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Protein–ligand binding affinity prediction
with edge awareness and supervised attention

Yuliang Gu,1,2,6 Xiangzhou Zhang,2,4,6 Anqi Xu,1,5,6 Weiqi Chen,2,4 Kang Liu,2 Lijuan Wu,2 Shenglong Mo,2

Yong Hu,2,4,* Mei Liu,3,* and Qichao Luo1,2,5,7,*

SUMMARY

Accurate prediction of protein–ligand binding affinity is crucial in structure-based
drug design but remains some challenges even with recent advances in deep
learning: (1) Existing methods neglect the edge information in protein and ligand
structure data; (2) current attention mechanisms struggle to capture true binding
interactions in the small dataset. Herein, we proposed SEGSA_DTA, a SuperEdge
Graph convolution-based and Supervised Attention-based Drug–Target Affinity
prediction method, where the super edge graph convolution can comprehen-
sively utilize node and edge information and the multi-supervised attention mod-
ule can efficiently learn the attention distribution consistent with real protein-
ligand interactions. Results on the multiple datasets show that SEGSA_DTA
outperforms current state-of-the-artmethods.We also applied SEGSA_DTA in re-
purposing FDA-approved drugs to identify potential coronavirus disease 2019
(COVID-19) treatments. Besides, by using SHapley Additive exPlanations
(SHAP), we found that SEGSA_DTA is interpretable and further provides a new
quantitative analytical solution for structure-based lead optimization.

INTRODUCTION

Protein–ligand binding affinity calculation is crucial to the discovery and optimization of lead compounds

based on the protein structure. With the recent advancements in data storage and computing power,

various computational methods have been developed to calculate the binding affinity of a given

protein–ligand complex,1 including molecular docking, molecular dynamics simulation and molecular

mechanics/quantum mechanics. It is widely known that molecular dynamics simulation methods and mo-

lecular mechanics/quantummechanics methods can calculate the protein–ligand binding affinity with high

accuracy. Nevertheless, the extensive computational resources required by these methods greatly limit the

ligand search space in the process of drug design.2 Molecular docking uses a scoring function to evaluate

the binding conformation obtained by each docking to predict binding affinity and uses significantly fewer

computational resources. Molecular docking can thereby quickly calculate the binding affinity between

multiple ligands and proteins and is commonly used for high-throughput virtual screening of drug mole-

cules based on the protein structure. Nonetheless, the computational efficiency of molecular docking

comes at the expense of accuracy.

In recent years, deep learning has achieved great success in many fields such as computer vision, speech

recognition and natural language processing. Deep learning is also widely used in numerous aspects of

drug design,3 including de novo molecule design and chemical synthesis. Currently, most deep

learning-based protein–ligand binding affinity prediction models, such as DeepDTA,4 DeepAffinity5 and

DeepDTAF,6 only use protein and ligand sequence information to predict protein–ligand binding affinity.

It is known that protein structure information is essential for protein-ligand binding, yet these sequence-

based methods lack sufficient structure information. Alternatively, several studies have utilized co-crystal

structures of protein–ligand complexes to predict binding affinity.7 Nevertheless, obtaining co-crystal

structure in protein–ligand complexes is a time-consuming practice, and thus the protein structure-based

model is still needed. Moreover, with the recent development of graph neural networks, the advantages of

using graphs to represent proteins and ligands are gradually being highlighted in deep learning-based

models.8 The graphical representation retains the structure information of proteins and ligands,9,10 and

graph convolutional neural network (GCN)11 is commonly used to learn the structure pattern. However,
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current graph neural network-based methods for protein–ligand binding affinity prediction focus more on

the nodes, that is, they only use graph neural networks to embed node features and neglect the influence of

edge features. How to effectively exploit the edge information of proteins and ligands in graph neural net-

works, especially in graph convolutional networks, still needs further investigation.

Graph-basedmethods are useful for learning feature representations, but a protein or ligandmay contain a

large number of features (residues or individual atoms), each of which might affect binding affinity differ-

ently regardless of whether they are directly involved with binding, and thus complicate graph-based pre-

dictions. The attention mechanism12 is one of the most powerful approaches to solve this problem. By

introducing an attention mechanism, the prediction model can focus on features that are most relevant

to the prediction target and at the same time improve the accuracy and interpretability of the model.13–15

However, because of the small size of the structure dataset and the lack of detailed knowledge concerning

protein–ligand interactions, most of the existing methods are not yet able to effectively learn the attention

distribution and accurately capture the true interaction information between proteins and ligands, limiting

the predictive performance.16 Several studies in the fields of visual question answering17,18 and natural lan-

guage processing19,20 have demonstrated that training attention mechanism in a supervised manner can

result in more effective attention distribution and improve model performance significantly, but its effec-

tiveness in building a better protein–ligand binding affinity prediction model remains unclear.

In this study, to predict protein–ligand binding affinity using structures of proteins and ligands, we devel-

oped a deep neural network SEGSA_DTA, a SuperEdge Graph convolution-based and Supervised Atten-

tion-based Drug–Target Affinity prediction method. Super edge graph convolution was adopted to learn

feature representations of both nodes and edges from graph structures of proteins and ligands. Multiple

supervised attention blocks were built with prior knowledge of protein–ligand non-covalent interaction

and residue contribution for ligand binding, making it possible to learn the attention distribution effec-

tively. A Comprehensive evaluation on the multiple datasets indicates that SEGSA_DTA offers superior

performance compared to existing state-of-the-art methods. Also, we applied SEGSA_DTA to repurpose

FDA-approved drugs to discover potential anti-coronavirus disease 2019 (COVID-19) treatments, some of

which have been reported to possess inhibitory activity against the main protease of SARS-CoV-2 (SARS-

CoV-2 Mpro). Moreover, in the case study, we found that SEGSA_DTA reveals the selective binding mech-

anism of ligands to proteins and can provide a new quantitative analytical solution for structure-based lead

optimization.

