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CDA4 T Cells Treated with gp120 Acquire a CD45R0+/CD45RA+ Phenotype
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Abstract: HIV-infected patients exhibit quantitative and qualitative defects in CD4 T cells, including having increased
numbers of CD4+CD45R0+/CD45RA+ T cells, although it remains unclear how these cells arise. Here we demonstrate
that gp120 treatment of activated but not resting primary human CD4 T cells decreases number of cells with single posi-
tive CD45R0+/CD45RA- effector memory phenotype while proportionally increasing the subset of cells with double posi-
tive CD45R0+/CD45RA+ mixed phenotype. We found that double positive CD45R0+/CD45RA+CD4 T cells preferen-
tially undergo apoptosis while single positive CD45R0+/CD45RA- and CD45R0-/CD45RA+ do not. Blocking gp120-
CD4 interaction with sCD4 or inhibition Lck activity reverses gpl20 induced increase in double positive
CD45R0+/CD45RA+CD4 T cells and subsequently diminishes the apoptosis of double positive CD45R0+/CD45RA+
cells. Altogether these data indicate that gp120 ligation of the CD4 receptor increases the number of double positive
CD45R0+/CD45RA+ CD4 T cells which subsequently undergo apoptosis in a CD4 dependent manner.

INTRODUCTION

One hallmark of HIV pathogenesis is a decline of CD4 T
cell number that results from the death of both HIV-1 in-
fected CD4 T cells, as well as uninfected cells. Both HIV
expressed proteins, as well as immune activation, contribute
to this T cell death [1]. Immune activation leads to an in-
crease in T cell turnover from enhanced proliferation which
in turn is associated with high rates of apoptosis [2, 3]. The
magnitude of immune activation correlates with the level of
HIV viremia [4]. Increased expression of immune activation
markers (HLA-DR+, CD38+, CD45RO+, and CD95) also
correlates with higher apoptosis rates of CD4 T cells [5].
Importantly, suppression of viral replication with HAART
treatment reduces immune activation [6, 7], normalizes ex-
pression of activation markers, and decreases CD4 T cell
apoptosis [8-10].

As a result of chronic immune activation, central memory
and naive CD4 T cells are constantly recruited into the effec-
tor pool [11, 12] resulting in dramatic changes in populations
of naive, effector and central memory CD4 T cells [13]. The
mechanisms of how the ratio of these CD4 T cells is altered
during HIV infection are not completely understood.

In particular, chronic HIV infection results in an in-
creased number of CD4 T cells with a peculiar double posi-
tive CD45RO+/CD45RA+/CD25+CD4+ phenotype, and this
subset is further increased following intermittent IL-2 ther-
apy [14]. The origin of this subset was previously ascribed to
be transition phase of naive CD45R0O-/CD45RA+CD4 T
cells transitioning to a memory CD45RO+/CD45RA-CD4 T
cell phenotype [15]. Furthermore, HAART with IL-2 therapy
selectively increases the number of activated CD4 T cell
expressing CD45RO+/CD25+ [16]. Here we describe a
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novel effect of HIV-1 gp120 signaling through CD4 result-
ing in altered CD45 isoform expression by CD4 T cells.

