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Background: Transthoracic echocardiography is the leading cardiac imaging modality for patients admitted
with COVID-19, a condition of high short-term mortality. The aim of this study was to test the hypothesis
that artificial intelligence (AI)–based analysis of echocardiographic images could predict mortality more accu-
rately than conventional analysis by a human expert.
Methods: Patients admitted to 13 hospitals for acute COVID-19 who underwent transthoracic echocardiogra-
phy were included. Left ventricular ejection fraction (LVEF) and left ventricular longitudinal strain (LVLS) were
obtained manually by multiple expert readers and by automated AI software. The ability of the manual and AI
analyses to predict all-cause mortality was compared.
Results: In total, 870 patients were enrolled. The mortality rate was 27.4% after a mean follow-up period of
230 6 115 days. AI analysis had lower variability than manual analysis for both LVEF (P = .003) and LVLS
(P = .005). AI-derived LVEF and LVLS were predictors of mortality in univariable and multivariable regression
analysis (odds ratio, 0.974 [95% CI, 0.956-0.991; P = .003] for LVEF; odds ratio, 1.060 [95% CI, 1.019-1.105;
P = .004] for LVLS), but LVEF and LVLS obtained by manual analysis were not. Direct comparison of the pre-
dictive value of AI versus manual measurements of LVEF and LVLS showed that AI was significantly better
(P = .005 and P = .003, respectively). In addition, AI-derived LVEF and LVLS had more significant and stronger
correlations to other objective biomarkers of acute disease than manual reads.
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Conclusions: AI-based analysis of LVEF and LVLS had similar feasibility as manual analysis, minimized
variability, and consequently increased the statistical power to predict mortality. AI-based, but not manual,
analyses were a significant predictor of in-hospital and follow-up mortality. (J Am Soc Echocardiogr
2022;-:---.)

Keywords: Echocardiography, Machine learning, Artificial intelligence, Outcomes prediction, WASE, COVID-
19, Left ventricular function
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Although it is consideredmostly a
respiratory disease, multiple or-
gan systems are affected in pa-
tients with COVID-19. Growing
evidence suggests that COVID-
19-related cardiovascular compli-
cations play a significant role in
disease severity and patient out-
comes, including a higher risk for
death.1-3 Myocardial damage
may occur because of a direct
insult (myocardial infarction,
thrombosis, myocarditis) or as a
result of a systemic inflammatory
response and may affect both
the left and right ventricles.4-6

Transthoracic echocardio-
graphic (TTE) imaging is the
leading cardiac imaging modality
for patients admitted with
COVID-19,7 as it can evaluate
the full spectrum of cardiac
involvement and can be performed safely in various settings, such
as at the bedside in the emergency department or the intensive
care unit (ICU).6,8 Moreover, as myocardial injury has been linked
with poor outcomes,9 an echocardiogram obtained at admission
may prove to be a powerful tool to predict outcomes in patients
admitted with acute COVID-19. Today, the interpretation of echocar-
diographic images is based onmanual analysis associated with consid-
erable measurement variability, which is likely to affect its predictive
value.

The use of artificial intelligence (AI) machine learning (ML)–based
technologies in cardiovascular medicine is rapidly growing, resulting
in increased automation of image processing and diagnostic interpre-
tation. So far, most research has been focused on big data analysis
through accessing large data sets, building models and algorithms to
identify diagnostic patterns or to predict outcomes.10,11 The role of
AI in cardiovascular imaging and specifically echocardiography is ex-
panding to facilitate image acquisition and analysis.12-15 Moving
toward a fully automated, AI-based analysis will result in lower vari-
ability of results than those obtained from reader-dependent tech-
niques widely practiced today.13 With lower variability and
increased interpretation consistency, it is foreseeable that the use of
automated measurements could improve the capacity to predict out-
comes.16 However, few studies have performed direct head-to-head
comparisons between AI and conventional human interpretation of
echocardiographic images.

