic pathways associated with the
differentially expressed metabolites and proteins, we used the
commercially obtained Ingenuity Pathway Analysis software
(IPA, QIAGEN, Düsseldorf, Germany) to annotate enriched
molecular or cellular functions and to generate metabolite-
protein integrated networks (Dong et al., 2017b; Shen et al.,
2017). We uploaded the lists and fold change values of
differentially expressed metabolites and proteins onto the
IPA software. Significant molecular or cellular functions were
automatically annotated (p < 0.05) and enriched into several
categories. The software also computed a p score for each of
the possible networks in accordance with the fit homology to
all the input molecules. This score is derived from a p value
and indicates the probability of the input molecules in a given
network to coexist as a result of random chance [p score= –log10
(p value)].

ELISA Tests
According to the above network from integrated analysis,
plasma levels of six differentially expressed proteins [receptor-
type tyrosine-protein phosphatase zeta (PTPRZ1), major
histocompatibility complex class I antigen (HLA-A), neurogenic
locus notch homolog protein 2 (NOTCH2), lipoprotein (LPA),
L-lactate dehydrogenase A chain (LDHA), and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH)] identified by proteomics
analysis were further confirmed in 23 patients with PDD and 76
patients with PD, using ELISA kits obtained from Cloud Clone
Corp (Texas, USA) according to the manufacturer’s instructions
(Hu et al., 2016).

Statistical Analysis
Statistical analyses were completed using a commercially
available software package (IBM SPSS version 22.0, New York,
USA), with statistical diagrams produced using GraphPad
Prism 5 (GraphPad Software, California, USA) (Dong et al.,
2017a,c). Continuous data were expressed as mean ± standard
errors of the mean and compared using Mann-Whitney U-
tests. Categorical data were exhibited as absolute numbers and

TABLE 1 | Clinical characteristics of all patients with PD with and without depression included in this study.

Variable (SEM/%) PD (76) PDD (23) p value Variable (SEM/%) PD (76) PDD (23) p value

Age (year) 68.92 ± 1.04 66.48 ± 2.16 0.273 RBG (mmol/L) 7.01 ± 0.24 7.28 ± 0.62 0.623

Gender, Male (%) 44 (57.9%) 10 (43.5%) 0.224 HbA1C (%) 5.97 ± 0.09% 7.09 ± 0.85% 0.230

Smoking history (%) 15 (19.7%) 2 (8.7%) 0.360 TC (mmol/L) 3.95 ± 0.18 3.70 ± 0.29 0.511

Alcohol consumption (%) 7 (9.2%) 1 (4.3%) 0.754 TG (mmol/L) 1.24 ± 0.09 1.12 ± 0.16 0.498

Hypertension (%) 31 (40.8%) 4 (17.4%) 0.040 HDL-C (mmol/L) 1.38 ± 0.05 1.49 ± 0.07 0.261

Diabetes mellitus (%) 9 (11.8%) 4 (17.4%) 0.735 LDL-C (mmol/L) 2.78 ± 0.09 2.37 ± 0.15 0.032

Hypercholesterolemia (%) 16 (21.1%) 2 (8.7%) 0.299 Apo-A1 (g/L) 1.33 ± 0.03 1.38 ± 0.04 0.422

CHD (%) 12 (15.8%) 4 (17.4%) 1.000 Apo-B (g/L) 0.88 ± 0.03 0.74 ± 0.04 0.010

Disease duration (year) 5.62 ± 0.63 7.35 ± 0.93 0.163 HAMD score 8.96 ± 0.61 21.48 ± 0.57 0.000

BMI (kg/m2) 23.11 ± 0.46 22.25 ± 0.67 0.340

PD, Parkinson’s disease; SEM, standard error of the mean; PDD, Parkinson’s disease related depression; RBG, random blood glucose; HbA1C, hemoglobin A1C; TC, total cholesterol;

TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo-A1, apolipoprotein A1; CHD, coronary heart disease; Apo-B, apolipoprotein

B; HAMD, Hamilton Depression Scale; BMI, body mass index.
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percentages (%) and analyzed using Pearson χ2-tests or Fisher
exact tests. Pearson correlation analysis between plasma protein
levels and HAMD scores were performed and plotted using
Cytoscape software 3.4.0 (Zhao et al., 2017). Receiver operating
characteristic (ROC) curves were plotted, the optimal cut-off
points were determined, and diagnostic efficacies were compared
using MedCalc statistical software 15.2.2 (Ostend, Belgium). P-
values < 0.05 were considered significant (Dong et al., 2016).

RESULTS

Clinical Characteristics
A total of 99 patients with PD were finally included after the
exclusion of 11 patients. Depressive symptoms were present
in 23 patients (23.2%), which was approximately equal to the

reported 17% in the literature (Reijnders et al., 2008). The clinical
characteristics of the patients with PD are shown in Table 1. The
17-item HAMD scores of patients with PDD were significantly
higher than those in patients with PD. Patients with PDD also
suffered less hypertension and had lower serum low-density
lipoprotein cholesterol (LDL-C) and apolipoprotein B (Apo-
B) levels than the patients with PD. There were no significant
differences in any other clinical characteristics, including the
levels of blood glucose and hemoglobin A1C (HbA1C) and
incidence of diabetes mellitus.

