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Background: Metabolism gained increasing interest for the understanding of diseases and to pinpoint therapeutic
intervention points. However, classical metabolomics techniques only provide a very static view on metabolism.
Metabolic flux analysis methods, on the other hand, are highly targeted and require detailed knowledge on

Results: We present a novel workflow to analyze non-targeted metabolome-wide stable isotope labeling data to
detect metabolic flux changes in a non-targeted manner. Furthermore, we show how similarity-analysis of isotopic
enrichment patterns can be used for pathway contextualization of unidentified compounds. We illustrate our
approach with the analysis of changes in cellular metabolism of human adenocarcinoma cells in response to
decreased oxygen availability. Starting without a priori knowledge, we detect metabolic flux changes, leading to an
increased glutamine contribution to acetyl-CoA production, reveal biosynthesis of N-acetylaspartate by
N-acetyltransferase 8-like (NAT8L) in lung cancer cells and show that NAT8L silencing inhibits proliferation of A549,

Conclusions: Differential stable isotope labeling analysis provides qualitative metabolic flux information in a
non-targeted manner. Furthermore, similarity analysis of enrichment patterns provides information on metabolically
closely related compounds. N-acetylaspartate and NAT8L are important players in cancer cell metabolism, a context in
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Background

Over the last decades, cellular metabolism gained increas-
ing interest to pinpoint potential therapeutic intervention
points to treat complex diseases. Metabolomics research,
analyzing changes in metabolite levels, deepened our
understanding of cellular metabolism, which led to the
discovery of unanticipated metabolites [1] and disease
biomarkers [2, 3]. However, metabolite levels alone pro-
vide only a very static view on metabolism. For a system
understanding of metabolism, the underlying metabolic
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fluxes are much more important and informative because
they provide a much closer functional link to an observed
phenotype [4]. Metabolic fluxes through these pathways
do not only depend on metabolite concentrations, but
are modulated by intricate regulatory mechanisms [5].
For that reason, they cannot be deduced from metabolite
levels alone.

To that end metabolic flux analysis techniques such
as flux balance analysis (FBA) and '3C metabolic flux
analysis (3C-MFA) have been developed. FBA employs
genome-scale metabolic networks [6] and aims to balance
cellular influxes and effluxes with an optimal set of intra-
cellular fluxes [7, 8]. On the other hand, '*C-MFA uses
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much smaller metabolic networks, but combines cellu-
lar influxes and effluxes with experimental data obtained
from stable isotope labeling experiments [9, 10]. Isotopic
labeling patterns are usually analyzed by mass spectrom-
etry (MS) in the form of mass isotopomer distributions
(MIDs), which are the mass-aggregated relative isotopo-
logue abundances. Since MIDs of metabolites from a
given tracer within a given metabolic network are solely a
function of the metabolic fluxes, they can be used to esti-
mate these underlying fluxes [11, 12]. Using mathematical
optimization techniques, a set of fluxes is determined
which can explain the experimentally observed MIDs for
a defined metabolic network model [9, 10].

A drawback, that all current metabolic flux analysis
techniques have in common, is that they rely on the
exact topological knowledge of the metabolic network of
interest. However, knowledge of metabolic networks of
most organisms is still not comprehensive, as for exam-
ple recently shown for mammalian macrophages which
were found to produce an unanticipated antimicrobial
compound [1].

As stated above, MIDs from stable isotope labeling
experiments hold metabolic flux information. This is
exploited in 3C-MFA, but only in a highly targeted man-
ner. However, there are methods available for the non-
targeted MID determination of compounds in complex
mixtures after either gas chromatography MS (GC-MS)
[13, 14] or liquid chromatography MS (LC-MS) analy-
sis [15—17]. These methods do not rely on any biological
knowledge, and thus, are able to account for any unan-
ticipated metabolite. To date, only very few studies per-
formed non-targeted MID analyses and obtained novel
biological insights [15, 18]. Mostly, non-targeted detection
of stable isotope labeling has been applied in a qualita-
tive manner to separate metabolites produced by the cell
from analytical background [19-21]. One major problem
is still the lack of appropriate tools to extract biological
information out of the mass spectrometric data [22]. In
particular, studies covering multiple experimental condi-
tions or time-points generate complex data and require
proper tools for efficient analysis and visualization of
isotope labeling data.

In this article, we present a novel workflow for stable
isotope labeling analysis that allows for the non-targeted
detection of (1) pathway activity, highlighting unexpected
parts of metabolism; (2) relative flux changes or differen-
tial pathway activity between conditions; and (3) the path-
way contextualization of unidentified compounds and
their vicinity to other metabolites. This workflow can be
used for data-driven analyses and hypothesis generation
which can be tested in subsequent targeted approaches.
We illustrate our workflow by analyzing changes in cel-
lular metabolism of human lung cancer cells in response
to varying oxygen availability ranging from atmospheric
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21 % O down to 1 % O,. Starting without a priori knowl-
edge, we detected metabolic flux changes, which led to
an increased glutamine contribution to acetyl-CoA, show
that A549 lung cancer cells produce N-acetylaspartate,
a compound which is well known to have an important
function in neuronal tissue, but was until very recently
[23] not known to be produced in other tissues, and show
that silencing its biosynthetic enzyme NAT8L exerts a
negative growth effect.