The international World Alliance Societies of Echocardiography
(WASE) COVID-19 Study was designed to describe echocardio-
graphic characteristics and to identify parameters that would be
prognostic of clinical outcomes in patients admitted with acute
COVID-19. In this analysis, we aimed to test the performance of an
AI ML-derived algorithm for the prediction of outcomes in patients
admitted for acute COVID-19 and its incremental value to that of
expert echocardiographer analysis. Specifically, we hypothesized
that automated left ventricular (LV) function analysis obtained using
the ML algorithms would have less interreader variability than expert
readers, translating into better prediction of mortality.
METHODS

Study Design and Data Collection

The WASE COVID-19 Study enrolled adult patients admitted for
acute COVID-19 (including positive antigen or polymerase chain re-
action test results) during the first wave of the pandemic (January to
September 2020). Patients were included if TTE imaging was per-
formed during the initial COVID-19 hospitalization, and enrollment
was performed in a prospective and retrospective manner. All
follow-up was performed in a prospective manner. Patients were
enrolled at 13 medical centers in nine countries worldwide.
Because of differences in safety protocols to protect the acquiring op-
erators, TTE examinations were ordered and acquired on the basis of
local clinical practices and included both comprehensive and limited
studies, acquired using various imaging equipment.8,17,18 If patients
underwent more than one TTE study, only the initial one was used.
TTE studies included, at a minimum, a four-chamber (4CH) view,
which was required for calculation of LV ejection fraction (LVEF),
LV end-systolic and end-diastolic volumes, and LV longitudinal strain
(LVLS), although two-chamber views were also used to determine
biplane LVEF or average LVLS values, whenever available. LVLS
was calculated as the average of all available segments from the
4CH and two-chamber views, as a long-axis view was not obtained
in the vast majority of cases. The protocol was approved by each local
ethics committee, and patients provided informed consent for any
prospective clinical encounter or image acquisition. The in-hospital
course and outcomes of the WASE COVID-19 Study are reported
elsewhere.19

Digital Imaging and Communications in Medicine images were
web-transferred to a cloud-based secure storage system that includes
automated analysis of LVEF, LV volumes, and LVLS (EchoGo Core;
Ultromics). Clinical information including demographic data, medical
history, vital signs, and serum biomarkers was collected by local inves-
tigators and stored in a secure web-based system (Castor EDC;
Castor). Biomarkers were collected whenever deemed clinically
appropriate within 72 hours of echocardiographic acquisition and
included brain natriuretic peptide (BNP) and C-reactive protein. To
account for different biomarker assays used at each center, the level
of each biomarker (BNP and C-reactive protein) was classified as
either normal, borderline abnormal (<2 times the upper limit of
normal), or abnormal (>2 times the upper limit of normal), on the ba-
sis of the reference values for each center. In addition to in-hospital
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clinical outcomes, outpatient follow-up was performed $3 months
after hospital admission by review of medical records, office
encounter, and/or phone call. The primary outcome of the WASE
COVID-19 Study was all-cause mortality (in-hospital and up to
6 months of follow-up).
Image Analysis

Each TTE study underwent two independent forms of LV analysis,
with multiple independent runs of each: (1) cloud-based and auto-
mated and (2) conventional human reads by board-certified experts.
Each of these reads was performed blinded to each other.
Automated LV analyses were performed using an AI ML-based al-

gorithm (EchoGo Core), which contoured the LVendocardium auto-
matically to enable Simpson’s calculation of LV end-diastolic volume
and end-systolic volume and LVEF, as well as speckle-tracking-based
LVLS. EchoGo Core is a cloud-based, vendor-neutral program that
uses AI to automatically contour the LV endocardium and cannot
be manually adjusted. The software is commercially available and
has been recently cleared by the US Food and Drug
Administration. Further details on the AI architecture and develop-
ment are provided in the Supplemental Appendix. Briefly, the soft-
ware automatically classifies the echocardiographic views, which are
confirmed by an operator for quality control. The best cardiac cycles
and frames are automatically identified to finally calculate LV end-
diastolic volume and end-systolic volume, LVEF, and LVLS.
Operators could only accept or reject the final clip (loop) to report
but could not edit the LV tracings or cycle and frame selections. If a
frame was rejected, the software would select a new clip or frame,
which again would have to be accepted or rejected by the operator.
Each TTE study was analyzed on two separate occasions by different
operators to test reproducibility in rejecting or accepting automated
tracing and measurements. The two operators for each TTE study
were randomly assigned from a pool of 11 operators. Processed
studies were accepted or rejected on the basis of processing quality
(view selection, contouring success, Digital Imaging and
Communications in Medicine conformance, etc).
All measurements were repeated in three rounds of manual quan-