Metabolomics Analysis
The clinical characteristics of the patients included in
the LC-MS-based metabolomics analysis are shown in
Supplementary Table 1 and the results were comparable

FIGURE 1 | Representative LC-MS positive (A) and negative (B) ions of current chromatograms of plasma in a patient with PDD. LC-MS, liquid

chromatography-mass spectrometry.
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with the total patient group. Representative LC-MS positive
and negative ions of current chromatograms are shown
in Figure 1. After excluding internal standards, a total of
10403 individual peaks, including 6040 positive and 4363
negative peaks, were detected in approximately 98.8% of
samples in each group. Based on these peaks, orthogonal
partial least squares-discriminant analysis (OPLS-DA)
was performed and the result showed a clear separation
between the two groups (R2X = 0.389, R2Y = 0.832, and
Q2 = 0.206) (Figure 2A). Moreover, a permutation test with
200 iterations confirmed that the constructed OPLS-DA model
was valid and not over-fitted, as the original right R2 and

Q2 values were significantly higher than the corresponding
permutated left values [R2 = (0.0, 0.443), Q2 = (0.0, −0.153);
Figure 2B].

Eighty-five differentially expressed metabolites were
identified between the two groups (Table 2). Of these 75%
were lipids and lipid-like molecules, 8% were organic acids
and derivatives, 6% were organic oxygen compounds, 3% were
organoheterocyclic compounds, and 2% were tetrapyrroles
and derivatives (Figure 2C). Carbohydrates and carbohydrate
conjugates were a subclass of organic oxygen compounds
and contained four differentially expressed metabolites ([6]-
gingerdiol 4′-O-beta-D-glucopyranoside, ribitol, galactan, and

FIGURE 2 | Multivariate statistical analysis of metabolomics and classification of differentially expressed metabolites between patients with PDD and PD.

(A) OPLS-DA score plot derived from liquid chromatography-mass spectrometry-based metabolomics analysis of patients with PDD (blue circles) and patients with

PD (green circles). (B) Statistical validation of the OPLS-DA model by permutation testing. Representations of metabolites in terms of (C) chemical taxonomy and

(D) cellular locations, based on the annotations of Human Metabolome Database. OPLS-DA, orthogonal partial least squares-discriminant analysis; PDD, Parkinson’s

disease-related depression; PD, Parkinson’s disease.
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TABLE 2 | Key differentially expressed metabolites identified by liquid chromatography-mass spectrometry-based metabolomics analysis between patients with PD with

and without depression.

Compound IDa Compound name m/z value RT (min) Ion mode FCvalueb,c VIPvaluec pvaluec

HMDB36133 3-[[5-methyl-2-(1-methylethyl)cyclohexyl]oxy]-1,2-

propanediol

275.1573 6.6012 Positive 0.6558 1.7468 0.0000

HMDB31892 Capsianoside II 362.5188 6.2251 Positive 0.6412 1.1183 0.0011

HMDB02327 1,11-undecanedicarboxylic acid 511.3255 6.2251 Positive 0.6114 1.3346 0.0030

HMDB56318 DG(20:2n6/0:0/20:5n3) 349.2424 7.8697 Positive 2.4783 1.1013 0.0038

HMDB02472 (3a,5b,7a,12a)-24-[(carboxymethyl)amino]-1,12-

dihydroxy-24-oxocholan-3-yl-b-D-

glucopyranosiduronic a

622.3352 6.4951 Negative 0.5919 1.3399 0.0038

HMDB09112 PE(18:2(9Z,12Z)/24:0) 291.6477 6.7939 Positive 0.5684 1.2768 0.0039

HMDB11768 Cer(d18:0/24:0) 564.3164 6.3557 Positive 0.6219 1.1326 0.0043

HMDB12052 Ganglioside GT3 849.9375 6.2251 Positive 0.5873 1.0936 0.0046

HMDB02231 Eicosenoic acid 309.2803 7.8649 Negative 1.7393 1.1741 0.0053

5283546 Ubiquinone 8 707.5316 9.3385 Negative 0.5691 1.5228 0.0055

HMDB61687 Estradiol acetate glucuronide 491.2330 7.8697 Positive 2.1162 1.0804 0.0062

HMDB07004 CPA(18:0) 457.2138 7.8649 Negative 1.7405 1.3792 0.0066

HMDB05050 15H-11,12-EETA 717.4415 9.3385 Negative 0.6480 1.3399 0.0067

HMDB35884 Melledonol 435.2033 7.8697 Positive 1.8629 1.1410 0.0070

HMDB10393 LysoPC(20:3(5Z,8Z,11Z)) 580.3185 6.0620 Negative 0.6378 1.1149 0.0072

HMDB00054 Bilirubin 602.2940 6.9452 Positive 0.6526 1.1481 0.0072

HMDB61112 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid 503.1898 7.8697 Positive 1.6347 1.1415 0.0073

HMDB06528 Docosapentaenoic acid 329.2489 7.0345 Negative 1.5535 1.2833 0.0079

HMDB13132 Hydroxyvalerylcarnitine 571.3428 6.6101 Negative 0.6668 1.5142 0.0085

HMDB36122 [6]-gingerdiol 4′-O-beta-D-glucopyranoside 439.2376 7.8649 Negative 2.3428 1.3651 0.0092