Methods

Chemicals

Stable isotope labeled tracers were bought from Cam-
bridge Isotope Laboratories, all other chemicals were
bought from Sigma-Aldrich. All solvents were of grade
Chromasolv or higher.

Cell culture & stable isotope labeling

Human lung adenocarcinoma A549 cells (ATCC CCL-
185, [24]) were cultivated in D5030 medium (Dulbecco’s
modified Eagle’s medium without glucose, glutamine,
phenol red, sodium pyruvate and sodium bicarbonate),
supplemented with 10 % dialyzed fetal bovine serum and
either 12.5 mM glucose, 12.5 mM [1,2-13C;]-D-glucose
and 4 mM glutamine, or with 25 mM glucose, 2 mM glu-
tamine and 2 mM [U-13C]-L-glutamine. Cells were seeded
into 12-well multi-well plates at a density of 3 x 10° cells in
0.75 ml growth medium and cultivated at 37°, in an atmo-
sphere with 5 % CO; and 95 % air with oxygen levels of 1,
5, 10, 15, and 21 %. Before applying the tracer-containing
medium for 24 h, cells and media were equilibrated to the
respective oxygen levels for 24 h. Under each condition,
3—4 wells were used for metabolite extraction.

Metabolite extraction and GC-MS analysis

Intracellular metabolites were extracted and polar
metabolites were analyzed by GC-MS as described in [25].
In short, a liquid-liquid extraction was performed using
chloroform:methanol:water. The quenching step using ice
cold methanol was performed at the respective oxygen
levels. An aliquot of the polar phase was dried, dissolved
in pyridine containing methoxyamine hydrochloride
and trimethylsilylated using N-methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA).

GC-MS data processing and determination of isotopic
enrichment

Deconvolution of mass spectra and targeted MID anal-
ysis were performed using MetaboliteDetector version
2.820150209R [26]. The following MetaboliteDetector
peak picking and deconvolution settings were used: min-
imum number of peaks: 25; peak threshold: 5; minimum
peak height: 5; bins/scan: 10; required base peak inten-
sity: 0; Deconvolution width: 3 scans. An even-numbered
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n-alkane mixture (C19—Cy49) was measured for retention
index calibration.

Non-targeted detection of stable isotope labeling and
mass isotopolome analysis were performed using an in-
house software based on the NTFD algorithm [13, 14, 27].
For data analysis we considered all compounds for which
the NTFD algorithm detected at least under one exper-
imental condition two mass spectrometric fragments
with a coefficient of MID determination of R*> > 0.98,
> |M;| < 1.05, My abundance of 045 < My < 1
and minimal enrichment 1 — My > 0.05. These param-
eters are described in more detail in [27]. Because in
non-targeted analysis the maximal length of the MID
vector is unknown, trailing mass isotopomer abundances
of below 0.01 have been considered as noise and been
removed. Compounds were identified based on RI and
mass spectrum matching against an in-house reference
library. Known contaminants like siloxanes were excluded
from further analysis.

Mass isotopomer abundance variation

To detect compounds with most varying labeling patterns
across different experimental conditions, we analyzed the
maximal standard deviation in relative mass isotopomer
abundance for every compound that was detected in at
least three out of five conditions:

variation score = maxo; | o0;=

1 n
- Z@j _Pj,i)z
n

i=0

where p;; is the relative abundance of the M; isotopo-
logue of the given compound in the i-th dataset and p;
the average M; abundance across all # datasets. The MIDs
of the heaviest common fragments across all conditions
were used and the MIDs of unlabeled compounds were
not considered. Compounds with the top five MID varia-
tion scores after [1,2—13C2]glucose and [U—13C]glutamine
labeling are shown in Fig. 3a (only one of two glutamate
TMS derivatives is shown).

MID distance calculation

For calculation of MID distances, MIDs of the largest
fragment with R2 > 0.95 of each compound was used.
Correction for natural isotope abundance was performed
using the NTFD algorithm [27]. A Needleman-Wunsch
alignment was performed on the MID vectors minimiz-
ing the absolute differences in relative mass isotopomer
abundances using a gap penalty of 0.4 (Fig. 1b). Subse-
quently, the pairwise distances of all aligned MID vectors
were determined (Fig. la). Therefore, the Canberra dis-
tance of two MID vectors A and B was calculated as

n  JAi—Bi|
das i=1 TA, 715 and normalized by the sum of

the dimensions of the MID vectors (dz"’gm = ‘MZ%)
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Fig. 1 MID similarity anaIyS|s for pathvvay contextualization and
detection of metabolically related compounds. a The pairwise
similarities of all MIDs is determined. A similarity threshold is applied,
and compounds with highly similar MIDs are visualized as network.
Networks derived from different experimental conditions can be
overlaid for more information. b Before the distance calculation the
MID vectors are aligned to account for gains or losses of labeled
fragments, which would otherwise conceal the metabolic proximity
of these compounds

The most similar compounds are shown in Fig. 4. In case
of multiple TMS derivatives of the same metabolite only
one is shown.

