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Abstract 
Chronic liver diseases have become a significant health issue worldwide and urgently require the development of novel therapeutic approaches, 
in addition to liver transplantation. Recent clinical and preclinical studies have shown that cell-based therapeutic strategies may contribute to the 
improvement of chronic liver diseases and offer new therapeutic options to restore liver function through their roles in tissue impairment and 
immunomodulation. In this review, we summarize the current progress and analyze the challenges for different types of cell therapies used in 
the treatment of chronic liver diseases currently explored in clinical trials and preclinical studies in animal models. We also discuss some critical 
issues regarding the use of mesenchymal stem cells (MSCs, the most extensive cell source of stem cells), including therapeutic dosage, trans-
fusion routine, and pharmacokinetics/pharmacodynamics (PK/PD) of transfused MSCs.
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Significance Statement
There is a pressing need for novel therapeutic approaches to the treatment of chronic liver diseases. Stem cell-based therapeutic 
strategies may contribute to the improvement of chronic liver diseases and offer new therapeutic options to restore liver function. This 
review provides a detailed account of our current progress and further analyses the challenges of cell therapies for liver diseases. Some 
critical issues regarding the use of mesenchymal stem cells are also addressed.

Introduction
Liver diseases are a serious threat to human health. It is 
estimated that up to 800 million people have been af-
fected by chronic liver diseases worldwide, including 
more than 300 million in China.1-3 Besides viral hepatitis, 
other common causes of chronic liver disease are obesity, 
metabolic-associated fatty liver disease, alcoholic liver dis-
ease, autoimmune liver disease (primary biliary cholangitis, 
autoimmune hepatitis, and primary sclerosing cholangitis), 
genetics, and other metabolic diseases.4-6 End-stage liver 
diseases, including decompensated cirrhosis and liver failure, 
are characterized by portal hypertension and severely im-
paired liver function, with a series of complications such 
as ascites, spontaneous peritonitis, coagulation dysfunc-
tion, gastrointestinal bleeding, hepatic encephalopathy, 
and hepatorenal syndrome.7,8 The one-year mortality rate 
of liver cirrhosis was estimated to be 57%,9 causing 1.32 
million deaths worldwide in 2017, accounting for 2.4% of 
mortalities in the world.4,10 Chronic liver diseases, including 
decompensated cirrhosis, can develop into acute-on-chronic 
liver failure, with a further significant increase in mortality 
(33% at 28 days; 50% at 90 days).11

Current treatments for decompensated cirrhosis or liver 
failure are still limited, and liver transplantation remains the 
only available approach to improve survival but is restricted 
by a shortage of organ resources, rejection after transplanta-
tion, and heavy financial costs.12,13 In the past decade, a series 
of new applications based on cell therapy, including stem 
cell infusion, hepatocyte transplantation, in vitro artificial 
liver, and implantation of tissue-engineered organs have been 
studied as an alternative interventional method for chronic 
liver diseases. A series of preclinical and clinical studies on 
cell therapy have shown promising data. However, several 
gaps remain in the clinical application of MSC treatment for 
chronic liver diseases. This review focuses on cell therapy for 
severe liver diseases, summarizes the current progress, and 
discusses the challenges and unmet issues in this field.

Types of Cells Used for the Treatment of 
Chronic Liver Diseases
Recently, cell-based therapies, particularly stem cell therapy, 
are receiving increasing attention. Stem cells and adult liver-
originated hepatocytes are often the main cell sources, and 
they include a type of cell with potential properties of self-re-
newal and multi-directional differentiation. They can be clas-
sified as totipotent, multipotent, and specialized stem cells. 
They can develop into a complete living organism, various 
kinds of tissues, and human organs or cells of a certain lin-
eage, under specific conditions. In recent years, with the prog-
ress of regenerative medicine and basic research on stem cells, 
an increasing number of preclinical and clinical studies have 
been conducted using different types of stem cells,14 as shown 
in Table 1.