RESULTS

Simultaneously modeling binding affinity, non-covalent interaction and residue contribution

SEGSA_DTA is a multi-task learning network with three tasks, predicting protein–ligand binding affinity,

non-covalent interaction and residue contribution simultaneously. Protein–ligand non-covalent interaction

and residue contribution values are key factors affecting protein–ligand binding, and they have a strong

correlation with binding affinity, hence SEGSA_DTA regards binding affinity prediction as the main task

and protein–ligand non-covalent interaction prediction and residue contribution prediction as two auxil-

iary tasks.

Regarding the model structure (Figure 1A), SEGSA_DTA contains three modules: (1) The feature extrac-

tion module (Figure 1B) is first used to extract pocket and ligand features from each protein–ligand pair.

In this module, the super edge graph convolution network is designed, in which in addition to the graph

convolution network of nodes, an extra graph convolution network is used to extract features from

neighbor edges, forming the so-called super edge and fusing it into node information to produce a

more informative representation. (2) Then, the pocket and ligand features are processed by the interac-

tion module to produce the pocket and ligand vectors, predicting the non-covalent interaction and the

residue contribution (Figure 1C). The interaction module is structurally a multi-supervised attention mod-

ule, including a supervised bidirectional attention block (pale blue background color) and a supervised

unidirectional attention block (pale yellow background color), whose attention distributions are super-

vised by the prior knowledge of qualitative protein–ligand non-covalent interaction and quantitative res-

idue contribution, respectively. (3) Finally, the pocket and ligand vectors are concatenated and fed into

the prediction module, a fully connected deep neural network with two hidden layers, to predict the

binding affinity (STAR Methods).
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SEGSA_DTA demonstrates state-of-the-art scoring power

Scoring power, an important assessment of binding affinity prediction, aims to evaluate the linear correla-

tion between the predicted binding affinity and the true one. To test the scoring power of SEGSA_DTA, we

compared three state-of-the-art deep learning-based methods on the core set v.2016, including

DeepDTAF,6 Pafnucy7 and GraphDTA.9 These three methods are implemented using the official open

source repository and ensure that the performance of the obtained models is consistent with the results

of the original papers.

As shown in Table 1, SEGSA_DTA demonstrates the best performance overall, which achieves the best re-

sults on Pearson correlation coefficient (Pearson), standard deviation in regression (SD), RMSE and MAE,

and achieves competitive performance with DeepDTAF on the concordance index (CI), differing by

only 0.5%.

It is worth highlighting that SEGSA_DTA outperforms all other comparedmethods on two key indicators of

scoring power, Pearson and SD.22 According to the Pearson, SEGSA_DTA achieves a strong correlation

value of 0.799, whereas the Pearson of GraphDTA (Table S1), Pafnucy, and DeepDTAF were 0.123,

0.774, and 0.789, respectively (Figure 2A). In terms of SD (the smaller the SD, the better the model perfor-

mance), SEGSA_DTA achieves the lowest SD score, which is 85.3% (GraphDTA), 7.0% (Pafnucy) and 2.9%

(DeepDTAF) lower than the other methods respectively.

Figure 1. Architecture of SEGSA_DTA

(A) Architecture overview of SEGSA_DTA. The SEGSA_DTA is shown to predict the binding affinity of protein–ligand

pairs. In this model, a feature extraction module is first used to extract pocket and ligand features from each protein–

ligand pair. Each row of the pocket or ligand features represents a residue or an atom. Then, the pocket and ligand

features are processed by the interaction module to produce the pocket and ligand vectors, with the predicted non-

covalent interactions and the predicted residue contributions. Finally, the pocket and ligand vectors are concatenated

and fed into the prediction module, a fully connected deep neural network with two hidden layers, to predict the binding

affinity.

(B) Feature extraction module. The input protein graph and ligand graph are subjected to super edge graph convolution

network to extract protein and ligand features, respectively. The pocket features are selected from the protein features

according to protein pocket residues.

(C) Interaction module. The interaction module is structurally a multi-supervised attention module, including a supervised

bidirectional attention block (pale blue background color) and a supervised unidirectional attention block (pale yellow

background color).
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To further illustrate the generalization ability of our model. Two new external independent test datasets

Mpro_37 (SARS-CoV-2 Mpro structure and its 37 reported ligands)23 and PIM1_89 (PIM-1 kinase structure

and its reported 89 ligands)24–26 are created. On these two datasets, the experimental results show that

compared with some reported methods (Pafnuity, DeepDTAF, GraphDTA), SEGSA_ DTA has obtained

the best Pearson correlation coefficient, with an average increase of 21.13% and 8.4% respectively

(Figures S1 and S2). The above results illustrate the superior scoring power of SEGSA_DTA.

SEGSA_DTA demonstrates impressive virtual screening power

Virtual Screening is one of the main applications of protein–ligand binding affinity prediction. It refers that

using the score function or model to evaluate the binding between small molecules in the small molecule

library and specific proteins, so as to discover small molecules that potentially bind to the protein as lead

compounds for subsequent drug development. For the virtual screening power of the binding affinity pre-

diction task, the goal is to assess the ability of the model to identify small molecules that actually bind to a

given target protein in a random small molecule library. The predicted affinity of the small molecule that

actually bind (active ligand) should be greater than that of the small molecule that cannot bind (decoy

ligand). And the widely used metric to assess virtual screening power is AUC,27 which is explained from

the perspective of sorting here.

To evaluate the virtual screening power of SEGSA_DTA, we compared SEGSA_DTA against two popular

docking programs, i.e. Glide,28 LeDock29 and the above three deep learning-based methods, i.e.

DeepDTAF,6 Pafnucy7 and GraphDTA9 on an independent external validation set, DUD-Ehand. DUD-Ehand

is a subset of DUD-E30 containing Kinase and Gpcr with a total of 16 target proteins and corresponding

6,872 active ligands and 243,390 decoy ligands (STAR Methods).

As shown in Figure 2B, our method SEGSA_DTA outperforms LeDock and all other deep learning-based

methods (Table S2). Notably, the AUC of SEGSA_DTA and Glide are 0.705 and 0.776, respectively. It is

no surprise that Glide shows better performance than ours as the GlideScore of Glide is an empirical

scoring function with many terms, including force field contributions and terms rewarding or penalizing in-

teractions known to influence ligand binding, like solvation,28 and thus provides a more complete and

comprehensive description of ligand binding. However, from the perspective of computational time

cost, for the DUD-Ehand containing 16 target proteins and 250,262 ligands, Glide requires approximately

fifteen days, whereas SEGSA_DTA takes only approximately 3 h with the GPU environment. SEGSA_DTA

balances the speed and accuracy to provide a model that is much faster and performs in the same order

of magnitude as Glide.