MID deconvolution of aspartyl and acetyl moiety of
N-acetylaspartate

The mass spectrometric fragment ions m/z 304 and m/z
245 of NAA 2TMS represent the [M-CH3]" and [M-CH3-
CH3CONH_] " fragments, respectively (Additional file 1:
Figure S5). The two fragments differ by the acetamido-
group (CH3CONHy). The MID of NAA (given by [M-
CH3]™) is the convolution or Cauchy product [12] of the
MIDs of the aspartyl moiety (Magp, given by [M-CH3-
CH3CONH;]") and the acetamido moiety (Mac) of the
molecule:

MoNaa Moasp O 0

MiNaa My asp Moasp O

M2,NAA M2,Asp Ml,Asp MO,Asp MO,AC
MzNaa | = | Mszasp Moasp Mrasp || Miac
My NAA My asp M3asp Moasp M Ac
MS,NAA 0 M4,Asp M3,Asp

Mg NAA 0 0 Myasp
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This equation system was populated with the raw mass
spectral intensities and solved for M using a weighted
least squares approach using the n1sLM routine of the
minpack.1lm package (version 1.1-8) for the R statistics
environment (version 3.1.2). The determined acetyl MIDs
were corrected for natural isotope abundance.

siRNA transfection

For knockdown experiments, siRNA were reverse trans-
fected into A549 cells using Lipofectamine RNAIMAX
(Invitrogen/Life Technologies). For each well (12-well
plate), 20 pmol siRNA were diluted in 200 ul Opti-MEM I
reduced-serum medium (Invitrogen/Life Technologies),
supplemented with 2.5 pl Lipofectamine RNAIMAX, gen-
tly mixed, and incubated for 20 min at room temperature.
The prepared solution was spread in a well 5 min before
100 000 cells in 800 ul of DMEM 5796 growth medium
containing 10 % FBS were added. The plate was gently
mixed and incubated (37 °C, 5 % CO3) for up to 72 h. ON-
TARGETplus non-targeting and NAT8L-targeting siRNA
were obtained from Dharmacon/GEHealthcare (see Addi-
tional file 1: Table S6 for target sequences).

Growth assay

For growth assays with A549 cells, cells were transfected
and cultivated at 2 % oxygen as described above. After
72 h, cells were detached using trypsin, and cell numbers
and viability were determined using a Vi-CELL XR Cell
Viability Analyzer (Beckman Coulter). Cell viability was
above 95 % in all samples. Cell numbers are presented as
mean of three independent experiments, each consisting
of three wells per condition (Fig. 5).

Human bronchial epithelial BEAS-2B cells (ATCC
CRL-9609), human hepatocellular carcinoma JHH-4
cells (JCRB Cell Bank) and non-neoplastic hepatocyte
PH5CHS cells [28] were transfected with non-targeting
or NAT8L-targeting siRNA as described above and cul-
tivated at normoxia. Cells were seeded in 12-well plates
at densities of 95 000 cell/well for PH5CHS8, 57 000
cells/well for JHH-4 and 100 000 cells/well for BEAS-
2B. After 24 h, transfection medium was replaced by
DMEM 5796 growth medium containing 10 % FBS (JHH-
4 and PH5CHS8) or LHC-9 medium (BEAS-2B). LHC-
9 medium was prepared from LHC-8 media (Gibco)
by adding 33 nM retinoic acid (Lonza) and 2.75 M
epinephrine (Lonza). After 72 h, cell numbers were deter-
mined as described above. Cell numbers are presented as
mean of three independent experiments, each consisting
of three wells per condition.

Metabolome analysis

For semi-quantification of metabolite levels after NATSL
silencing (Fig. 5), cells were incubated at 21 % O, for two
days after transfection. Metabolites were extracted and
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analyzed by GC-MS as described above. Data was ana-
lyzed using MetaboliteDetector with settings as described
above, but a deconvolution width of 5 scans. Non-targeted
batch quantification was performed over all data files
and mass spectrometric intensities were normalized to
summed analyte signal of each sample after exclusion
of known contaminants. Replicates represent metabolite
extracts from different cell populations (n = 3).

Results

Mass isotopolome analysis

The starting point of our workflow is a stable isotope
labeling experiment. After mass spectrometric measure-
ments of labeled and unlabeled metabolite extracts, MIDs,
corrected for natural isotope abundance, can be obtained
in a non-targeted manner [15, 16, 27]. We analyze these
metabolome-wide MIDs, the mass isotopolome, to detect
changes in metabolic fluxes and exploit MID similarity
between compounds for their pathway contextualization.

Locating flux changes by non-targeted mass isotopomer
abundance variation analysis