Mesenchymal Stem Cells (MSCs)
Mesenchymal stem cells (MSCs) are pluripotent stem cells de-
rived from the mesoderm and can be isolated or prepared from 
the bone marrow, umbilical cord, fat, pulp, placenta, endome-
trial tissue, limbus, and amniotic membrane. In the 1960s, 
Freidenstein et al discovered a group of colony-forming unit-
fibroblast cells from bone marrow that can adhere and grow 
in vitro, with similar morphology to fibroblasts.15,16 Later, 
these types of cells with the ability of bone and cartilage dif-
ferentiation were named mesenchymal stem cells, and this 
name has been widely used17 since then. Properties of MSCs 
include multi-directional differentiation, immunomodulatory 
and pro-angiogenic effects, and secretion of various types of 
growth factors, cytokines, and regulators through paracrine 
signaling and other pathways, while generally not causing 
host immune responses due to their low immunogenicity.18,19 
Therefore, after being first used in clinical trials for hemato-
logical diseases in 1995, approximately a thousand clinical 
trials have been carried out with MSCs around the world 
to explore new ways to treat various refractory diseases. At 
present, MSCs that function as a type of cell-based drug have 
been approved for the treatment of graft-versus-host disease 
(GVHD), Crohn’s disease complicated with anal fistula, spinal 
cord injury, limb ischemia, amyotrophic lateral sclerosis, and 
other illnesses in the European Union, Canada, South Korea, 
and Japan.

Table 1. Cell-infusion clinical studies of liver diseases, based on cell-type.

Cell type Research phase Advantages or limitations 

MSCs Human study
(Phase I and II trials)

•  No ethical restriction.
•  Easy expansion.
•  Immune regulation, anti-

fibrosis, regeneration.
•  Most clinical research 

evidence.

ESCs Preclinical study •  Ethical concern.
•  Risk of tumorigenicityand 

immune rejection.

iPSCs Preclinical study •  Tumorigenicity
•  Immunogenicity

BTSCs Human study
(Case report)

•  Multipotent stem cells.
•  Differentiate into 

hepatocytes and biliary 
epithelial cells.

•  Limited source.

Hepatocyte Human study
(Small sample size, 
randomized controlled 
trial)

•  Limited cell source from 
liver doner.

•  Difficult to expand.
•  Difficult to cryopreserve.
•  Immune rejection.

Abbreviations: MSCs, mesenchymal stem cells; ESCs, embryonic stem cells; 
iPSCs, Induced pluripotent stem cells; BTSCs, biliary tree stem cells; HSCs, 
hematopoietic stem cells.
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Human Embryonic Stem Cells (hESCs)
Human embryonic stem cells (hESCs) are pluripotent stem 
cells from the blastocyst stage of the cell population in the 
embryo, with unlimited potential for self-proliferation and 
differentiation into different cell types in vivo.20 hESCs have 
recently been used in the treatment of many diseases through 
their induction into a certain spectrum of stem cells in vitro, 
and hESC-derived cells are commonly used in clinical trials 
for the treatment of subacute spinal cord injury, age-related 
macular degeneration, type 1 diabetes, Parkinson’s disease, 
retinitis pigmentosa, amyotrophic lateral sclerosis, type 1 
citrullinemia, and intrauterine adhesions.21,22 For the treat-
ment of liver disease, hESCs have been induced to differ-
entiate into hepatocyte-like cells with the characteristics 
of mature hepatocytes in vitro.23 The induction of hESCs 
into hepatocytes and bile duct cells led to the formation 
of organoids, which shows promise for the construction 
of liver disease models and the exploration of new thera-
peutic approaches for liver diseases.24,25 However, due to 
the ethical and legal issues concerning the source of hESCs, 
together with the risk of tumorigenicity and immune re-
jection after cell infusion, there have been no clinical trials 
involving hESCs for the treatment of chronic liver diseases.