Furthermore, we analyzed the performance of SEGSA_DTA and Glide on each target protein of DUD-Ehand

(Figure 2B). Our model has an AUC bigger than 0.5 for all 16 proteins, which means that our model is better

than random selection. Our model achieved an AUC >0.7 on 11 proteins, whereas Glide achieved an

AUC >0.7 on 13 proteins. In addition, compared with Glide, our model achieved a better AUC for five pro-

teins, including SRC, AKT1, CSF1R, CXCR4 and DRD3. The above results indicated the outstanding virtual

screening power of SEGSA_DTA.

SEGSA_DTA shows drug repurposing ability for COVID-19

The COVID-19 pandemic, since its occurrence in December 2019, has caused over 157 million cases world-

wide withmore than 3.3 million deaths as of May 2021. There is an urgent need to find effective anti-COVID-

19 drugs. Drug repurposing is a drug discovery strategy to identify new uses of existing drugs. Compared

with traditional drug development, it can significantly shorten the drug development cycle, reduce costs

Table 1. Scoring power of SEGSA_DTA and other methods on the core set v.2016

Method RMSE MAE Pearson SD CI

GraphDTA 5.649 5.226 0.123 2.161 0.539

Pafnucy 1.423 1.136 0.774 1.378 0.788

DeepDTAF 1.355 1.073 0.789 1.337 0.799

SEGSA_DTA 1.319 1.063 0.799 1.308 0.794

Bold indicates the best prediction performance.
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and avoid risks.31 Using the above trained SEGSA_DTA model, we calculated the binding affinity of 1,697

FDA-approved drugs from the DrugBank database32 to SARS-CoV-2 Mpro. Full calculation results are in the

Data S1. Table 2 lists drugs with top-100 binding affinity to SARS-CoV-2 Mpro that are HIV protease inhib-

itors, histamine H2 receptor antagonists or ACE inhibitors. Through literature searches,33–36 we found that

some drugs, such as nelfinavir, cimetidine, and spirapril, have been reported to be potential inhibitors of

SARS-CoV-2 Mpro. The predicted ranking of Glide and other methods on these three types of drugs was

also explored. For these drugs, the predicted ranking of SEGASA _DTA is the closest to that of Glide, espe-

cially for HIV protease inhibitors. This further indicates that SEGASA_DTA model provide much more

robust generalization performance than previous reported models.

Edge awareness effectively enhance binding affinity prediction performance

To investigate whether the edge information of the protein and ligand can benefit the binding affinity pre-

diction, we removed both the edge features and the graph convolution on the edges (noEdge_DTA),

Figure 2. Performance of SEGSA and effectiveness of the model structure

(A) Distributions of predicted binding affinities on the core set v.2016.

(B) Virtual screening power of SEGSA_DTA and other methods on the DUD-Ehand.

(C) Performance of SEGSA_DTA with different edge features on the validation set of 5-fold cross-validation. Data are

represented as mean G95% confidence interval. For the four metrics, the pvalues of other models compared with

SEGSA_DTA are calculated. The pvalues for all cases are less than 0.0001, except for the RMSEcontribution of ligEdge_DTA

(pvalue 0.692 > 0.05).

(D) Performance of SEGSA_DTAwith different supervised attention on the validation set of five-fold cross-validation. Data

are represented as mean G95% confidence interval. For the four metrics, the pvalues of other models compared with

SEGSA_DTA are less than 0.0001.
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trained it and SEGSA_DTA on the training set with the same 5-fold cross-validation setting, and reported

the average performance on the validation set.

As shown in Figure 2C, RMSEaffinity and Pearsonaffinity are metrics for the binding affinity prediction, whereas

AUCinteraction and RMSEcontribution are the metrics for non-covalent interaction prediction and residue contri-

bution prediction, respectively. Compared to noEdge_DTA, SEGSA_DTA showed superior performances

in all three tasks (Table S3). The performance of noEdge_DTAmodel on DUD-Ehand dataset was also exam-

ined. Compared to SEGSA_DTA with an average AUC of 0.705, the noEdge_DTA model only achieved an

average AUC of 0.592, which is a drop of 11.3% (Figure 2B). All these strongly suggests that edge features

contain crucial information about protein–ligand binding and that the introduction of super-edge graph

convolution can effectively exploit this information to improve performance in all three tasks, particularly

for the binding affinity prediction.

We further examined the effect of the edge information of the protein or ligand on themodel performance.

Compared to pro-Edge_DTA with only protein edge features, ligEdge_DTA with only ligand edge features

outperformed pro-Edge_DTA on all tasks, indicating that ligand edge features are more important to the

model performance relative to protein edge features. Besides, the comparison of noEdge_DTA and pro-

Edge_DTA shows that their performance on each task metric is very close, indicating that it is difficult to

effectively improve model performance by introducing protein edge features alone. Moreover, comparing

with pro-Edge_DTA and ligEdge_DTA, SEGSA_DTA, which introduces both protein and ligand edge fea-

tures, has the best overall performance, which to some extent indicates that protein edge features and

ligand edge features need to exchange information with each other to model the protein–ligand binding

process more comprehensively.