Since changes in MIDs can only be a consequence
of altered metabolic fluxes, we can reveal metabolic
flux changes by detecting changes in the mass iso-
topolome [29]. Therefore, MIDs of identical compounds
are matched across different experimental conditions
to detect differences in relative mass isotopomer abun-
dances. As a measure of variation, for each isotopically
enriched compound, we calculate the maximal standard
deviation of relative mass isotopomer abundance across
the different experimental conditions (see Experimen-
tal Procedures). We assume that large flux changes will
lead to large changes in mass isotopomer abundances,
although this might neglect flux changes that make a small
relative contribution to a given metabolite pool. Thus, to
find the most significant flux changes, we rank metabo-
lites by their aforementioned variation score. Like any
MID analysis, this approach is limited by the facts that
(1) MIDs alone can only provide relative flux informa-
tion (flux ratios), and therefore, (2) not all changes in
metabolic fluxes manifest in MID changes. Furthermore,
as in conventional metabolomics approaches, metabolite
pools of subcellular compartments are usually mixed dur-
ing metabolite extraction which might reduce their infor-
mative value. Apart from that, this systematic analysis of
relative mass isotopomer abundance variation detects flux
changes without the requirement of any biochemical a
priori knowledge on the system of interest or the identi-
fication of the respective compounds. It is only biased by
analytical restrictions and the choice of the isotopic tracer
and will consider any unanticipated reaction or metabolite
which cannot be accounted for by current flux analysis
techniques.
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MID-similarity assisted compound identification
For subsequent interpretation of the detected changes in
mass isotopomer abundances, the respective compounds
need to be identified. This is usually achieved by match-
ing their mass spectra against reference libraries [30],
but the available libraries are far from comprehensive.
Although thousands of chromatographic/mass spectro-
metric features, and among them at least several hundreds
of metabolites can be analytically detected [20, 31, 32],
only a fraction thereof can be identified, rendering
compound identification a major bottleneck in current
metabolomics research [33]. When the detected features
or at least their pathways or compound classes are identi-
fied, they can provide more biological insights in addition
to their function as biomarkers. Hence, compound identi-
fication is, however cumbersome, still highly important.
For compounds that are not present in reference
libraries, other means for identification are required.
Here, we present an approach based on MID-similarity.
As described above, the MID of any metabolite is deter-
mined by those of its precursors and the flux ratio of the
producing reactions. Within linear pathways, the MIDs of
all compounds are identical, except if there are gains or
losses of isotopically enriched fragments of the molecules.
Here, we exploit the reverse conclusion, assuming that
compounds with identical or highly similar MIDs are
more likely to be intermediates of the same pathway or lie
in the same area of the metabolic network. Therefore, by
analyzing the MID similarity of different compounds, they
can be grouped to metabolic pathways. Strictly speaking,
this high MID similarity is only granted in linear pathways.
However, in converging pathways, if one flux is much
larger than the other, or there is only a dilution with the
unlabeled isotopologue, then the labeling pattern of the
dominating precursor is mostly conserved in the product
MID and the reaction sequence can be seen as pseudo-
linear. In this case, the MID similarity is still significant.
Empirically, this is the case for many metabolic reactions.
To analyze MID similarity for pathway contextualiza-
tion of unidentified compounds, we pairwisely compare
MIDs of all isotopically enriched compounds (Fig. 1a). To
account for potential losses or additions of isotopically
enriched fragments to the molecules which would shift
the MIDs, we perform a Needleman-Wunsch alignment
[34] on the MID vectors prior to the similarity calculation
(Fig. 1b). As a similarity measure, we compare the Can-
berra distances of all pairwisely aligned MIDs. This pair-
wise comparison results in a distance or similarity matrix.
After applying an empirically determined distance cut-
off, we create a network of compounds with higher MID
similarity. The resulting graph is likely to show metaboli-
cally connected compounds. However, the MID similarity
can—dependent on tracer and pathways—be ambiguous.
The specificity can be increased by using distinct tracers
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and multiple experimental conditions (Fig. 1a). Edges in
the graph occurring in multiple conditions are more likely
to be biologically meaningful.

In summary, MID similarity between compounds can
indicate proximity within the metabolic network. This can
be used to associate unidentified compounds with iden-
tified ones, and to map them to specific pathways. This
itself is valuable information and can furthermore be a
strong hint for subsequent compound identification. For
both identified and unidentified compounds such an MID
similarity analysis can reveal new biosynthetic pathways
or help to distinguish between different known ones.

Method summary

The proposed workflow starts with stable isotope labeling
experiments, mass spectrometric analysis, and the non-
targeted detection of isotopically enriched compounds
(Fig. 2b). In addition to MIDs, such an analysis yields,
for each compound, the labeled and unlabeled mass spec-
tra, as well as the chromatographic retention time, often
normalized as retention index (RI). Qualitative analysis
of isotopic enrichment provides information on active
fluxes and the general fate of the metabolic tracer. MIDs
from different experimental conditions are systematically
analyzed to detect changes in metabolic fluxes. MID sim-
ilarity may indicate metabolic proximity; hence, MIDs of
compounds of interest are compared to all other MIDs
for pathway contextualization, discovery of potential pre-
cursors, or to facilitate identification of unidentified com-
pounds.

Overall, this non-targeted approach provides informa-
tion on (1) active pathways, (2) changed fluxes, and (3)
compound identities. This information holds biological
insights itself and will furthermore generate hypotheses
for subsequent analyses (Fig. 2a).

An additional advantage of non-targeted isotope label-
ing analysis is that, depending on the proper tracer choice,
it clearly shows whether a given compound is formed by
the organism or was externally introduced as ingredient
of an undefined growth medium or as contamination and
thus provides an additional quality control. Furthermore,
an advantage of the analysis of MIDs over metabolite lev-
els is that they are more robust to technical variation than
metabolite levels.