HMDB10357 Tetrahydroaldosterone-3-glucuronide 539.2509 2.8699 Negative 0.5838 1.4905 0.0098

HMDB03876 15(S)-hydroxyeicosatrienoic acid 367.2137 7.8628 Positive 1.6883 1.2439 0.0099

HMDB03178 Heme 661.1760 7.8718 Negative 2.2621 1.4164 0.0101

HMDB04924 Ganglioside GD2 (d18:0/18:1(9Z)) 856.9514 6.2251 Positive 0.5699 1.3039 0.0101

HMDB33372 Stearoyllactic acid 377.2690 7.8649 Negative 1.6552 1.2258 0.0101

HMDB04666 2-arachidonylglycerol 417.2318 7.8628 Positive 1.6767 1.0197 0.0111

HMDB00207 Cis-cetoleic acid 337.3120 8.3029 Negative 2.0741 1.7107 0.0126

HMDB40733 Phytyl acetate 383.2901 8.3010 Positive 2.6419 1.6090 0.0144

HMDB01181 4α-carboxy-4β-ethyl-5α-cholesta-8,24-dien-3β-ol 519.2643 8.3010 Positive 2.6728 1.6980 0.0145

HMDB02385 Celastrol 485.2448 8.3029 Negative 2.3661 1.5956 0.0155

HMDB00235 Thiamine 531.2198 8.3010 Positive 2.3720 1.6565 0.0157

HMDB06765 2-methoxy-estradiol-17b 3-glucuronide 459.2057 7.8718 Negative 1.5666 1.1844 0.0157

HMDB33337 Fusarin C 468.1464 6.4264 Negative 1.7382 1.4644 0.0168

HMDB00809 N-glycoloylganglioside GM1 812.9456 6.2251 Positive 0.6698 1.2230 0.0177

LMPR04000010 2-methylbacteriohopane-32,33,34,35-tetrol 581.4554 6.8783 Negative 1.5976 1.2967 0.0178

HMDB00651 Decanoylcarnitine 653.4745 8.6022 Positive 0.6570 1.1854 0.0180

HMDB06246 Tetracosatetraenoic acid (24:4n-6) 405.2998 8.3029 Negative 2.3812 1.6977 0.0186

HMDB04309 Triterpenoid 535.2935 6.0458 Positive 0.6488 1.3223 0.0189

HMDB11494 LysoPE(0:0/22:5(4Z,7Z,10Z,13Z,16Z)) 526.2952 5.2339 Negative 0.4995 1.1323 0.0200

HMDB00508 Ribitol 455.1960 7.4471 Negative 1.8272 1.0417 0.0202

HMDB00027 Tetrahydrobiopterin 500.2783 5.3003 Positive 0.5117 1.2442 0.0210

HMDB02925 8,11,14-eicosatrienoic acid 339.2892 9.3361 Positive 0.6451 1.1500 0.0220

HMDB29482 Didymin 593.1895 7.8649 Negative 1.9325 1.2976 0.0224

HMDB09055 PE(18:1(9Z)/16:0) 794.4496 6.2251 Positive 0.6046 1.2594 0.0228

HMDB53219 TG(18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)

/20:5(5Z,8Z,11Z,14Z,17Z))[iso3]

901.6793 7.3508 Negative 1.6115 1.3523 0.0228

HMDB61701 2-oleoylglycerophosphocholine 521.3495 5.5826 Negative 0.6010 1.3357 0.0232

(Continued)
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TABLE 2 | Continued

Compound IDa Compound name m/z value RT (min) Ion mode FCvalueb,c VIPvaluec pvaluec

LMST05010016 6alpha-glucuronosylhyodeoxycholate 284.6664 6.0595 Positive 0.6197 1.2900 0.0233

HMDB00476 3-oxo-4,6-choladienoic acid 779.4714 6.2251 Positive 0.5820 1.3608 0.0234

HMDB08189 PC(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 850.5363 8.2253 Positive 0.4798 1.1905 0.0237

HMDB00387 3-hydroxydodecanoic acid 293.0903 2.1975 Positive 0.5924 1.4002 0.0243

HMDB60579 Ramiprilat 425.1488 6.4264 Negative 1.5224 1.3263 0.0246

HMDB00913 Vanillactic acid 469.1365 6.6995 Negative 2.0884 1.2691 0.0249

HMDB10326 Thyroxine glucuronide 951.6940 7.3508 Negative 1.7267 1.3201 0.0250

HMDB00949 Tetrahydrocortisol 755.4739 7.4452 Positive 1.7720 1.2388 0.0263

HMDB03577 VPGPR Enterostatin 557.3389 6.9452 Positive 0.5808 1.1159 0.0264

HMDB04913 Ganglioside GD3 (D18:1/16:0) 804.9525 6.2251 Positive 0.6007 1.3974 0.0266

HMDB60508 Secalciferol 877.6602 6.8783 Negative 2.1024 1.4062 0.0273

HMDB03598 Retinyl ester 649.4431 6.8783 Negative 1.5325 1.2533 0.0278

HMDB34336 Dolichosterone 969.6667 7.3508 Negative 1.6119 1.3317 0.0283

HMDB11874 Ganglioside GD3 (d18:1/23:0) 793.9482 6.2251 Positive 0.6681 1.4021 0.0286