MATERIALS AND METHODOLOGY
Cell Culture and Reagents

This protocol was reviewed and approved by the Mayo
institutional review board. CD4+ T cells were isolated from
the blood of healthy volunteer blood donors by using Ros-
setteSep CD4 enrichment cocktail (StemCell Technologies,
Vancouver, British Columbia, Canada), producing 98% pure
CD4+ T cells as determined by flow cytometry. CD4 T cells
were maintained in RPMI 1640 supplemented with 10% fetal
bovine serum (Invitrogen, Carlsbad, CA), 2 mM L-
glutamine, and antibiotics (penicillin 100 U/ml, streptomycin
100 pg/ml) at 0.5x10° cells/ml. CD4+ T cells used in the
various experiments were stimulated with PHA (1 pwg/ml) for
24 hours, and then cells were washed twice with RPMI 1640
and maintained in media supplemented with 50 U/ml of IL-2
for 48-72 hours. CD4 T cells were incubated with HIV-1 X4
gpl120IIIB (Immuno Diagnostics, Inc. Woburn, MA) or
gp120 IIIB pretreated with soluble CD4 (1:2 ratio) (Immuno
Diagnostics, Inc. Woburn, MA) at concentrations of 1
ug/ml/leO6 cells for 24 hours at 37°C. AMD3100 (NIH
AIDS Research and Reference program) was used at 2 uM
for 30 minutes at 37°C. PP2 was purchased from CalBio-
chem (La Jolla, CA). Anti-CD4-PE, anti-CD25-FITC, anti-
CD69-PE, anti-CD4PerCP, anti-CD62L-PE, anti-CD45RO-
FITC, anti-CD45RA-PE-Cy-7, anti-HLA-DR-PE, Annex-
inV-Cy-5, AnnexinV-APC, IgGlx-PE-Cy7, IgG2a-FITC,
IgG1x-PE and propidium iodine were purchased from BD
Biosciences (San Jose, CA).

Cell Death Analysis and Flow Cytometry

CD4 T cells were untreated or pre-incubated with spe-
cific inhibitors and stimulated with either BSA or with solu-
ble gp120IIB (10ug/ml) overnight. The following day, cell
death was analyzed by staining with AnnexinV-Cy-5 and
propidium iodine following the manufacturer’s instructions
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from BD Biosciences (San Jose, CA). All experiments were
performed at least three times.

T cell phenotyping studies were performed by using four-
color Flow analysis on FACSCanto cytometer and using
FACSDiva 6.0 software. Briefly, 2x10° cells were resus-
pended in 200pul of PBS+0.5%BSA, stained with the indi-
cated primary conjugated antibodies for 20 minutes (anti-
CD45RO-FITC, anti-CD45RA-PE-Cy-7, anti-CD27 APC
and anti-CD62L-PE), washed, fixed and then analyzed. In
some cases, for analysis of cell death, cells were stained in
binding buffer (140 mM NaCl, 10 mM HEPES/NaOH (pH
7.4), 2.5 mM CaCl2) as described above except that anti-
CD62L-PE was substituted with AnnexinV-PE.

RESULTS

Gp120 Decreases CD45RO+ Memory Phenotype in Acti-
vated But Not Resting CD4 T cells

We and others have previously demonstrated that gp120
induces death of resting CD4 T cell in a CXCR4-p38 de-
pendent manner [17]. However, the effect of gp120 on acti-
vated CD4 T cells is largely unknown. To examine the effect
of gp120, resting (CD4+CD25-CD69-HLA-DR-) and acti-
vated (CD4+ CD25+CD69+HLA-DR+) primary human CD4
T cells were treated with gp120 IIIB (10pg/ml) for 24 hours
and then CD4 T cells were analyzed for CD45R0 and
CD45RA expression by flow cytometry. As shown in Fig.
(1A), gp120 treatment results in a 50% decrease in the subset
of single positive CD45R0+/CD45RA- (31.85 + 0.63% with
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BSA, 13.80 + 3.73% with gp120, p=0.01) memory cells
when activated but not resting CD4 T cells are treated with
gp120 (34.25 + 1.1% with BSA, 28.95 + 1.96% with gp120,
p=0.08). In parallel, there is a proportional increase in the
subset of double positive CD45R0+/CD45RA+ mixed phe-
notype CD4+ T cells (Fig. 1B) as well as an increase in the
proportion of Annexin-V positive CD4 T cells (Fig. 1C).
While the increased apoptosis of resting cells following
gp120 is due to CXCR4 signaling [17], the mechanisms by
which gp120 causes death in activated cells are unknown.