Multi-supervised attentionmodule significantly improves themodel performance on all three

tasks

To verify the effect of the supervised attention in SEGSA_DTA, we compared performances of SEGSA_DTA

(our proposed model with supervised training for the two attentions), interSA_DTA (only the supervised

training of the bidirectional attention), contriSA_DTA (only the supervised training of the unidirectional

attention) and noSA_DTA (no supervised training for the two attentions). The four models were trained

with the same five-fold cross-validation settings on the training set. Figure 2D shows the average perfor-

mance on the validation set. SEGSA_DTA is superior to other models in all indicators, suggesting that

the supervised attentions are of significant benefit to the model (Table S4). Without knowledge of non-co-

valent interaction (contriSA_DTA) or residue contribution (interSA_DTA), main task performance

decreased and corresponding auxiliary task performance dropped significantly. This indicates that it is

Table 2. Parts of drugs with top-100 binding affinity to SARS-CoV-2 Mpro

DrugType

Drug

BankID Drug Name ours Glide DeepDTAF Pafnucy GraphDTA

HIV protease inhibitor DB01232 Saquinavir 6 36 147 1069 888

DB00220 Nelfinavir 12 48 181 777 1219

DB00224 Indinavir 17 38 657 353 152

DB01601 Lopinavir 18 64 183 121 314

Histamine H2 receptor antagonist DB00501 Cimetidine 8 1654 1160 1576 926

DB00585 Nizatidine 13 1471 1059 1521 243

DB00863 Ranitidine 35 1420 1136 1525 147

DB01069 Promethazine 89 504 1373 717 291

ACE inhibitor DB01348 Spirapril 11 151 694 863 1302

DB00492 Fosinopril 84 985 834 1076 1566

DB00584 Enalapril 87 287 1113 776 1152

DB00881 Quinapril 81 365 809 922 1284

DB00519 Trandolapril 90 67 907 1216 1386

DB13166 Zofenopril 91 597 644 904 1579
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difficult for the attention mechanism to capture the real knowledge of protein–ligand interactions without

supervision in our study.

Furthermore, the main task performance of noSA_DTA is comparable to that of interSA_DTA but better

than that of contriSA_DTA, demonstrating that only introducing a certain type of knowledge (supervision

signal) is insufficient for improving the main task performance. The reason may be that there is a potential

synergy promotion relationship between the two types of knowledge.

Selective binding mechanism of ligands to targets can be revealed by SEGSA_DTA

Here, we further explored the reason for the superior performance of SEGSA_DTA. The binding selectivity

of ligands to proteins is an important part of lead compound optimization. Improving the binding selec-

tivity of ligands may improve ligand binding efficacy and reduce the side effects of ligands. The difference

in the physicochemical properties of amino acid residues in protein pockets is one of several important rea-

sons that affect the binding selectivity.37 To date, several studies have employed the attention mechanism

in ligand-protein interaction prediction models.5,14,16 With the learned attention weight, these models can

reveal the importance of residues to the interaction between the protein and ligand, but it is impossible to

characterize whether the residues promote or inhibit the interaction between the protein and ligand.

SHAP is an additive attribution method inspired by cooperative game theory.38 SHAP interprets the model

output as the sum of the attributed values (SHAP values) of all input features (for more details, see STAR

Methods). Compared with the attention weight, the biggest advantage of SHAP values is that they not only

can reflect the magnitude of effect of each feature but also show the direction of the effect, i.e., positive or

negative. In the case study, we used SHAP values to analyze the interaction between the key residue in the

pockets of proteins belong to three different protein families (COXs, 5-HTs and TREKs) and their ligands to

verify whether SEGSA_DTA could explain the binding selectivity of the ligands (Table S5). And the verification

strategy is to determine whether the SHAP value of the residue of protein with weak ligand binding will in-

crease, when it mutates into the residue at same position of the protein with strong ligand binding.

COXs. SC-558 is a selective COX-2 inhibitor. The structural analysis indicated that SC-558 has a weak inhib-

itory activity on COX-1 because of the V523I substitution39 (Figure 3A), which is consistent with the analysis

results of SHAP values in our model. When the residue Val at position 523 of COX-2 was replaced with the

residue Ile, the SHAP value of the interaction between the residue and SC-558 decreased from �0.008

to �0.208 (Figure 3D). This indicated that a V523I substitution is bad for SC-558 binding to COX-2.

5-HTs. 5-HT receptors are G-protein-coupled receptors and mainly include two subtypes: 5-HT1 and

5-HT2. The biggest difference between 5-HT1 and 5-HT2 in the ligand binding pocket is the large residue

Met at position 218 in 5-HT2 (Figure 3B). On the basis of this large residue, CD10 was designed to selec-

tively binding to 5-HT140 The SHAP value showed that Met218 has a negative effect on CD10 binding to

5-HT2 and that M218T substitution has a positive effect (Figure 3E).

TREKs. TREKs are two-pore domain potassium channels and include three subtypes: TREK-1, TREK-2 and

TRAAK. A rather unique structural feature of these channels is the extracellular cap domain. Based on the

cap domain of the channel TREK-1, TKDC was designed to have a strong inhibitory activity against TREK-1

and weak inhibitory activity against TRAAK.41 Biological experiments showed that the weak inhibitory ac-

tivity of the ligand TKDC on the channel TRAAK was because of the repulsion between the negatively

charged sulfonic acid group of TKDC and the negatively charged residue Glu38 on TRAAK (Figure 3C).

The SHAP value of our model shows results consistent with these interactions. The interaction between res-

idue Glu38 of the channel TRAAK and the ligand TKDC has a negative SHAP value: �0.024. When the res-

idue E38 of TRAAK was replaced with the residue Thr, the absolute value of this negative SHAP value

decreased. In addition, our model found that the negatively charged residue Glu41, which is near residue

Glu38 but not a residue in the ligand binding pocket, was also not conducive to the binding of TKDC to

TRAAK (Figure 3F). This indicates that our model can also explore the effect of non-pocket residues on

ligand binding.

SEGSA_DTA provides a new guidance for structural-based lead optimization

The objective of structural-based lead optimization is to modify ligand structure to make the ligand more

compatible with the protein pocket to improve the protein–ligand binding affinity. Thus, quantitative
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analysis of the interaction between residues of protein pockets and ligands is critical. Accurate calculation

of interaction strength between residues in the protein pocket and ligand remains a challenge in computer-

aided drug design. Quantum chemistry calculation and alchemical-free energy methods are two common

but rigorous computational approaches, which are either very expensive in time and resource or inconve-

nient to use.42,43 In this case study, we found that the SHAP values of the residues calculated with

SEGSA_DTA may provide a guidance for structural-based lead optimization (Table S6).