HMDB35864 13-hydroxy-5′-O-methylmelledonal 232.1028 0.6080 Positive 0.4595 1.1234 0.0294

HMDB55312 TG(18:4(6Z,9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)

/20:3(8Z,11Z,14Z))[iso3]

941.6378 7.3489 Positive 1.7494 1.3972 0.0294

HMDB10397 LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)) 542.3235 5.2315 Positive 0.5336 1.2340 0.0298

HMDB13456 PC(O-22:2(13Z,16Z)/22:3(10Z,13Z,16Z)) 878.7119 7.3489 Positive 2.2710 1.0600 0.0316

HMDB09210 PA(18:4(6Z,9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 741.4523 7.8628 Positive 1.9090 1.1151 0.0320

HMDB00079 Dihydrothymine 383.1757 6.6995 Negative 1.6348 1.1711 0.0329

HMDB13111 Ubiquinol-10 941.6087 6.8764 Positive 1.7289 1.3385 0.0335

HMDB04162 Galactan 533.2137 8.3010 Positive 1.7240 1.5959 0.0340

HMDB07046 DG(14:1(9Z)/18:3(6Z,9Z,12Z)/0:0) 605.1058 6.6995 Negative 2.2738 1.3274 0.0341

HMDB02596 Deoxycholic acid 3-glucuronide 607.2992 6.9452 Positive 0.6623 1.0737 0.0356

HMDB13622 Nonadeca-10(Z)-enoic acid 295.2644 7.6170 Negative 1.7845 1.3472 0.0357

HMDB61691 1-heptadecanoylglycerophosphoethanolamine 935.5914 6.8764 Positive 1.9111 1.3195 0.0373

HMDB01185 S-adenosylmethionine 354.1748 6.6976 Positive 1.8280 1.2410 0.0378

HMDB10343 1-(alpha-Methyl-4-(2-

methylpropyl)benzeneacetate)-beta-D-

Glucopyranuronic

acid

403.1453 6.6995 Negative 1.7895 1.1716 0.0409

HMDB07892 PC(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))[U] 822.5290 8.2685 Negative 0.5697 1.2126 0.0425

HMDB01999 Eicosapentaenoic acid 301.2182 8.5553 Negative 0.4157 1.0496 0.0427

HMDB04863 Ganglioside GM1 (d18:1/24:0) 825.0025 6.9452 Positive 0.5165 1.2551 0.0442

HMDB11489 LysoPE(0:0/20:5(5Z,8Z,11Z,14Z,17Z)) 498.2638 5.3026 Negative 0.5686 1.2098 0.0463

HMDB11891 Ganglioside GM1 (d18:1/18:1(11Z)) 513.2805 5.1514 Negative 2.6454 1.0136 0.0468

HMDB01138 N-acetylglutamic acid 379.1386 6.6976 Positive 1.6936 1.2277 0.0473

HMDB32033 2,4,12-octadecatrienoic acid isobutylamide 378.2729 9.0679 Positive 0.6475 1.0131 0.0474

HMDB00962 Lipoamide 586.3166 5.0825 Negative 0.4844 1.1850 0.0479

HMDB00319 18-hydroxycorticosterone 395.2425 8.3010 Positive 1.6211 1.6175 0.0484

HMDB07951 PC(15:0/20:5(5Z,8Z,11Z,14Z,17Z)) 810.5286 8.4060 Negative 0.4467 1.0508 0.0489

HMDB32002 Dehydrotomatine 352.1781 6.6976 Positive 1.5554 1.1068 0.0492

aCompound ID was mainly exhibited based on the Human Metabolome Database (www.hmdb.ca), and the others based on National Center for Biotechnology Information (www.ncbi.

nlm.nih.gov/pccompound/) or LIPID MAPS (www.lipidmaps.org).
bFC value was calculated as the ratio of the average mass response (area) between the two groups (FC value= PDD/PD). Thus, FC values >1 indicate significantly higher levels in the

PDD group relative to the PD group while FC values <1 indicate significantly lower levels in the PDD group.
cOnly metabolites with FC values greater than ± 1.5, VIP values greater than 1.0 and p values less than 0.05 were deemed statistically significant.

PD, Parkinson’s disease; RT, retention time; FC, fold change; VIP, variable influence on projection; PDD, Parkinson’s disease related depression.

1-(alpha-Methyl-4-(2-methylpropyl)benzeneacetate)-beta-
D-Glucopyranuronic acid). Those differentially expressed
metabolites were primarily located in the extracellular space

(41%), membrane (38%), cytoplasm (11%), mitochondria
(4%), endoplasmic reticulum (1%), and nucleus (1%)
(Figure 2D).
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FIGURE 3 | Summary of metabolic pathways based on metabolomics, proteomics, and integrated analysis. (A) Metabolic pathway analysis based on metabolomics

data using IMPaLA. (a) Alpha-linolenic acid and linoleic acid metabolism (impact = 0.294, q = 0.010). (b) Incretin synthesis, secretion, and inactivation

(impact = 0.263, q = 0.010). (c) Signal transduction (impact = 0.060, q = 0.044). (B) Enriched KEGG pathways based on proteomics data. (C) The most significant

enriched function annotations analyzed by Ingenuity Pathways Analysis, based on the differentially expressed metabolites and proteins between patients with PDD

and PD. KEGG, Kyoto Encyclopedia of Genes and Genomes; PDD, Parkinson’s disease-related depression; PD, Parkinson’s disease.