Induced Pluripotent Stem Cells (iPSCs)
Induced pluripotent stem cells (iPSCs) can be derived from 
various adult somatic cells in vitro through reverse differentia-
tion via a reprogramming technique first reported in 200722,26; 
they present a pluripotent ability similar to that of hESCs. 
Since first described, the reprogramming technique has been 
widely used in disease modeling, drug screening, tissue engi-
neering, and new therapeutics for the treatment of illnesses,27 
such as Parkinson’s disease, macular degeneration, retinitis 
pigmentosa, spinal cord injury, platelet transfusion, GVHD, 
and cartilage defects.22 iPSCs can be induced into human 
hepatocytes that resemble normal-functioning hepatocytes. 
In an animal model of liver injury, iPSCs were reprogrammed 
into hepatocyte-like cells and the survival rate of mice with 
acute liver failure.28 iPSCs-derived hepatocyte-like cells have 
also been used in the development of disease models such 
as fatty liver disease and ornithine transcarboxylase defi-
ciency.29,30 Bloor et al performed a dose-escalation phase I trial 
to evaluate the safety and efficacy of iPSC-derived cells by 
using human peripheral blood monocyte-derived iPSCs for the 
treatment of steroid-resistant GVHD.31 However, considering 
their tumorigenicity and immunogenicity, the safety and effi-
cacy of iPSCs need to be thoroughly evaluated before clinical 
application.32 Thus, there have been no clinical trials on iPSCs 
for the treatment of chronic liver diseases.

Notably, Taniguchi’s team first developed the human liver 
bud including endothelial cells,33 later generated human iPSCs-
derived liver organoids that were successfully transplanted into 
infantile piglets through the portal vein with a good safety.34 
The preclinical data demonstrated that transplantation of 
human liver organoids may present a promising therapeutic 
strategy in the treatment of severe chronic liver diseases; how-
ever, the safety and efficacy of transplantation of human liver 
organoids need to be confirmed in the future clinical trials.

Biliary Tree Stem Cells (BTSCs)
Biliary tree stem cells (BTSCs) are multipotent stem cells 
located in both extramural peribiliary glands tethered to the 

exterior surface of bile ducts and intramural peribiliary glands 
within bile duct walls or in the villi base of the gallbladder. 
BTSCs express endoderm-specific transcription factors and 
early surface molecular markers of stem cells.35 BTSCs have 
the capacity to differentiate into functional liver cells, bile 
duct, and pancreatic endocrine glands, and play an important 
role in the development, maturation, and organ regeneration 
and maintenance of the liver, pancreas, and gallbladder.36 In 
animal models of drug-induced liver injury, a transfusion of 
BTSCs was found to promote the repair and regeneration of 
the injured liver.37 In a clinical trial, Vincenzo et al found that 
BTSCs could improve the model for end-stage liver disease 
(MELD) scores, quality of life, and prolong the survival time 
in patients with decompensated cirrhosis, without significant 
post-transplant rejection.38 However, there is an ethical con-
cern that limits their clinical application, as the main source 
of BTSCs is the fetal biliary tree. Thus, they are not exten-
sively used in clinical trials.

Human Hepatocytes
Human hepatocytes from adult donors have been utilized 
in various attempts to treat liver diseases39 since Mito et al 
first performed hepatocyte transplantation in a patient with 
metabolic liver disease in 1992.40 Transplanted hepatocytes 
were usually prepared from donor livers that were not suit-
able for transplantation. However, many factors, including 
inadequate liver supply, varying quality, immunogenicity, 
the impaired proliferative ability of hepatocytes, inefficient 
cell migration, and limited space within a severely patholog-
ical liver limit the applications of hepatocyte transplant.41 
Hepatocytes are usually more suitable for the treatment of 
inherited metabolic diseases, such as Wilson’s disease, fa-
milial cholestasis, and phenylketonuria. Fox et al found that 
a pre-treatment of irradiating the host liver could improve 
the engraftment efficiency of transplanted hepatocytes in an 
animal model, indicating that pre-treatment radiation was 
safe and could improve the engraftment of transplanted 
hepatocytes and the long-term survival of patients.41 In ad-
dition, trans-differentiation strategy was developed to gen-
erate functional hepatocyte-like cells (iHep) from mature 
cells, which may, in part, solve the limitation of insufficient 
human primary hepatocytes for the purpose of cell therapy. 
Two teams reported that transplantation of iHep cells could 
rescue mice with liver failure respectively in preclinical 
studies.42,43 Because transplantation of human hepatocytes 
is with some disadvantages that significantly limit their clin-
ical application, therefore, it is necessary to develop new 
sources for functional hepatic cell supply or other novel 
therapeutic approaches in the treatment of severe chronic 
liver diseases.44