TRAAK. Ligand 28NH was obtained by removing the sulfonic acid group on TKDC (Figure 4A). Compared

with TKDC, the inhibitory activity of 28NH on TRAAK was significantly increased.41 Through the calculation

and analysis of the SHAP values, we observed that TRAAK residue Glu38(E38) had a negative SHAP value

with TKDC and a positive SHAP value with 28NH (Figure 4B). This shows that our model SEGSA_DTA can

explain the structure–activity relationship between ligands and TRAAK channels.

5-HT2. It is reported that the activation activity of ligand CD12 on 5-HT2 is significantly improved when the

groups on CD10 that conflict with residue Met218 (M218) are removed40(Figure 4C). The SHAP value calcu-

lated by our model also showed the same prediction results. The SHAP value of 5-HT2 residue M218 inter-

action with CD12 is greater than that with CD10 (Figure 4D).

DISCUSSION

Protein–ligand binding affinity prediction is one of the most critical tasks in the early stages of drug design.

The accuracy of its prediction directly determines the success rate of drug design and is the cornerstone of

all later stages of drug design. Because protein–ligand binding is a complex physiological process, build-

ing accurate and efficient computational models for the binding affinity prediction has always been a major

challenge in drug design.

Figure 3. Selective binding mechanism of ligands

(A–C) Protein–ligand complex structures reveal the key residues for binding selectivity of ligands to COX-2 (PDB:5COX),

5-HT1 (PDB:4IAR) and TREK-1 (PDB:4WTK), respectively. The yellow part in the figure represents the substituted residue,

which corresponds to the residue number and the protein PDB number in red.

(D–F) The SHAP values of pocket residues were calculated using our model.
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Unlike other existing method, our proposed model SEGSA_DTA takes full advantage of the edge informa-

tion and prior knowledge of protein–ligand interactions though the super edge graph convolution and

multi-supervised attention module. Also, the comparison results of ablation experiments prove that our

proposed model structure can improve the performance of protein-ligand binding affinity prediction

based on protein and ligand structure data. The prediction accuracy of SEGSA_DTA on the PDBbind

v.2016 core set has a slightly improvement, but it is worth mentioning that SEGSA_DTA performs signifi-

cantly better than the reported model on the other three external test sets (DUDEhand, Mpro_37 and

PIM1_89), and shows the drug virtual screening ability comparable to the current popular but expensive

software Glide. All these indicate that SEGASA_DTA has a higher prediction accuracy and stronger gener-

ality on binding affinity prediction.

SHAP value is used for model interpretation. Through this method, we find SEGSA_DTA can well capture

the residues that play a key role in ligand binding. However, as the dimensions of protein characteristics are

much larger than those of ligands and our model pays more attention to the information of protein, the

SHAP value of ligand is not consistent with expert knowledge (Table S7). In future research, we will try to

enhance the model’s information learning on ligands to further improve the prediction accuracy of binding

affinity.

Edge information, in conjunction with the node information, fundamentally determines protein–ligand

binding,44,45 but current deep learning-based binding affinity prediction methods rarely pay attention to

edge information. Our study also demonstrates the edge information plays an essential role for predicting

protein–ligand binding affinity. The proposed super edge graph convolution can comprehensively utilize

node and edge features in the protein and ligand structure data, and the experimental results demonstrate

its effectiveness. However, the super edge graph convolution is relatively simple in terms of the network

structure. In the future investigation, it is promising to adopt other strategies to better exploit the edge

information, thereby further improving the model performance.

Limitations of the study

In this study, many amino acid features were utilized. Whether they are all actually beneficial for the predic-

tion needs further exploration. In addition, all information learned by the SEGSA_DTA comes from the

static crystal structure. How to integrate the dynamic behavior information of protein–ligand complex in

the model structure is still not well solved. Finally, more datasets are needed to verify the generalization

ability and interpretability of SEGSA_DTA.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

Figure 4. Guidance for structural-based lead

optimization

(A) The structure of TKDC and its modification

compound 28NH.

(B) The SHAP value of residue E38 of TRAAK channel for

TKDC and 28NH binding.

(C) The structure of CD10 and its modification

compound CD12.

(D) The SHAP values of residue M218 of 5-HT2 for CD10

and CD12 binding. Differences between ligand

structures are marked in red.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Qichao Luo (luoqichao@ahmu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d All original code has been deposited at GitHub (https://github.com/koyurion/SEGSA_DTA) and is pub-

licly available as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Extraction of the non-covalent interaction between proteins and ligands

The binding between proteins and ligands is mainly controlled by the non-covalent interaction, which plays

a key role in protein–ligand binding affinity prediction. We used PLIP46 to analyze the non-covalent bond in

protein–ligand complexes and extracted seven non-covalent bond interaction types between protein res-

idues and ligand atoms: hydrogen bond, water bridge, hydrophobic interaction,p-stacking,p-cation inter-

action, saltbridge and halogen bond. On the basis of the extracted interactions, we built a protein–ligand

non-covalent interaction matrix as the label of the non-covalent interaction prediction, where 1 indicates

the presence of a non-covalent bond interaction and 0 indicates absence.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

SEGSA_DTA This paper https://github.com/koyurion/SEGSA_DTA

DeepDTAF (Wang et al., 2021)1 https://github.com/KailiWang1/DeepDTAF

GraphDTA (Nguyen et al., 2021)9 https://github.com/thinng/GraphDTA

Pafnucy (Stepniewska-Dziubinska

et al., 2018)7
https://gitlab.com/cheminfIBB/pafnucy

LeDock (Zhang and Zhao, 2016)28 http://www.lephar.com/software.htm

Glide (Friesner et al., 2006)27 https://www.schrodinger.com/glide

PLIP (Salentin et al., 2015)45 https://github.com/pharmai/plip

Rosetta (Fleishman et al., 2011)46 https://rosettacommons.org/

SHAP (Lundberg and Lee, 2017)37 https://github.com/slundberg/shap

Other

Database: AAindex (Kawashima et al., 2008)43 https://www.genome.jp/aaindex/

Database: PDBbind (Wang et al., 2005)49 Version 2019; http://www.pdbbind.org.cn/

Database: RCSB Protein Data Bank (Burley et al., 2021)51 https://www.rcsb.org/

Database: DUD-E (Mysinger et al., 2012)29 http://dude.docking.org/

Database: DrugBank (Wishart et al., 2018)31 https://go.drugbank.com/
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Quantitatively analyze the contribution of each residue to ligand binding