The related metabolic pathways are shown in Figure 3A

and Supplementary Table 2, with three most significant
pathways: (1) alpha-linolenic acid and linoleic acid metabolism
(pathway impact = 0.294, q-value = 0.0102); (2) incretin
synthesis, secretion, and inactivation (pathway impact = 0.263,
q-value = 0.0102); and (3) signal transduction (pathway
impact= 0.060, q-value= 0.0443).

Proteomics Analysis
The clinical characteristics of patients included in the TMT-based
proteomics analysis are shown in Supplementary Table 3 and
were also comparable with the total patient group. Identification
and evaluation of the quantitative proteomics results are shown
in Figure 4. A total of 912 unique proteins were identified and
protein ratio distributions between the two groups are shown in
Figure 5. Only 17 differentially expressed proteins were selected
for further analysis (Table 3).

There were 73, 14, 23 significant GO terms related to the
differentially expressed proteins associated with biological
process, cellular component, and molecular function,
respectively. The top 20 GO terms of GO enrichment
analysis are shown in Figure 6 and Supplementary Table 4.
Several top ranking GO terms from biological processes were
associated with glucose metabolism, including single-organism
carbohydrate catabolic process, carbohydrate catabolic process,
monosaccharide catabolic process, and hexose catabolic process.
The top ranking enriched terms that related to molecular
function were glycerone kinase activity, transcription factor
activity, ligand-activated RNA polymerase II transcription factor
binding, T cell receptor binding, and triokinase activity. The top
ranking enriched terms that related to cellular components were
anchoring collagen complex and Golgi medial cisterna.

Differentially expressed proteins were also mapped to KEGG
pathways and enriched in 12 specific pathways (Figure 3B
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FIGURE 4 | Identification and evaluation of the quantitative results from the tandem mass tag-based proteomics analysis. Protein distributions according to (A) ion

score, (B) molecular weight, (C) isoelectric point, (D) peptide length, (E) protein sequence coverage, and (F) peptide count.

and Supplementary Table 5) with q-values < 0.05. There were
six statistically overrepresented pathways involved in glucose
metabolism, including glucagon signaling pathway, insulin
secretion, glycolysis/gluconeogenesis, aldosterone synthesis and
secretion, type I diabetes mellitus, and propanoate metabolism.
All together, these findings further point to altered glucose
metabolism in the PDD group.

Integrated Analysis
According to IPA analysis, these differentially expressed
metabolites and proteins significantly relate to many molecular
or cellular functions (Supplementary Table 6), further
enriched in the following five categories: small molecule
biochemistry, glucose metabolism, lipid metabolism, free
radical scavenging, and cellular compromise (Figure 3C).
The main metabolite-protein integrated network was
“cellular compromise, lipid metabolism, and small
molecule biochemistry” with a p score of 80 and a total

of 27 metabolites and 9 proteins involved in the network
(Figure 7).

ELISA Tests
According to the ELISA results (Table 4), the plasma levels
of PTPRZ1 and NOTCH2 were significantly increased in
patients with PDD, whereas the plasma levels of HLA-A, LPA,
LDHA, and GAPDH were significantly decreased (Figure 8A).
Correlation analyses revealed significant positive associations
of PTPRZ1 and NOTCH2 and negative associations of HLA-
A, LPA, LDHA, and GAPDH with HAMD scores (Figure 8B).
PTPRZ1 also exhibited negative associations with HLA-A,
LDHA, and GAPDH, whereas LPA was positively associated
with LDHA. Receiver operating characteristic (ROC) curves
were further analyzed and diagnostic efficacies were compared.
Among them, the AUC value of NOTCH2 was significantly
higher than the others. It suggested the plasma NOTCH2 level
to be the best potential biomarker for patients with PDD
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(Figure 8C), with a sensitivity and specificity of 95.65 and
81.58%, respectively, and an optimal cut-off point of 0.91 ng/ml
(Figure 8D).

FIGURE 5 | Statistical comparison and exhibition of proteins between patients

with PDD and PD in proteomics analysis. (A) Protein ratio distribution and

(B) volcano plot. FC value was calculated as the ratio of the average mass

response (area) between the two groups (FC value = PDD/PD). P-value was

calculated using Mann-Whitney U-test. PDD, Parkinson’s disease-related

depression; PD, Parkinson’s disease; FC, fold change.

DISCUSSION

Research bridging systems biology and clinical characteristics is
useful to explore the underlying pathogenesis and to identify high
quality clinical biomarkers (Mostafa et al., 2016). Here, we have
performed an integrated metabolomics and proteomics analysis
of PDD for the first time and have further identified potential
blood biomarkers for depression in patients with PD.