Clinical Trials and Rationale of MSC Therapy 
for Chronic Liver Diseases
Mesenchymal stem cells (MSCs) are the most commonly used 
cell source in clinical studies of cell therapy for liver diseases. 
By searching for “mesenchymal stem cell OR mesenchymal 
stromal cell AND liver [Title]” on PubMed, 1290 publications 
were retrieved (year distribution shown in Fig. 1A). Similarly, 
a search of “mesenchymal stem cell and liver diseases” shows 
that 63 clinical trials have been registered on ClinicalTrials.
gov up to 29 April 2022 (Fig. 1B, 1C).
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It has been reported that the MELD score, prothrombin 
time, serum albumin, and total bilirubin were improved in 
patients with liver cirrhosis or liver failure when they re-
ceived an MSC infusion.45-51 Suk KT et al conducted a 
multicenter, open-label, phase II clinical trial to evaluate 
the treatment of alcoholic liver cirrhosis with autologous 
bone marrow-derived MSCs.52 A total of 72 patients were 
randomized into 3 groups, namely, control group, single-
infusion group, or double-infusion group. The primary end-
point was the improvement of the fibrosis score, and the 
secondary endpoints were liver function, Child-Pugh score, 
and MELD score. Compared to the control group, MSCs 
significantly improved the fibrosis score and Child-Pugh 

score at week 24, but there was no significant difference be-
tween the single-infusion and double-infusion groups. There 
was also no significant difference in adverse events among 
the 3 groups, indicating that MSC infusion is safe and well-
tolerated in alcoholic liver cirrhosis patients.52 In another 
open-label, randomized, controlled trial that enrolled 110 
patients with acute-on-chronic liver failure, improvement 
of liver function, MELD score, control of infection, and fa-
tality were also observed at week 24.53 In recent years, our 
team has conducted a series of clinical trials using MSCs 
for treating patients with decompensated cirrhosis, pri-
mary biliary cholangitis, acute-on-chronic liver failure, and 
patients with a post-transplant status. The results revealed 

Figure 1. A summary of MSCs studies of liver diseases. A. Number of published papers associated with studies on mesenchymal stem cells or 
mesenchymal stromal cells in liver diseases. These data were obtained on 29 April 2022 (Total = 1290). B. Country and regional distribution of 63 
clinical trials registered on ClinicalTrials.gov. C. Country and regional distribution of 22 completed clinical trials shown in Table 2. D. Dosage of MSCs for 
peripheral intravenous infusion in 14 completed clinical trials shown in Table 2. E. MSC-therapy cell infusion route of 22 completed clinical trials shown 
in Table 2.
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that treatment with MSCs could improve the patients’ liver 
function, increase hepatic functional reserve, reduce post-
transplant rejection and complications, and improve quality 
of life and survival time.54-57 In a 75-month follow-up study 
of 219 cirrhotic patients who had received an MSC infusion, 
we found that MSCs could significantly improve patient sur-
vival and liver function without increasing tumor incidence 
and other adverse events.58 However, some studies have also 
found that MSC infusion did not improve liver function.59-61 
The inconsistency in these conclusions may be caused by 
the varying inclusion and exclusion criteria, endpoints, and 
sources of MSCs, as well as the small sample size in the ma-
jority of trials. In Table 2 and Fig. 1D, we have summarized 
22 reported MSC clinical trials for liver cirrhosis and liver 
failure (11 studies had not been registered on ClinicalTrials.
gov).