Mass isotopolome analysis in hypoxic cancer cells

We illustrate the developed approach by analyzing human
lung cancer cell metabolism under different oxygen levels.
We have chosen this condition, because hypoxia induces
strong changes in cellular metabolism which have been
studied intensively in cancer cells [35—39]. The large num-
ber of previous studies would allow us to readily confirm
our findings and to validate our approach. Furthermore,
it was interesting to see if our approach was able to
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identify novels features. To this end, we performed sta-
ble isotope labeling experiments with [1,2-13C;]glucose
and [U-13C]glutamine under oxygen levels ranging from
1 % O to atmospheric 21 % O,. We chose glucose and
glutamine as isotopic tracers because they are the major
carbon sources of most mammalian cells, and therefore,
lead to a good metabolome coverage of isotopic enrich-
ment. After GC-MS analysis of the metabolite extracts,
we determined all isotopically enriched compounds along
with their MIDs in an automated and non-targeted man-
ner. We detected 24 compounds which were labeled from
[U-13C]glutamine and 60 labeled from [1,2-13C;]glucose
(Additional file 1: Tables S1-S2).

Non-targeted flux profiling reveals changes in intermediary
metabolism
To detect hypoxia-induced metabolic flux changes in
a non-targeted manner, we applied the aforemen-
tioned mass isotopomer abundance variation analy-
sis and focused on the five compounds with the
highest variation resulting from [U-'3C]glutamine and
[1,2-13C,]glucose labeling. Three compounds were com-
mon to both datasets, two were unique to one set (Fig. 3a,
only one out of two glutamate TMS derivatives is shown).
With decreasing Oy levels, the compounds with high
MID variation after glucose labeling showed an increase

in the unlabeled (My) fraction and a concomitant decrease
in the abundances of heavier mass isotopomers, indicat-
ing decreased glucose contribution to their biosynthesis
(Fig. 3a). The compounds with changed MIDs after glu-
tamine labeling had an either relatively constant or slightly
increasing enrichment. Additionally, three of these com-
pounds showed a switch of the most abundant mass
isotopomer indicating a change of their biosynthesis route
(Fig. 3a).

While the detection of these changes in labeling pat-
terns was fully non-targeted and did not require the
compounds to be identified, the further interpretation
requires their identification, as well as detailed knowl-
edge on the metabolic network, including carbon atom
transitions. Hence, to interpret the observed changes
in isotopic labeling, we tried to identify the corre-
sponding compounds by matching their mass spec-
tra against an in-house reference library. We iden-
tified the highest-ranking metabolites from glutamine
labeling as the trimethylsilyl (TMS) derivatives of
malate, glutamate, citrate, and N-acetylaspartate (NAA)
(Fig. 3a). From glucose labeling, we identified citrate
and malate, NAA, and adenosine monophosphate (AMP).
One compound remained unidentified; its mass spec-
trum could not be found in any of the common
mass spectrum reference libraries such as the Golm
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Metabolome Database (GMD) or the NIST mass spectral
library.

Citrate, malate, glutamate and NAA are all associated
with the citric acid cycle. With decreasing O, levels, their
isotopic enrichment from [U-'3C]glutamine changes sig-
nificantly due to increasing reductive carboxylation of
2-oxoglutarate by isocitrate dehydrogenase (IDH) [36, 37]
(Fig. 3b). This reductive IDH flux increased severalfold
with decreasing O,. At the same time, isotopic enrich-
ment from [1,2-13C;]glucose was significantly reduced,
indicating a relative decrease in glucose-carbon entering
the citric acid cycle as a results of pyruvate dehydrogenase
(PDH) inhibition [40].

For this mass isotopomer abundance variation analysis,
we used the heaviest mass spectrometric fragment that
was detected as isotopically enriched. For malate, citrate
and glutamate, the selected fragment all contained the full
carbon backbone of the native metabolites. However, for
NAA and AMP, the MIDs represent only a substructure of
the analytes, so that interpretation is only possible if the
fragmentation is known. The MIDs shown for fragment
m/z 169 of AMP 5TMS (Fig. 3a) most likely represent the
ribose moiety of AMP [41]. These labeling changes might
hint towards changed fluxes through the pentose phos-
phate pathway, but require further validation. The MIDs
of fragment m/z 245 of NAA exhibited very high similar-
ity to malate, suggesting that this fragment contains only
the aspartate moiety, but not the acetyl moiety of NAA
(Fig. 3a). Combinatorial analysis of possible fragment for-
mulas using FFC [42] indicated that this fragment most
likely arises from loss of the acetamido-moiety of NAA
which was confirmed by stable isotope labeling (Addi-
tional file 1: Figure S5). This turned out to be of interest
because it allows for the deconvolution of the MIDs of
the aspartyl- and acetyl-moiety of NAA and hence can
be used as a proxy to assess acetyl-CoA labeling under
isotopic steady state conditions (Fig. 3¢c). The determined
isotopic enrichment of the NAA acetyl-moiety provides
additional evidence for progressive increase of carboxyla-
tion of 2-oxoglutarate to provide acetyl-CoA for fatty acid
biosynthesis under hypoxia [36].

MID-similarity assisted compound identification

Among the compounds with highly varying MIDs, as well
as among the isotopically enriched compounds in general,
there were several compounds which we were not able to
identify using our in-house or any other commonly avail-
able reference library. However, to be able to interpret
the observed MID changes, knowledge on their metabolic
origin is imperative.