tifications by independent experts blinded to any clinical status,
following conventional methodology. The three readers for each
TTE study were randomly assigned from a pool of eight experts,
also present in the AI operator pool, all board-certified echocardiog-
raphers. For each case, manual rounds 1 and 2 were analyzed
$30 days apart by the same operator to determine the intraobserver
variability, while round 3 was analyzed by a different operator to
determine interobserver variability. All LV volumes and LVEFs were
obtained by performing endocardial tracings and using the method
of disks (modified Simpson’s rule).20 Only cases with acceptable qual-
ity LV views were included, which was defined as a lack of apical fore-
shortening and adequate visualization of all segments in the apical
4CH view. Overall, 67.2% of the AI-based parameters (LV volumes,
LVEF, and LVLS) and 70.4% of themanual parameters were obtained
using the biplanemethod, while the rest were obtained from the 4CH
view alone. For each read, the end-diastolic and end-systolic frames
(largest and smallest LV volumes) across image clips selected by the
operators were recorded to determine the variability associated
with image contouring alone in contrast to difference in frames and
clips, where acquisition variability may additionally contribute.
Statistical Analysis

All statistical analysis was performed with R version 4.0.4.
Continuous variables are expressed as mean 6 SD or as median (in-
terquartile range), according to the data distribution, and compared
using Student’s t test or the Wilcoxon rank sum tests, as appropriate.
Categorical data, presented as numbers and percentages, were
compared using the c2 test. Biochemical markers underwent natural
logarithmic transformation. Cox proportional hazard regression and
binomial generalized linear models with logit function were
performed on the mean manual values and AI values to evaluate
the univariable relationship between echocardiographic parameters
and in-hospital and 30-day mortality. Date of death during outpatient
follow-up was not available in some cases, which affected the hazard
proportionality beyond 30 days, and therefore only linear regression
was used for the follow-up analysis. Results from regression models
are reported as odds ratios with 95% CIs, which were analyzed as
continuous variables in 1% increments both for LVEF and LVLS.
Univariate survival analysis was performed for time to death, using
Cox proportional hazard regression. Forest plots and cumulative haz-
ard plots were constructed for visualization. For direct head-to-head
comparison of AI and manual measurements for prediction of death,
we compared the increase in prognostic value directly through likeli-
hood ratio test comparing both prognostic models for goodness of fit.
To assess the variability factors associated with the quantification of

echocardiograms, a general linear mixed model was used to deter-
mine the within-patient variability components attributed to operator,
frame selection, and image quality, included as random effects. Inter-
and intraoperator variability was assessed using Pearson correlations
and intraclass correlation coefficients for all cases, as well as subset
for instances in which operators processed the same or different
end-diastolic and end-systolic frames (i.e., cycles/clips). Operator in-
fluence on the variability in LVEF and LVLS for manual and AI mea-
surements was visualized using principal-component analysis. Further
details on the use of principal-component analysis are described in the
Supplemental Appendix. Levene tests were used to assess whether
the observed difference in variability within each variable was signif-
icantly different between manual and AI contouring. The effect size,
power, and sample size calculations were used to assess the power the
observed variability had on predicting clinical outcomes. A correlation
matrix was performed to comparemultivariable correlations of serum
biomarkers, blood pressure, LVEF, and LVLS; this was performed by
constructing a network using the Pearson correlation coefficient
and Bonferroni correction for multiple testing. For all statistical anal-
ysis, significance was set at P < .05.
RESULTS

Over a 9-month period (January to September 2020), the WASE
COVID-19 Study enrolled 870 patients from 13 centers in nine



Table 1 Demographic characteristics of all patients in the study, those inwhom therewas amanual read or an AI read, and those in
whom both manual and AI reads were available