The rationale for MSC therapy for chronic liver diseases is 
as follows: (1) owing to the differentiation and regenerative 
properties of MSCs, they can be stimulated to differentiate 
into hepatocytes in vitro.76-78 MSCs can also replenish and re-
pair a pathological liver in an animal model79; (2) MSCs exert 
a range of immunomodulatory effects and regulate innate and 
adaptive differentiation in vivo including natural killer cells, 
Kupffer cells, macrophages, dendritic cells, helper T cells, reg-
ulatory T cells, and B cells, via direct contact or paracrine 
signaling to reduce hepatic inflammation and improve host 
tissue impairment.80-86 (3) MSCs can play a role in improving 
the hepatic microenvironment and anti-fibrosis. For example, 
MSCs can secrete interleukin 10 and tumor necrosis factor, 
which inhibit the activation of hepatic stellate cells (HSCs) 
and simultaneously induce HSCs apoptosis through the Fas-
FasL pathways,87 but they can also induce the regeneration 
of liver stem cells via hepatocyte growth factor. MSCs can 
also induce immune cells to produce or directly secrete ma-
trix metalloproteinases for degradation of the extracellular 
matrix.85,88-90 (4) Ferroptosis is a new form of non-apoptotic 
cell death that plays a role in the progression of liver diseases. 
MSCs protect the liver and inhibit the ferroptotic process 
of hepatocytes through the decrease of intracellular reactive 
oxygen species (ROS) and Fe2 levels.91 Additionally, Li et al 
demonstrated that bone marrow MSCs were able to prolong 
the survival time for fulminant liver failure in a porcine model 
by blocking the cytokine storm.92 During the COVID-19 pan-
demic (early 2020), a series of clinical trials were conducted 
to evaluate the efficiency of MSC therapy for patients with 
severe COVID-19. Some trials demonstrated that an MSC 
transfusion could reduce pulmonary inflammation and lesion, 
improve the convalescence of severe patients, and shorten 
the length of hospitalization time.93,94 In a multicenter, 
randomized, double-blind, placebo-controlled trial of 101 
patients, we found that MSCs accelerated the restoration of 
lung lesions and had alleviated pulmonary fibrosis at a one-
year follow-up visit.95,96 These findings are consistent with the 
anti-fibrotic properties of MSCs.

Facing Challenges in MSC Therapy
The treatment of chronic liver diseases with MSCs has yielded 
some promising findings, but some critical issues in the current 
protocols remain to be addressed in future studies, including 
study design, the dosage of transfused MSCs, infusion route 
of MSCs, and pharmacokinetics and pharmacodynamics (PK/
PD) of transfused MSCs in vivo.

Dosage of MSCs
The dosage of MSCs used clinically is a critical issue. 
Appropriate cell dosage should be carefully determined in the 
study design based on the source of the cells, patient indi-
cation, transfusion time, and infusion route. Phase I clinical 
studies are often initiated to establish the optimal cell dosages 
for different indications and infusion routes.31,97-114 Of these, 
the dose of MSCs administered by peripheral intravenous in-
fusion generally ranges from 5 × 105 to 1 × 106 cells/kg. In a 
phase I trial of MSC treatment in acute respiratory distress 
syndrome (ARDS) patients, the low-, medium-, and high-dose 
groups were 1 × 106 cells/kg, 5 × 106 cells/kg, and 1 × 107 
cells/kg, respectively. No infusion-related adverse events were 
observed in the high-dose group, suggesting that a dose of 
1 × 107 cells/kg is safe for ARDS patients.102 As for the treat-
ment of liver diseases, in a dose-escalation study of stem 
cells, which included a total of 20 patients with decompen-
sated cirrhosis, no adverse events related to cell infusion were 
observed after 3 rounds of intravenous infusion of umbilical 
cord stem cells at the highest dose of 2  ×  108 cells/time.115 
However, the optimal dose for each clinical trial needs to be 
explored according to the different stages of the disease and 
administration routine. Figure 2 shows the intravenous infu-
sion dosage used in 14 different clinical studies.

Efficiency and Infusion Route of MSCs
Although unmanipulated, conventional MSCs have been the 
most widely used in therapeutic studies, extensive efforts 
have been made to improve the safety and efficiency of MSC 
transfusions. Some of these strategies, including sorting MSCs 
to be enriched for stronger functionality, priming MSCs with 
cytokines, and genetic modification of MSCs, have been de-
veloped to enhance the MSCs immunomodulatory poten-
tial and/or their homing when they migrate into the target 
organ with inflammation and loss. MSCs, a heterogeneous 
population of cells, can be classified into several subgroups. 
Therefore, pacified and enriched MSCs with selected markers 
may be more suitable for special conditions than conven-
tional MSCs. For example, MSCs capabilities of chemotaxis, 
anti-aging, and differentiation could be improved after MSC 
identification via CD146, CD73, CD271, and CD200.116-118 
Furthermore, after coculture with interferon-γ, interleukin-7, 
and transforming growth factor, the effector cytokines 
produced by MSCs were increased and their modulation 
role on immune cells, as well as chemotaxis and proliferative 
ability, were strengthened.119-121 The gene-editing technique 
has also been applied to specifically upregulate or silence cer-
tain genes (insulin growth factor-like-1, CXCR4, Let7a, etc.) 
that could result in gene-modified MSCs with stronger anti-
fibrotic, immunomodulatory, chemotaxis, anti-apoptotic, 
differentiated regenerative abilities, and organ-restoration 
functions.122,123 Although purification methods and gene ed-
iting are feasible for MSCs in preclinical studies, there is still 
a long way to go in terms of cell stability, safety, and compli-
ance with drug-related production specifications. Therefore, 
the challenge is to balance additional costs and potential lo-
gistical/safety concerns.