The finding that gp120 treatment of activated cells in-
creases the lymphoid homing marker, CD27 (13.8% of total
CD4 T (cells) preferentially in double positive
CD45R0+/CD45RA+ cells suggests that these cells might be
the specific cell type which dies following gp120 treatment of
activated CD4 T cells (Fig. 2A, B). We therefore measured
absolute number and proportion of Annexin-V positivity of
double positive CD45R0+/CD45RA+, single positive
CD45R0-/CD45RA+ and CD45R0+/CD45RA- subsets by
using four color flow cytometry analysis. First we observed
that CD45RO-+RA- proportion decreased (39.42 + 3.44% with
BSA, 27.31 + 6.38% with gp120) while CD45RO+RA+ popu-
lation increased (35.97 + 2.70% with BSA, 49.42 + 10.05%
with gp120), suggesting that the former transitioned to the
latter (Fig. 3A). Next we observed that only double positive
CD45R0+/CD45RA+ CD4 T cell subset contain a significant
proportion of Annexin positive cells (~40%) in contrast to
single positive CD45R0+/CD45RA- and CD45R0-/CD45RA+
subsets that do not (Fig. 3B). Therefore, gp120 signaling both
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Fig. (1). Gp120 decreases CD45RO+/CD45RA- memory phenotype in activated but not resting primary human CD4 T cells. (A and
B) CD4+ T cells (98% pure) were stimulated with PHA for 24 hours or left rested, and treated with either p120 (IIIB) (1pg/ml) or BSA con-
trol (1pg/ml) and analyzed for CD45RO and CD45RA (gated on CD4 population) by flow cytometry. (C) Resting and activated primary
human CD4 T cells were treated with gp120 (IIIB) as above and analyzed for Annexin-V positive cells. Data is representative of three inde-

pendent experiments.
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activates cells towards a double positive phenotype and subse-
quently promotes their apoptotic death. Of interest, these An-
nexin positive CD45R0+/CD45 RA+ cells are also CD27+.
Altogether these results indicate that gp120 treatment of acti-
vated CD4 T cells result in decrease memory
CD45R0+/CD45RA- CD4 T cells due to accumulation of
CD45R0+/CD45RA+ /CD27+ T cell subset that subsequently
and selectively undergo apoptosis.
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Fig. (2). Gp120 increases subset of CD27+/CD45RO+/CD4+ T
cells. (A) Activated primary human CD4 T cells (98% pure) were
treated with gp120 IIIIB and the expression of CD27 and CD45RA
were analyzed by flow cytometry. (B) Pooled data from three inde-
pendent experiments. P values were determined by Student’s paired
t test.

Gp120 Stimulated Accumulation of CD45RO+/CD45
RA+ CD4 T Cells Requires CD4 and Lck But Not
CXCR4

To investigate whether  gp120 effect  on
CD45R0+/CD45RA+ CD4 T cell is due to ligation to CD4
or CXCR4, we used either soluble CD4 or the CXCR4 in-
hibitor, AMD3100. Independent experiments verified the
activity of AMD3100 by blocking SDF-induced chemotaxis
(data not shown). As shown in Fig. (4A, B), inhibition of
CD4 ligation by sCD4 [17] blocks the increase in double
positive CD45R0+/CD45RA+ memory cells. Consistent with
this observation, inhibition of Lck activity with PP2 inhibitor
also blocks increase in CD45R0+/CD45RA+ CD4 T cell
subset. Conversely inhibition of gp120-CXCR4 interaction
with AMD3100 [17] does not block completely gp120 medi-
ated increase of CD45R0+/CD45RA+ CD4 T cells. There-
fore, our results demonstrate that gp120 ligation to CD4 and
subsequent activation of Lck results in accumulation of dou-
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ble positive CD45R0+/CD45RA+ memory CD4 T cells
which subsequently and selectively undergo apoptosis in a
CD4 dependent and CXCR4 independent manner.

DISCUSSION

In the current report we have shown that gp120 treatment
of activated CD4 T cells decreases the subset of single posi-
tive CD45R0+/CD45RA- CD4 T cells and increases the sub-
set of double positive CD45R0+/CD45RA+ CD4 T cells
which selectively undergo apoptosis. These results imply the
gp120 may play a role in depletion of memory CD45R0+/
CD45RA- CD4 T during HIV.