To show that the aforementioned MID similarity analy-
sis can be a valuable tool to aid compound identification,
we first performed MID similarity analysis on the already
identified NAA. The compounds with the most similar
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labeling patterns after [U-'3C]glutamine labeling were
aspartate, malate and pyroglutamate (Fig. 4a), and ala-
nine and citrate after [1,2-13Cy]glucose labeling (Fig. 4b).
Aspartate is the direct precursor of NAA and the other
compounds are only a few reactions away, demonstrating
that MID similarity analysis can indeed provide valu-
able hints on metabolically closely related compounds
(Fig. 4c).

Next, we performed the same analysis to aid iden-
tification of the yet unidentified compound RI 2578
which popped up in the MID variation analysis (Fig. 3a).
The heaviest fragment that was detected as isotopically
enriched showed very high MID similarity to citrate after
[U-13C]glutamine labeling, suggesting that the unidenti-
fied compounds must be closely related to citrate (Fig. 4d).
The compounds with high MID similarity after [1,2-13C5]
glucose labeling, glycerol 3-phosphate and pyroglutamate,
are very distantly related, and therefore, are less informa-
tive (Fig. 4e). The analyzed fragment m/z 363 has only
about half the mass of the heaviest fragment m/z 666
of the mass spectrum (Additional file 1: Figure S7). For
the heaviest fragment, no enrichment patterns could be
determined due to its low abundance and low enrich-
ment. We assumed the heaviest fragment m1/z 666 was the
[M-CH3]™" ion, a fragment ion that is commonly observed
after electron ionization of TMS derivatives in place of
the molecular ion [M]*. In order to identify compound
RI 2578, we searched the HMDB database [43] for the
mass of the native metabolite, assuming due to its reten-
tion index 5 or 6 TMS groups in the molecule. Of the 38
database hits, B-citrylglutamate (8-CG) was the candidate
that could account for the observed high MID similar-
ity to citrate (Fig. 4d, f). Unfortunately, there was neither
an authentic standard of 8-CG commercially available to
confirm this tentative identification, nor was there an elec-
tron ionization mass spectrum published. However, as
discussed below, there is biological evidence supporting
this identification.

NAT8L-mediated NAA biosynthesis in lung cancer cells
We were intrigued by finding NAA in lung cancer cells. Its
isotopic enrichment clearly indicated its de novo biosyn-
thesis there, although so far biosynthesis was assumed to
be restricted to neuronal tissue. Therefore, we followed
up on this finding to investigate whether NAA plays a sig-
nificant role in cancer cells. The recent study by Lou et
al. [23], reporting some of the results presented below, was
only published during the preparation of this manuscript.
In neurons, NAA is known to be produced by
NATS8L [44]. To confirm NATS8L as the produc-
ing enzyme in A549 cells, we transfected them with
NATS8L targeting siRNA and analyzed polar metabo-
lite extracts by GC-MS. Upon NATSL silencing, NAA
levels were drastically reduced (Fig. 5a), confirming
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NAT8L-mediated biosynthesis of NAA. Besides, NAA,
we also observed production of another neuropeptide, N-
acetylaspartylglutamate (NAAG), by A549 cells. NAAG is
synthesized from NAA by RIMKLA and RIMKLB, the lat-
ter of which also catalyzes the formation of 8-CG as alter-
native product [45]. Both RIMKLA and RIMKLB were
found to be expressed in A549 as determined by qPCR
analysis (data not shown). Upon transfection with NAT8L
targeting siRNA, NAAG levels dropped below the detec-
tion limit (Fig. 5b), whereas the levels of putative 8-CG
increased (Fig. 5¢). As mentioned above, there was unfor-
tunately no authentic standard available to confirm the

identity of RI 2578 as B-CG. Yet, its identification is cor-
roborated by mass spectrometric fragmentation (Addi-
tional file 1: Figure S7), stable isotope labeling data as well
as by the correlation of NAT8L silencing with an increase
in levels of RI 2578.

Loss of NAT8L function impairs cell proliferation

Others have observed a positive correlation between NAA
levels and malignancy of prostate tumors [46] and iden-
tified NAA as a potential diagnostic blood biomarker for
cancer [23]. To determine whether NAA or NATS8L has an
effect on cell proliferation, we performed growth assays
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after siRNA-mediated NAT8L silencing. After 72 h, the
number of cells transfected with NAT8L-targeting siRNA
was 28 % lower than the ones transfected with a non-
targeting siRNA, suggesting a substantial role of NAA or
NATSL in A549 cells (Fig. 5d). To confirm this finding,
we repeated the experiments using bronchial epithelial
BEAS-2B cells, hepatocellular carcinoma JHH-4 cells, and
non-neoplastic hepatocyte PH5CHS8 cells. All three cell
lines showed a similar reduction in cell numbers of about
20-30 % after transfection with NAT8L targeting siRNA
(Fig. 5e).

Discussion

Non-targeted data acquisition and analysis approaches
are valuable tools to generate initial hypotheses, espe-
cially when little a priori information is available on the
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organism or subject of interest. We showed how stable iso-
tope labeling experiments and subsequent non-targeted
mass isotopolome analysis can be used for metabolic flux
profiling and hypothesis generation (Fig. 2a).