To quantitatively analyze the protein–ligand interaction, we used Rosetta47 to calculate the protein–ligand

binding energy and decomposed it into van der Waals (VDW) energy, hydrogen bond energy

(if X hbond sc) and electrostatic interaction energy (if X fa elec). VDW was calculated as the sum of

attractive and repulsive components (if X fa atr and if X fa rep, respectively). To reveal the spatial distri-

bution of binding interaction between the protein and ligand, VDW, hydrogen bond and electrostatic

interaction energies were further mapped on a per residue basis to the channel by Rosetta’s residue_

energy_breakdown utility (STAR Methods). We regard amino acid residues with energy allocation as pro-

tein pocket residues. Then, the contribution of pocket residue i can be obtained by the following formulae:

zi = abs
�
fa atri + 0:55 3 fa repi + fa eleci + hbond sci

�
; (Equation 1)

res contributioni = softmaxðziÞ =
eziPN

j = 1

ezj

; (Equation 2)

where fa atri , fa repi, fa eleci, hbond sci are the if X fa atr, if X fa rep, if X fa elec, if X hbond sc of

pocket residue i, respectively. The absðÞ stands for absolute value function, N stands for the number of

pocket residues.

Feature representation

Since proteins and ligands are natural graph structures, in this study, proteins and ligands are represented

as graphs for subsequent feature extraction using graph convolution networks.

Protein representation

For proteins, we regarded each residue as a node in the graph. If the distance between the Ca atom of two

residues was less than 6Å, then an edge was considered to exist between these two residues. The AAindex

database44 contains various physicochemical and biochemical characteristics of amino acids and pairs of

amino acids. The AAindex1 contains 566 amino acid features; we retrieved 511 features that had nomissing

values to form the feature vector of the residue node. Additionally, the AAindex3 contains 47 contact po-

tential features of amino acid pairs; we retrieved 40 features that did not contain asymmetrical features nor

missing values to form the edge feature vector (for more details, see Data S2).

Ligand representation

We used RDKit to convert ligands in the SDF format to amolecular graph with atoms as nodes and chemical

bonds as edges. Each atom was characterized by eight features, including the type of atom, the degree of

the atom, the partial charge, the total charge of the implicit hydrogens on the atom, the type of hybridiza-

tion of the atom, whether it is aromatic, the number of attached hydrogens and the chirality of the atom.

Each chemical bond has three features, including the type of bond (single, double, triple or aromatic),

whether the bond is conjugated and whether the bond forms part of a ring. Each atom was represented

by a 26-dimensional feature vector and the bond was represented by a 6-dimensional feature vector

(Table S8).

Model structure of SEGSA_DTA

Feature extraction module

In the feature extraction module (Figure 1B), the super edge graph convolution network is used to produce

informative feature representations of proteins and ligands. The structure data of proteins and ligands are

rich in edge information, which is of great significance for protein–ligand binding. However, the existing

graph convolution networks only focus on node information, which cannot meet the characteristics of pro-

tein and ligand structure data. Therefore, this study proposes a super edge graph convolution network to

solve this problem. In addition to the graph convolution network of nodes, the super edge graph convo-

lution network uses an extra graph convolution network to extract features from neighbor edges to form

the so-called super edge, which is fused into node information, producing a more informative representa-

tion. The specific implementation formulae of super edge graph convolution network are as follow,

Hnode
l + 1 = s

�
~D
� 1 ~AHnode

lWnode
l
�
; (Equation 3)
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HsuperEdge
l + 1 = s

�
~D
� 1 ~AHedge

lWedge
l
�
; (Equation 4)

Hnode
l + 1 =

h
Hnode

l + 1;HsuperEdge
l + 1
i
; (Equation 5)

where l represents the l-th layer of super edge graph convolution layer, and Hnode, Hedge, HsuperEdge repre-

sent node features, edge features, and super edge features, respectively. W denotes neural network

weight, s denotes ReLU, ~A denotes the adjacency matrix with self-loop, ~D is the degree matrix of ~A, and

½$; $� denotes the concatenation operation.

For the adjacency matrix ~A of ligands, the self-loop is filled with 1, the neighbor atoms with 1 and the non-

neighbor with 0. But for the ~A of proteins, neighbor residues fill the inverse of the distance between the Ca

atoms of adjacent residues, and the rest is set in line with the ~A of the ligand. This is because the edge be-

tween ligand atoms (i.e. chemical bonds) are real, but the edge between protein residues are not, which is

determined by an inter-residue distance threshold. That is, if the distance between the Ca atoms of the

residues is less than 6A, the two residues are considered to have edges. Therefore, the spatial structure

information between residues is enhanced by introducing the information of inter-residue distance into

the adjacency matrix to turn the protein unweighted graph into a weighted graph.

It is worth noting that for the normalization strategy, the better performing ~D
� 1 ~A (the random wandering

normalized Laplacian operator) is selected for normalization in our study, comparing with the symmetric

normalized Laplacian operator ~D
� 1

2 ~A ~D
� 1

2. In contrast to ~D
� 1 ~A which only considers the degree of the cur-

rent node itself, ~D
� 1

2 ~A ~D
� 1

2 also considers the degree of neighboring nodes, which weakens the influence of

neighboring nodes with large degrees on the current node. And for protein–ligand binding, the nodes with

large degrees are also generally more important, so this may be the reason why the ~D
� 1 ~A normalization

strategy performs better.

It is well known that the pocket residues in the protein play a key role in protein–ligand binding. For protein

graph convolution networks, GCN was usually performed on pocket residues only, ignoring the effect that

residues near the pocket had on the pocket residues.10 To incorporate such information, we performed the

graph convolution on all residues of the protein and selected pocket residues to feed into the interaction

module. More specifically, the graph convolution for proteins or ligands comprised a stack of two graph

convolution layers. The first graph convolution layer is a super edge graph convolution layer, where

each residue or atom aggregates information from its neighbor nodes and neighbor edges to update

its own features. In the second graph convolution layer, each node aggregates information from its

neighbor nodes only because the edge information has already been passed to the relevant nodes via

the super edge graph convolution layer. Finally, we obtained the protein pocket residue features

Hpocket res by selecting pocket residues from the protein and the ligand atom features Hligand atom.