No significant differences were found in most of the clinical
characteristics, including age and gender, suggesting that our
comparisons were reasonable. Hypertension is reportedly more
prevalent in patients with PD (Hsu et al., 2015) and patients with
depression (Yu et al., 2017), whereas patients with PDD in our
research suffered less hypertension. According to a research from
South Korea (Park et al., 2016), the incidence of hypertension
is not significantly different between patients with PD with
and without depression. This inconsistency is probably because
the disease durations of patients with PD from South Korea
were significantly shorter than those in our study (2.0 ± 1.0
vs. 6.0 ± 5.1 years). Orthostatic hypotension is reported to be
associated with depressive symptoms in patients with PD, and
that patients with PDD have attenuated cardiovagal dysfunction
as observed during ambulation (Park et al., 2016). Decreased
blood pressure in patients with PDD probably appears as the
disease progresses. Serum lipid levels (triglyceride, Yu et al.,
2017, LDL-C, Persons and Fiedorowicz, 2016, and high-density
lipoprotein cholesterol, Ong et al., 2016) are also reportedly
associated with depressive symptoms and suicidality (Oh and
Kim, 2017). Here, we have demonstrated significantly lower
serum LDL-C and Apo-B levels in patients with PDD for the first
time, indicating that altered lipid metabolism is also associated
with PDD. However, the incidence of hypercholesterolemia

TABLE 3 | Key differentially expressed proteins identified by tandem mass tag-based proteomics analysis between patients with PD with and without depression.

UniProt ID Protein name (GeneName) MW [kDa] FC valuea p-valueb

B3KY04 Potassium channel tetramerization domain containing 12 (KCTD12) 35.71 1.392 0.000

V9HW68 Epididymis luminal protein 214 (HEL-214) 51.68 1.258 0.006

Q68CJ9 Cyclic AMP-responsive element-binding protein 3-like protein 3 (CREB3L3) 49.05 1.357 0.007

E9PNH1 Neutral alpha-glucosidase AB (GANAB) 13.15 1.392 0.009

Q53HT9 Complement component 1, r subcomponent variant 80.19 1.514 0.012

P23471 Receptor-type tyrosine-protein phosphatase zeta (PTPRZ1) 254.43 1.259 0.023

A0A075B6R9 Protein IGKV2D-24 (IGKV2D-24) 13.07 1.506 0.027

A0A125U0U7 MS-C1 heavy chain variable region 13.09 1.286 0.030

Q04721 Neurogenic locus notch homolog protein 2 (NOTCH2) 265.23 1.204 0.030

P00338 L-lactate dehydrogenase A chain (LDHA) 36.67 0.644 0.007

U5YKD2 MHC class I antigen (HLA-A) 37.91 0.736 0.008

Q1HP67 Lipoprotein (LPA) 226.37 0.673 0.008

Q8NCM2 Potassium voltage-gated channel subfamily H member 5 (KCNH5) 111.81 0.822 0.012

E7EUT5 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 27.85 0.673 0.016

Q5NV68 V4-1 protein (V4-1) 11.23 0.762 0.022

I3L252 Triokinase/FMN cyclase (TKFC) 22.94 0.581 0.025

D6RGG3 Collagen alpha-1(XII) chain (COL12A1) 333.00 0.824 0.043

aFC value was calculated as the ratio of the average mass response (area) between the two groups (FC value = PDD/PD). Thus, FC values >1 indicate significantly higher levels in the

PDD group relative to the PD group while FC values <1 indicate significantly lower levels in the PDD group.
bOnly proteins with FC values greater than ±1.2 and p values less than 0.05 were deemed statistically significant.

PD, Parkinson’s disease; MW, molecular weight; FC, fold change; PDD, Parkinson’s disease related depression.

Frontiers in Molecular Neuroscience | www.frontiersin.org 11 August 2018 | Volume 11 | Article 257

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Dong et al. Depression in Parkinson’s Disease

FIGURE 6 | The top 20 most enriched GO terms based on proteomics analysis between patients with PDD and PD. BP, biological process; MF, molecular function;

CC, cellular component; GO, gene ontology; PDD, Parkinson’s disease-related depression; PD, Parkinson’s disease.

in patients with PDD exhibited no significant difference,
probably because the altered lipid metabolism was well below
that needed for a clinical diagnosis of hypercholesterolemia.
Glucose metabolism is also reportedly associated with depressive
symptoms in major depressive disorder (Koponen et al., 2015),
post-stroke depression (Zhang et al., 2017b), and prenatal
depressive symptoms (Huang et al., 2015). Patients with diabetes
mellitus have a greater incidence of depressed mood compared
to patients without diabetes mellitus (Levinger et al., 2012).
Yet, the serum levels of blood glucose and HbA1C in our
study showed no significant differences between patients with
PDD and PD. In addition, the incidence of diabetes mellitus
did not differ between patients with PD with and without
depression (Icks et al., 2013). This is probably because the
depressive systems are mainly correlated with impaired insulin
sensitivity (Li et al., 2016) or low insulin secretion (Akbaraly
et al., 2013), and the risk of depression gradually increases
along with the deterioration of glucose metabolism (Chen et al.,
2016).