To demonstrate our novel non-targeted stable isotope
labeling analysis workflow, we performed stable isotope
labeling experiments with human adenocarcinoma cells
incubated in the presence of '3C-labeled glucose and
glutamine at various oxygen levels and analyzed the result-
ing mass isotopolome. We illustrated that our approach
can be used to extract biologically meaningful informa-
tion instead of mere statistical differences. Although we
applied our workflow on GC-MS data, it can also directly
be used in LC-MS experiments which may provide higher
metabolome coverage.

We globally analyzed mass isotopomer abundance vari-
ation across different experimental conditions to detect
metabolic flux changes in a non-targeted manner. MIDs
after stable isotope labeling are determined by metabolic
fluxes. This relationship is already exploited in !3C-MFA,
but only in a highly targeted manner. Here, we applied a
global differential MID analysis to detect metabolic flux
changes without considering the identity of the respec-
tive compounds. Therefore, even if such flux changes
occurred in yet unknown reactions, they would pop
up in this analysis, rendering compound identification
dispensable at this stage of the analysis. Since for many
organisms or cell types the metabolic network is not fully
known, such a non-targeted and data-driven approach
is highly desirable. It will not replace subsequent tar-
geted experiments, but it can be a valuable scouting
strategy to not miss unanticipated reactions or metabo-
lites and to validate the assumptions required for example
for 3C-MFA.

To demonstrate and validate our approach, we analyzed
cellular metabolism of lung cancer cells at different oxygen
levels. The data-driven analysis of isotopic enrichment
correctly identified enhanced reductive carboxylation of
2-oxoglutarate to isocitrate by IDH and subsequent cleav-
age of citrate by ACLY to produce cytosolic acetyl-CoA
which flows into increased fatty acid biosynthesis [36—38]
(Fig. 3). This inversion of IDH flux directionality is an
important feature of cancer cells since it allows for the
generation of acetyl-CoA from glutamine under hypoxia
when acetyl-CoA production from glucose is strongly
inhibited. The non-targeted detection of these previously
reported findings validate our approach.

We argued that, because MID similarity often correlates
with metabolic proximity, comparison of MIDs of differ-
ent compounds can reveal metabolic similarity. Address-
ing a current bottleneck in non-targeted metabolomics
studies, we demonstrated how the similarity in MIDs after
stable isotope labeling can facilitate compound identifi-
cation. Knowledge of biochemically related compounds
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helps to constrain database searches and it can help to
elucidate unknown biosynthetic pathways by revealing
potential precursors. Although MID similarity analysis
will not always allow for compound identification, it can
still be used to put unknown compounds into the context
of certain biochemical pathways or to provide hypotheses
on chemical substructures. MID similarity can, dependent
on tracer and pathways, sometimes be ambiguous. How-
ever, this ambiguity can be reduced by the use of distinct
tracers and multiple experimental conditions as done in
this study. Analysis of MID similarity can additionally pro-
vide valuable hints on the composition of a given mass
spectrometric fragment, as shown above for NAA.

A related approach to our MID similarity analysis
is the recently described “metabolic turnover analysis”
[47] which analyzes correlations in mass isotopomer
abundances to determine metabolic distances. Whereas
Nakayama et al. [47] analyzed time-series data from a
transient labeling experiment, we compare MIDs from
only one single time-point. The dynamic nature of
metabolic turnover analysis has the advantage, that it can
reveal the sequence of intermediates of linear pathways,
an information that is lost in isotopic steady state. How-
ever, this extra information comes at the cost of a more
complex experimental setup.

We demonstrated the value of our MID similarity anal-
ysis in the case of the already identified NAA and an
unidentified compound, the spectrum of which was not
present in any of the common reference libraries (Fig. 4).
This MID similarity analysis constrained the database
search for the given nominal mass to only one candidate
structure. This putative identification is corroborated by
mass spectrometric fragmentation, isotope labeling, and a
gene silencing experiment.