Interaction module

The interaction module (Figure 1C) is structurally a multi-supervised attention module, consisting of a

supervised bidirectional attention block (pale blue background color) and a supervised unidirectional

attention block (pale yellow background color), whose attention distributions are supervised by the

protein–ligand non-covalent interaction and residue contribution, respectively.

In the supervised bidirectional attention block, the bidirectional attention mechanism is used to learn the

interaction between proteins and ligands in a dual direction. In specific operations, we first transformed the

previous learned protein pocket residue featureHpocket res and ligand atom featureHligand atom using a neu-

ral network layer activated with Leakly ReLU, respectively, and then performed inner product and sigmoid

to obtain the protein–ligand interaction matrix Matinteraction as the predicted value for the non-covalent

interaction prediction task.

Matinteraction = s
�
f
�
WligandHligandatom

�
f
�
WpocketHpocket res

�T�
; (Equation 6)
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where s stands for sigmoid, f stands for Leakly ReLU, T stands for matrix transpose, andW stands for neural

network weight. Each row of the Matinteraction represents a ligand atom and each column represents a pro-

tein pocket residue.

On the basis of the interaction matrix, we generated the attention weight (Attres to atom) of the protein

pocket on each ligand atom by adding up the interaction values of all residues on each atom (the summa-

tion of Matinteraction in the row direction,
P

row ) and then applying the softmax48 function. And then, using

the generated attention weight Attres to atom, the ligand atom features Hligand atom was weighted and

summed using to obtain the ligand feature vector Hligand , which conducts the attention mechanism of pro-

tein to the ligand atom.

Attres to atom = softmax

 X
row

Matinteraction

!
(Equation 7)

Hligand = Attres to atom
THligandatom (Equation 8)

Similarly, the attention mechanism of the ligand to each protein pocket residue was performed. The atten-

tion weight (attatom to res) of the ligand on each protein pocket residue was calculated as the sum of the

interaction values of all atoms on each residue (the summation of Matinteraction in the column direction,P
col ) and followed by the application of softmax function. We then use the attention weight

attatom to res to perform a weighted summation of the protein pocket residue features Hpocket res to yield

the pocket residue feature vector Hpocket bidirectional.

Attatom to res = softmax

 X
col

Matinteraction

!
(Equation 9)

Hpocket bidirectional = Attatom to res
THpocket res (Equation 10)

Additionally, in the supervised unidirectional attention block, we exploited ligand vector (HligandÞ and pro-

tein pocket residues (Hpocket res) to implement the unidirectional attention mechanism, highlighting impor-

tant residues by the ligand vector. In this case, we regarded the generated attention weight Attligand to res

as the binding energy contribution of residues and used it as the prediction value for the residual contri-

bution prediction task. Afterward, we obtained another protein pocket vector (Hpocket unidirectional), which

was concatenated with Hpocket bidirectional to get the final protein pocket vector (Hpocket ).

attlignad to res = softmax
�
Hpocket resHligand

T
�

(Equation 11)

Hpocket unidirectional = attligand to res
THpocket res (Equation 12)

Hpocket =
�
Hpocket bidirectional;Hpocket unidirectional

�
(Equation 13)

Prediction module

Through the feature extraction module and interaction module, SEGSA_DTA learned the structural infor-

mation of proteins and ligands, and exchanged the information between the protein and ligand to model

the protein–ligand interaction process, producing the informative and representative protein feature vec-

tor Hpocket and ligand feature vector Hligand . In the prediction module (Figure 1A), we concatenated the

Hpocket and Hligand generated in the interaction module, and fed them into a fully connected deep neural

network (fc-DNN) with two hidden layers activated by ReLU, where the numbers of nodes were 512 and

256, respectively. The output layer had one node for predicting binding affinity.

by = FC DNN
��
Hpocket ;Hligand

��
(Equation 14)

Training protocol

Since our proposed SEGSA_DTA model is a multi-task learning-based framework, the loss function of the

model comprised three components, namely the loss of binding affinity prediction (Laffinity ), the loss of the

protein–ligand non-covalent interaction prediction (Lnon� covalent ) and the loss of the residue contribution

prediction (Lcontribution), as shown below:
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Lmodel = Laffinity +aLnon� covalent + bLcontribution; (Equation 15)

where a and b are hyperparameters for the trade-off of different loss components, Laffinity and Lcontribution are

the mean square error loss function and Lnon-covalent is the cross-entropy loss function.

To train our network, we applied the Adammethod as the optimizer. And, we searched the optimal hyper-

parameters for the binding affinity prediction on the training set via 5-fold cross-validation (For optimal hy-

perparameter settings, see Table S9). During the search of hyperparameters, to reduce training time, we

set the maximum training epoch to 300; if the performance metric of the main task on the validation set

did not improve in 30 epochs, the training process was terminated early (Figure S3). After hyperparameter

tuning, we used the entire training set to retrain the model to make full use of the data, with the maximum

number of training epochs set to 500. The model was implemented by PyTorch50 and accelerated using the

GPU (GeForce GTX 3090 and 2080Ti).