Metabolomics analyses have already been performed in
patients with PD (Trezzi et al., 2017) and patients with

depression (Liu et al., 2015). Several metabolic pathways,
including catecholamine metabolism, caffeine and xanthine
pathways, ornithine pathway, and redox homoeostasis, are
reportedly altered in patients with PD (Hatano et al., 2016),
while depressive symptoms are associated with lipid metabolism,
carnitine metabolism, amino acid metabolism, and bile acid
metabolism (Liu et al., 2015). Nevertheless, this metabolomics
analysis was the first to be performed in patients with PDD
compared with patients with PD and significant metabolite
changes were identified. Most of the differentially expressed
metabolites were categorized into lipids and lipid-like molecules.
Four carbohydrates had also changed. The involvement of
lipid metabolism in PDD is consistent with the above
clinical characteristics (lower LDL-C and Apo-B level) and
can further be confirmed by the metabolic pathway analysis.
The most significant and important pathway was “alpha
linolenic acid and linoleic acid metabolism,” participating in
the metabolism of essential polyunsaturated fatty acids. This
metabolic pathway is reportedly associated with the occurrence
(Lucas et al., 2011) and treatment (Kanno et al., 2015) of
depression, and the weak positive association between the
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FIGURE 7 | The most significant metabolite-protein integrated network between patients with PDD and PD. The network was “cellular compromise, lipid metabolism,

and small molecule biochemistry” with a pscore of 80, and a total of 27 metabolites and 9 proteins involved in the network. Upregulated metabolite symbols are in red,

while green symbols indicate downregulated metabolites between patients with PDD and the other patients with PD. PDD, Parkinson’s disease-related depression;

PD, Parkinson’s disease.

intake of polyunsaturated fatty acid and PD risk needs further
investigation (Dong et al., 2014). The second most significantly
altered metabolic pathway was “incretin synthesis, secretion,
and inactivation,” which is related to glucose metabolism. The
decreased secretion and sensitivity level of insulin, another
common hypoglycemic hormone, appears to be a risk factor for
depression (Akbaraly et al., 2013; Li et al., 2016). However, this
is the first report of the synthesis, secretion, and inactivation
of incretin involved in patients with PDD, and the relationship
between incretin and depressive symptoms in patients with
PD needs further clarification. The last significant pathway
was “signal transduction,” by which a chemical or physical
signal is transmitted through a cell, ultimately resulting in
a cellular response (Hynes et al., 2013). The realization of
altered lipid and glucose metabolism is also through such a
process.

A previous serum proteomics analysis revealed that oxidative
stress, mitochondrial dysfunction, abnormal protein aggregation,
and inflammationmay be associated with PD (Zhang et al., 2012),
while patients with depression may have altered lipid metabolism
and immunoregulation (Xu et al., 2012). In this TMT-based
proteomics analysis, 17 differentially expressed proteins were
identified for further analysis. According to the GO enrichment
analysis, four of the top five ranking GO terms from biological
processes were associated with glucose metabolism, including
single-organism carbohydrate catabolic process, carbohydrate
catabolic process, monosaccharide catabolic process, and hexose
catabolic process. Enriched KEGG pathway analysis was also
performed and 12 statistically overrepresented pathways were
mapped, among which six pathways were involved in glucose
metabolism, including glucagon signaling pathway, insulin
secretion, glycolysis/gluconeogenesis, aldosterone synthesis and
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TABLE 4 | The plasma levels, Pearson correlation analyses with HAMD score, and ROC curves of the six proteins determined by ELISA tests in patients with PD with and

without depression.

Variable Mean ± SEM (ng/ml) Correlation analysis ROC curve

PD (76) PDD (23) p-value r value p value AUC (95%CI) Cut-off point

(ng/ml)

Sensitivity

value (%)

Specificity

value (%)

PTPRZ1 1.88 ± 0.17 2.68 ± 0.28 0.000 0.417 0.000 0.758(0.662–0.838) 1.564 86.96 64.47

HLA-A 0.41 ± 0.03 0.29 ± 0.01 0.013 −0.272 0.006 0.672 (0.570–0.763) 18.738 100.0 39.47

NOTCH2 0.94 ± 0.19 1.56 ± 0.24 0.000 0.335 0.001 0.910 (0.835–0.958) 0.857 95.65 81.58

LPA 209.56 ± 10.76 151.90 ± 11.14 0.009 −0.354 0.000 0.681 (0.579–0.771) 216.827 95.65 44.74

LDHA 10.83 ± 1.62 5.05 ± 1.07 0.003 −0.251 0.012 0.707 (0.607–0.794) 4.542 78.26 63.16

GAPDH 6.29 ± 0.33 4.77 ± 0.39 0.028 −0.366 0.000 0.652 (0.550–0.745) 6.203 86.96 40.79

HAMD, Hamilton Depression Scale; ROC, receiver operating characteristic; ELISA, enzyme-linked immune sorbent assay; PD, Parkinson’s disease; SEM, standard error of the mean;

ROC, receiver operator characteristics; PDD, Parkinson’s disease related depression; AUC, area under the curve; CI, confidence interval; PTPRZ1, Receptor-type tyrosine-protein

phosphatase zeta; HLA-A, Major histocompatibility complex class I antigen; NOTCH2, Neurogenic locus notch homolog protein 2; LPA, Lipoprotein; LDHA, L-lactate dehydrogenase A

chain; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase.

secretion, type I diabetes mellitus, and propanoate metabolism.
Those findings at the protein level firmly support the results of
the metabolomics analysis. Although the involvement of lipid
metabolism was not confirmed at the protein level by pathway
analysis, lysophosphatidic acid (LPA), a common protein related
to lipid metabolism was significantly increased in patients with
PDD based on proteomics analysis. In other words, both glucose
and lipid participate in the energy metabolism of a biological
system. It is just the alteration of glucose metabolism at the
protein level that induces disturbance of lipid and glucose
metabolism at the metabolite level.