Using stable isotope labeling and siRNA-mediated gene
silencing, we showed that A549 lung cancer cells produce
NAA and its downstream metabolite and neuropeptide
NAAG (Fig. 5). NAA is highly abundant in the brain
and was long thought to only be produced in neuronal
tissues. Its functions are still not fully understood, but
several potential roles are discussed [48, 49]. In the con-
text of cancer, NAA has not received much attention,
except for tumors of the brain where NAA concentra-
tions are high per se. Increased levels of NAA were
detected in ovarian tumors [50-54], and a positive cor-
relation between urinary NAA levels and malignancy of
prostate cancer cells has been observed [46]. Only dur-
ing the preparation of this manuscript, two independent
studies focusing on NAA and NATS8L were published
[23, 55]. At the time of our study, it was not yet clear
whether increased NAA levels in cancer cells are due to
endogenous biosynthesis or accumulation of exogenous
NAA. Here, using 13C-labeling, we showed that lung ade-
nocarcinoma cells are able to produce this metabolite via
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the NAT8L enzyme. Production of NAA is not limited to
A549 cells; we also detected NAA in prostate (RWPE-2)
and liver (HepG2) cancer cell lines (unpublished obser-
vations) and in bronchial epithelial cells (BEAS-2B) non-
neoplastic hepatocytes (PH5CHS). Lou et al. investigated
NAA levels and NATSL expression levels in lung can-
cer in parallel and independently of our studies and their
findings were published during the preparation of our
manuscript [23]. Here, we confirm their report on NAA
production in A549 cells and show furthermore that the
NAA downstream metabolite NAAG is produced and that
NATS8L silencing inhibits cell proliferation (Fig. 5). Pro-
duction of NAA and a negative effect of NAT8L silencing
on proliferation has also been reported by Zand et al.
in ovarian cancer cells [55]. Furthermore, they showed a
lower survival rate of cancer patients with higher NAT8L
and NAA levels. These data hint towards a more integral
role of NAA in cancer cells, more than a mere biomarker
or byproduct, which needs to be investigated further.
Nothing is known about the mechanistic role of either
NAA, NAAG, or NATS8L in cancer yet. Exogenous NAA
was found to increase proliferation of glioma stem-like
cells [56]. Pessentheiner et al. reported that NATS8L plays
an important role in lipid metabolism in brown adipocytes
[57]. Its functional role there is yet unclear, but the
authors hypothesized an N-acetylaspartate-based acetyl-
CoA shuttle across the mitochondrial membrane, as sug-
gested for neurons [58, 59] and similar to the intercellular
acetyl-transport observed in the brain [48]. In this model,
NAA is exported from the mitochondria, deacetylated by
cytosolic aspartoacylase (ASPA), and the resulting acetate
is activated by cytosolic acetyl-CoA synthase (ACSS2).
Such a shuttling mechanism to provide cytosolic acetyl-
CoA would also be advantageous for cancer cells which
are known to have increased fatty acid biosynthesis.
NAA-based acetyl-CoA shuttling would decouple acetyl-
transport from citrate synthesis for oxidation in the citric
acid cycle. Furthermore, it would explain recent find-
ings on the importance of ACSS2 in cancer cells [60—62].
The inhibition of cell proliferation we observed here upon
NATS8L silencing would be in line with NAA-mediated
acetyl transport. Lack of NATSL could induce a short-
age of cytosolic acetyl-CoA for fatty acid biosynthesis and
other metabolic processes which would eventually reduce
cell proliferation. More data are required to unravel the
exact mechanism by which NAT8L confers a growth
advantage to these cells. This acetyl-shuttling relies on
mitochondrial NAA biosynthesis. However, there is no
consent about subcellular localization of NATSL [63—-68].
If NATS8L was only localized in the cytosol, NAA could
still play an important role as precursor of NAAG, which
we also detected in A549 cells. NAAG was reported as
an agonist at type II metabotropic glutamate receptors
[69, 70] which are also expressed by cancer cells [71]
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and have been shown to promote cell proliferation [72].
The observed reduction in cell proliferation after NAT8L
silencing could therefore be due to reduced levels of
NAAG.

An alternative product of RIMKLB, one of the NAAG-
producing enzymes, is 8-CG [45] which we putatively
identified in A549 cells. Very little is known about the
function of this metabolite. It was suggested to act as
an iron carrier, able to reactivate aconitase activity and
increasing cell viability [73]. It is unclear whether 8-CG
plays a specific role in A549 cells, or whether it only forms
as a side product of RIMKLB.

Besides any biological role, NAA is of analytical interest
because of its mass spectrometric fragmentation. Under
isotopic steady state conditions, it can be used to deduce
labeling of the acetyl-CoA pool from which it is synthe-
sized (Fig. 3). Acetyl-CoA is a hub of many anabolic and
catabolic reactions, linking fatty acid, carbohydrate and
amino acids metabolism, and is a substrate for protein
acetylation. Acetyl-CoA is not directly accessible via GC-
MS measurements, but its isotopic enrichment can alter-
natively be deduced from labeling patterns of fatty acids
by isotopomer spectral analysis (ISA) [74]. However, this
requires additional sample processing and measurements
and is further complicated by the fact that cellular fatty
acids can be derived from medium components directly
or by elongation or be synthesized de novo. When the
localization of NATS8L is resolved, NAA may furthermore
provide a means to analyze isotopic enrichment of a
compartment-specific acetyl-CoA pool.

Analyzing isotopic enrichment of the acetyl-moiety
of NAA at different oxygen levels revealed that with
decreasing oxygen availability, acetyl-CoA was progres-
sively increasingly derived from glutamine instead of glu-
cose, whereas their combined contribution was relatively
stable.

Conclusions

We applied stable isotope labeling and illustrated a novel
non-targeted mass isotopolome analysis approach to sys-
tematically analyze the metabolic hypoxia response of
human lung cancer cells. We employed non-targeted mass
isotopomer abundance variation analysis for non-targeted
metabolic flux change profiling and showed how MID
similarity can assist compound identification, address-
ing a major bottleneck of current metabolomics research.
This approach can also account for unknown or unan-
ticipated reactions, thus bridging the gap between non-
targeted metabolomics and >C-MFA. With this data-
driven analysis, we detected known hypoxia-induced
metabolic effects, validating our approach. Furthermore,
this analysis led to the discovery of a potentially impor-
tant role of NAA in cancer cell metabolism, which needs
to be investigated further. In summary, this non-targeted
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approach provided biological insights and proved to be a
fruitful methodology for hypothesis generation for subse-
quent more targeted analyses.
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