In order to avoid overfitting, we have applied many techniques: i) Regularization. We adopted the L2 reg-

ularization and set the L2 weight decoy to 0.0001; ii) Dropout. We set different dropouts for the feature

extraction module (dropout = 0.1) and prediction module (dropout = 0.3). Among them, the dropout value

of the feature extraction module closer to the input layer is slightly lower to prevent discarding a large

amount of potentially useful feature information; iii) Early stop. The early stop setting was as described

in the hyperparameter search in the previous paragraph; iv) Multi-task leaning. Our model employed the

multi-task learning strategy, which can also reduce the risk of overfitting.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dataset preparation

PDBbind database

PDBbind (version 2019, the general set) database contains complex structures and corresponding binding

affinity expressed with Kd, Ki, or IC50.51 Since the IC50 values are influenced by experimental conditions

and may contain substantial noise, we instead used the negative log value of the Kd and Ki data (-log

Kd,-log Ki) as the target for binding affinity prediction. We obtained a 3D structure of the complexes

and ligands from the RCSB PDB database52,53 and screened the data according to the following criteria:

(i) a ligand requires the standard PDB ligand id and the corresponding binding affinity must be accurate

and not a range value; (ii) the crystal structure resolution of the complex should be no greater than

2.5 Å; (iii) a ligand can be processed using RDKit (https://www.rdkit.org), and its molecular weight must

be less than 500. After screening, a total of 5,482 protein-ligand pairs were obtained (For more details,

see Table S10).

PDBbind v.2016 core set (core set v.2016)51 is a high-quality benchmark dataset for protein–ligand binding

affinity prediction, containing 290 protein–ligand pairs. To evaluate the model performance on core set

v.2016, we removed 246 protein–ligand pairs that were duplicated with core set v.2016 in the above

5,482 protein–ligand pairs, and the final training set contained 5,236 protein-ligand pairs.

DUD-E database

DUD-E30 database is a widely adopted benchmark for structure-based virtual screening. The DUD-E data-

base comprises 22,886 active ligands and their affinities against 102 targets divided into seven subsets.

Each target has an average of 224 active ligands, and each active ligand has an average of 50 decoy ligands.

However, some recent studies have pointed out that in the context of machine learning and deep learning,

DUD-E is difficult to evaluate and prone to produce optimistic estimates of performance.54,55 Even when

the model only inputs ligand information and no protein information, the model can also provide good

enough predictions.54 This may be caused by two reasons: i) DUD-E may have underlying biases such as

analogue bias, which likely lead to poor generalizability When we train and evaluate the model based

on DUD-E, the model is likely to learn just these biases and thus get an over-optimistic estimate of predic-

tion performance. ii) The characteristic of DUD-E that the number of proteins is very small and each protein

corresponds to a mass of different ligands. For most data samples in DUD-E, the protein features are the

same while the ligand features are different, which will make the model focus more on the ligand informa-

tion and rarely or even ignore the protein information. Even if DUD-E does not suffer from these biases, the
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model trained on it will also yield optimistic estimates. Therefore, DUD-E is not appropriate as a training set

for machine learning.

To eliminate the influence of the underlying biases and the aforementioned characteristic of DUD-E on the

model, the final model for evaluating virtual screen power was trained on the PDBbind training set and core

set v.2016 where each protein corresponds to only one ligand. We used all 16 manually collected protein

targets in the Kinase and Gpcr subsets as the independent external validation set (DUD-Ehand). After

removing ligands that could not be processed by our method and other compared methods, the

DUD-Ehand dataset contains 16 proteins, 6,872 active ligands and 243,390 decoy ligands, for a total of

250,262 ligands.

Evaluation metrics

Root-mean-square error (RMSE), mean absolute error (MAE) and concordance index (CI) were used to

assess the prediction error for binding affinity prediction, whereas the Pearson correlation coefficient

and SD in regression (SD)21,22 that are two vital indicators of scoring power were used as the correlation

metrics. The area under the receiver operating characteristic curve (AUC) was used to assess the virtual

screening power.27 The CI is defined as:

CI =
1

Z

X
yi > yj

h
�by i � by j

�
; (Equation 16)

where Z is a normalization constant equal to the number of pairwise sample pairs whose true affinities are

different. yi and by i stand for the true affinity and predicted affinity of i-th sample, respectively. hðÞis a step

function defined as follows:

hðxÞ =

8<: 0;
0:5;
1;

if x <0;
if x = 0;
if x >0:

(Equation 17)

The SD is defined by following equation:

SD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
i = 1

½yi � ðaby i +bÞ�2;
vuut (Equation 18)

where N denotes the number of samples. The a and b are the slope and intercept of the regression line of

the linear regression equation between the true affinity y and the predicted affinity by , respectively.
We used the average AUC and the average RMSE to evaluate the non-covalent interaction prediction and

the residue contribution prediction, respectively. Given a dataset with N samples, the average AUC was

defined as follows:

AUCinteraction =
1

N

XN
i = 1

AUCðiÞ; (Equation 19)

where AUCðiÞ indicates the AUC between the true non-covalent interaction labels and the predictions of

the i-th sample. The average RMSE was defined as follows:

RMSEcontribution =
1

N

XN
i = 1

RMSEðiÞ; (Equation 20)

where RMSEðiÞ indicates the RMSE between the true contribution values and the predictions of the i-th

sample.

The performance assessment of SEGSA_DTA with different edge features and The performance assess-

ment of SEGSA_DTA with different supervised attention are given as mean G95% confidence interval,

which was estimated by calculation of repeating the random sampling with replacement 100 times. Be-

sides, the significance for the difference in these two experiments was estimated by Student’s t test and

the statistical significance is defined as p value<0.05.
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Shapley additive explanations

Shapley additive explanations (SHAP) is an additive attribution method inspired by cooperative game the-

ory. SHAP interprets the model output as the sum of the attributed values (SHAP values) of all input fea-

tures, that is:

f ðxÞ = gðz0Þ = 40 +
XD
i = 1

4iz
0
i ; (Equation 21)

where f ðxÞ is the model output of x, g is the explanation model defined by SHAP, D is the number of input

features, z0 ˛ f0; 1gD indicates whether a feature exists or not (0 or 1), 4i is the SHAP value of feature xi. SHAP

value of xi is the average marginal contribution of xiacross all combinations.

4i =
X

S˛ fx1 ;.;xDg\fxig

jSj!ðD � jSj � 1Þ!
D!

ðfxðSW fxigÞ � fxðSÞÞ; (Equation 22)

where fx1;.; xDg is the set of all input features, S is one of all combinations of features for which xi is

excluded.

In this study, we applied the GradientExplainer method of SHAP (see https://github.com/slundberg/shap),

whichfurther combines the advantages of IntegratedGradients and SmoothGrad. And it is the only method

that supports Pytorch well.
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