Metabolic pathways involve both metabolites and proteins,
and integrated analysis of both metabolomics and proteomics
data will thus help us interpret the above inconsistence
(Zhang et al., 2017a). When incorporating all the differentially
expressed metabolites and proteins onto indole-3-propionic acid
(IPA), those differentially expressed molecules predominantly
participated in small molecule biochemistry, glucose metabolism,
lipid metabolism, free radical scavenging, and cellular
compromise. Small molecule biochemistry is the metabolic
processes of many small molecules, including glucose and lipid
metabolism, consistent with the above results of the clinical
characteristics, metabolomics, and proteomics. Oxidative stress
is one of the mechanisms of cellular damage and can also induce
depressive symptoms according to previous research (Pan et al.,
2014; Bouvier et al., 2016). The enriched category of free radical
scavenging in this study includes the production and activation
of reactive oxygen species, while cellular compromise includes
cytotoxicity and cellular injury (Supplementary Table 6). Those
results demonstrate that altered lipid and glucose metabolism
induces depressive symptoms in patients with PD, possibly
also through oxidative stress and the resulting cellular injury.
The most significant integrated network in this study was
“cellular compromise, lipid metabolism, and small molecule
biochemistry,” with a total of 27 metabolites and 9 proteins
involved. Those molecules in the network were recognized as
the most relevant ones with depressive systems in patients with
PD (Dong et al., 2017b). We further performed ELISA tests for
six differentially expressed proteins to identify some clinical

biomarkers as an integral part of clinical researches (Mostafa
et al., 2016).

The expression differences of those proteins were confirmed.
Correlation analyses revealed significant positive associations
of PTPRZ1 and NOTCH2 and negative associations of HLA-
A, LPA, LDHA, and GAPDH, with HAMD scores. Significant
correlations were also found between these proteins. PTPRZ1
exhibited negative associations with HLA-A, LDHA, and
GAPDH, whereas LPA was positively associated with LDHA. For
these proteins ROC curves were performed, and the comparison
of diagnostic efficacies identified the plasma NOTCH2 level
to be the best potential blood biomarker for PDD (with a
significantly higher AUC value than the others). NOTCH2 can
be expressed in various cell types from the hematolymphoid
compartment and has specific roles in differentiation and
function of many immune cells (Sakata-Yanagimoto and Chiba,
2012). Genetic variants of NOTCH2 reportedly can also increase
susceptibility to diabetes mellitus (Pan et al., 2013). Hence,
the increased plasma NOTCH2 level in patients with PD
induces depressive symptoms probably also through glucose
metabolism.

There were several limitations to this study. First, the number
of patients included was relatively small, and all the patients
were from a Chinese Han population. The results require further
confirmation, especially in another ethnicity. Second, we have
only determined six differentially expressed proteins according to
the metabolite-protein integrated network. More antibodies and
ELISA kits should be developed to validate the alteration of the
other proteins. We hope to continue the research about PDD and
overcome these limitations in the future.

CONCLUSIONS

The integrated metabolomics and proteomics analysis from this
study reveals that depressive symptoms in patients with PD are
predominantly associated with lipid and glucose metabolism.
Plasma NOTCH2 level may be a good blood biomarker for
detecting patients of PD with depression.
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FIGURE 8 | NOTCH2 may be a good potential biomarker for patients with PDD based on ROC curves. (A) Comparisons of the plasma levels of six proteins

determined by ELISA tests between patients with PDD and the other patients with PD. The plasma levels of PTPRZ1 andNOTCH2 significantly increased in patients

with PDD, whereas the plasma levels of HLA-A, LPA, LDHA, and GAPDH significantly decreased compared with the patients with PD. *p < 0.05 and **p < 0.01

compared with the patients with PD. (B) Correlation analyses between the plasma levels of six proteins and HAMD score in all patients with PD. The vertical bar on the

right represents correlation coefficient value and “×” indicates no significant correlation can be found between them. The plot indicates positive associations of

PTPRZ1 and NOTCH2, and negative associations of HLA-A, LPA, LDHA, and GAPDH, with HAMD scores. PTPRZ1 also exhibited negative associations with HLA-A,

LDHA, and GAPDH, whereas LPA was positively associated with LDHA. (C) Comparison network of the diagnostic efficacies for patients with PDD. The circle area

represents the AUC value of relevant proteins, and the red line indicates a statistically significant difference of the diagnostic efficacies between the two proteins. The

AUC value of NOTCH2 was significantly higher than the others. (D) ROC curve of the plasma levels of NOTCH2 for detecting patients with PDD. PDD, Parkinson’s

disease-related depression; PD, Parkinson’s disease; HAMD, Hamilton Depression Scale; ROC, receiver operating characteristic; AUC, area under the curve; CI,

confidence interval.
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