Previously, the CD45R0+/CD45RA+ subset of CD4 T
cells was characterized as a transition from naive to effector
phenotype during CD4 priming [15, 18] with increased ex-
pression of activation markers [19, 20]. The generation of
this subset can occur in two ways: (i) the transition of re-
cently activated of CD45RA+ T naive cells to CD45R0+/
CD45RA+ phenotype [15, 21] and; (ii) re-expression of
CD45RA isoform in the absence of Ag stimulation [15]. The
fact that only few CD45R0+/CD45RA+ cells express mark-
ers of recently activated cells [19, 20] and upregulation of
CD45RA+ (up to 10%) by CD45RO+/CD45RA- cells [15]
suggest that gpl120 rather upregulates CD45RA+ on single
positive CD45RO+/CD45RA- memory CD4 T cells rather
than promoting CD45RO expression on naive CD4 T cells.
Indeed, increase of double positive CD45RO+/CD45 RA+
CD4 T cells is followed by proportional decrease in
CD45RO+/CD45RA- memory but not decrease in naive
CD45R0O-/CD45RA+ CD4 T cells.

Others have shown that PBMC stimulated with staphylo-
coccal enterotoxin A (SEA) in the presence of V3-derived
gpl20 peptides results in increase of CCRS5+/CXCR4+/
CD45RO+ CD4 T cells followed by increased levels of
apoptosis [22]. Our findings are in good agreement with this
observation: first, both results demonstrate the gp120 medi-
ated increase in transient state from naive to activated CD4 T
cells; second, both studies observe the increased apoptosis of
activated CD4 T cells in the presence of gpl20 or V3-
derived peptide. However, our results highlight that gp120
priming of previously activated CD4 T cells reverses single
positive CD45RO+/CD45RA- effector phenotype to double
positive CD45RO+ /CD45RA+ transient phenotype.

The observation that double positive CD45R0+/CD45
RA+ preferentially undergo apoptosis presents one potential
scenario of how inappropriately activated CD4 T cells die
during HIV disease, and why IL-2 augments this process [16].
It is of further interest that gp120 treatment results in apoptosis
of CD27+/CD45R0+/CD45RA+ cells. In fact, CD27 expres-
sion is rapidly upregulated following TCR stimulation [23]
and CD27 signaling is essential for survival of Ag-primed
CD4 T cells [24]. Therefore, either the lack of antigen specific
signaling or the lack of CD27 signaling may explain the in-
creased apoptosis of double positive CD45R0+/CD45RA+
following gp120 treatment. Finally, the observation that CD4
ligation by gp120 and subsequent activation of Lck is required
for generation of double positive CD45R0+/CD45RA+ CD4 T
cells is of relevance and suggests that inhibitors of CD4-gp120
interactions may reverse the expansion of double positive
CD45R0+/CD45RA+ population and subsequent increased
apoptosis during HIV infection.
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Fig. (3). Gp120 increases subset of double positive CD45RA+/CD45RO+ CD4 T cells that undergo apoptosis. (A) Activated primary
human CD4 T cells were treated with gpl120 IIIIB and CD45RA+/CD45RO-, CD45RA-/CD45RO+ and double positive
CD45RA+/CD45RO+ cells were quantified by flow cytometry. (B) Same as Fig. (3A) except that CD27 expression and Annexin-V positiv-
ity were measured by four color flow cytometry. The data is representative of three independent experiments.
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Fig. (4). CD4 and Lck are required for gp120 mediated increase of double positive CD45RA+/CD45RO+ CD4 T cells. (A) Acti-
vated primary human CD4 T cells were left untreated or were pre-treated with either Lck inhibitor, PP2 (5uM) or CXCR4 inhibitor,
AMD3100 (2uM) or sCD4 (2ug/ml) followed by gp120. Then number of single positive CD45RA+/CD45R0O-, CD45RA-/CD45RO+ and
double positive CD45RA+/CD45RO+ cells were analyzed by flow cytometry. (B) The data represents three independent experiments as
described above. P values were determined by Student’s paired t test. *=P<0.05 compared to gp120 alone.
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