Different infusion routes may affect the efficacy of MSC 
treatment. Intravenous infusion is the most common route of 
MSC administration. Other routes include the hepatic artery, 
portal vein, and intrahepatic or intra-splenic (Fig. 3) transfu-
sion of MSCs. However, given the differences in the enrolled 
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population, the most suitable source, dosage, and transfu-
sion route of MSC medication have not been confirmed in 
the reported clinical trials so far, and further randomized, 
controlled clinical trials with larger sample sizes are needed.

Pharmacokinetics/Pharmacodynamics (PK/PD)
PK/PD measures the distribution of tested drugs and 
biomarkers in normal or disease models and is further used 
to analyze the dynamic course of drug absorption, distribu-
tion, metabolism, and excretion after drug administration. 
Therefore, this is an integral part of drug development. PK/
PD studies contribute to a better understanding of the rela-
tionship between drug exposure, efficacy, and toxicity, and 
are significant tools to guide the study design for further pre-
clinical and clinical evaluations. Of these, PK/PD-related cell 
tracking after cell infusion is a key component for evaluating 
the safety and efficacy of cellular therapy products. Recently, 
quantitative three-dimensional cryo-imaging, multiple im-
aging methods, including quantitative magnetic particle im-
aging, and near-infrared fluorescent semiconductor polymer 
imaging have been successively used to trace cells after their 
infusion124-126 to evaluate their distribution across different 
organs and their changes over time in vivo. These studies, in 
which MSCs were administered via peripheral intravenous in-
fusion, demonstrated that MSCs were frequently distributed 
in the liver and lungs of animal models.

Given the characteristics of cell-based products, PK/PD 
research for application in humans is still in its infancy 
compared to traditional drugs and may pose uncertain risks 
to healthy subjects. Therefore, stem cell clinical trials have 
rarely been conducted in healthy volunteers. In their study, 
Gholamrezanezhad et al used 125In-oxine-labeled MSCs in 
decompensated cirrhosis patients and tracked them using 
MRI.127 MSCs were largely concentrated in the lungs 
20 minutes after infusion, and after 2  h, MSCs could be 
detected in the liver and spleen until 10 days after baseline. 
These findings are consistent with the conclusions obtained 
in animal studies and provide a basis for the application 
of MSCs in the treatment of liver diseases. Accounting 
for the PK-PD relationship in MSC translational research, 
combined with better bio-distribution studies, could allow 
the realization of the potential of a more robust MSC clin-
ical translation.

Perspective
Stem cell therapy, and especially MSC therapy, is generally 
considered a safe and potentially relevant therapeutic strategy 
for patients with acute or acute-on-chronic liver failure and 
decompensated liver cirrhosis. Although these studies pro-
vided preliminary evidence on the safety and efficacy of 
MSC infusions, most clinical trials have been conducted 
at a single center and with small sample sizes. Further ro-
bust, randomized, and controlled clinical studies with a large 
sample size are required to increase the reliability of MSC 
therapy and to establish a clinical alternative to treat severe 
liver diseases. At the same time, owing to the complexity of 
the clinical process of end-stage liver diseases, the design of 
the cell-infusion protocol, the time and duration of clinical 
treatment, and the endpoints at the trials need to be further 
optimized. The mechanisms of MSC therapy in liver diseases 
have been studied in vitro; however, cell distribution and re-
lated mechanisms in humans have not been fully clarified. C
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We believe that in the near future, several clinical trials will 
be conducted or completed to generate high-level evidence, 
which will continuously promote the development of stem 
cell infusion for the treatment of liver diseases and ultimately 
benefit the outcome and prognosis of patients with severe 
liver diseases.
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