All patients (N = 870) Manual reads (n = 699) AI reads (n = 511) Both AI and manual reads (n = 476)

Patient demographics

Age, y 59.38 6 15.07 59.58 6 15.00 59.94 6 15.03 60.06 6 14.94

Sex

Female 381 (43.8) 303 (43.3) 229 (44.8) 210 (44.1)

Male 488 (56.1) 395 (56.5) 281 (55.0) 265 (55.7)

Unknown 1 (0.1) 1 (0.1) 1 (0.2) 1 (0.2)

Ethnicity

White non-Hispanic 197 (22.6) 153 (21.9) 125 (24.5) 121 (25.4)

White Hispanic 152 (17.5) 110 (15.7) 83 (16.2) 72 (15.1)

Black 136 (15.6) 111 (15.9) 98 (19.2) 92 (19.3)

Asian 271 (31.1) 230 (32.9) 137 (26.8) 130 (27.3)

Mixed 72 (8.3) 64 (9.2) 53 (10.4) 47 (9.9)

Other 34 (3.9) 25 (3.6) 13 (2.5) 12 (2.5)

Unknown 8 (0.9) 6 (0.9) 2 (0.4) 2 (0.4)

Clinical parameters

Blood pressure

SBP, mm Hg 123.3 6 19.30 124.2 6 19.12 126.5 6 19.13 127 6 19.18

DBP, mm Hg 74.57 6 12.15 74.86 6 12.30 75.45 6 12.09 75.68 6 12.20

Heart rate, beats/min 85.26 6 15.46 84.32 6 15.25 84.95 6 15.22 84.71 6 14.99

Status at initial TTE study

ICU 402 (46.2) 316 (45.2) 216 (42.3) 201 (42.2)

Mechanical ventilation 236 (27.1) 182 (26.0) 116 (22.7) 107 (22.5)

Hemodynamic support 155 (17.8) 120 (17.2) 74 (14.4) 69 (14.5)

Previous conditions

Heart disease 544 (62.5) 438 (62.7) 304 (59.5) 286 (60.1)

Lung disease 127 (14.6) 98 (14.0) 72 (14.1) 65 (13.7)

Kidney disease 80 (9.2) 65 (9.3) 49 (9.6) 48 (10.1)

Hypoxemia 24 (2.8) 17 (2.4) 11 (2.2) 11 (2.3)

Biomarkers

BNP

Abnormal 160 (18.4) 131 (18.7) 97 (19.0) 94 (19.7)

Borderline 46 (5.3) 40 (5.7) 32 (6.3) 31 (6.5)

Normal 153 (17.6) 121 (17.3) 104 (20.4) 98 (20.6)

Not measured 511 (58.7) 407 (58.2) 278 (54.4) 253 (53.2)

CRP

Abnormal 635 (73.0) 501 (71.7) 371 (72.6) 344 (72.3)

Borderline 51 (5.9) 37 (5.3) 26 (5.1) 23 (4.8)

Normal 106 (12.2) 92 (13.2) 70 (13.7) 66 (13.9)

Not measured 78 (9.0) 69 (9.9) 44 (8.6) 43 (9.0)

Outcome

Death (in-hospital) 188 (21.6) 152 (21.7) 98 (19.18) 91 (19.36)

Death (follow-up) 238 (27.4) 192 (27.5) 132 (25.8) 123 (26.2)

CRP, C-reactive protein; DBP, diastolic blood pressure; SBP, systolic blood pressure.
Data are expressed as mean 6 SD or as number (percentage).
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Figure 1 Flowchart describing feasibility of analysis in each round. Manual reads were performed by randomly selected operator
from a pool of seven experts. Manual rounds 1 and 2 were performed blindly by the same operator to derive intraobserver variability.
Round 3was performed by a different operator to derive interobserver variability. AI analysis was performed in two separate rounds to
test consistency in selection of the specific cardiac cycle and to test intraobserver variability. A total of 476 echocardiograms were
successfully analyzed both in at least one manual and one AI run.
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countries (Table 1). By protocol design, all patients were hospitalized
at the time of the initial TTE examination, 46.2%were admitted to an
ICU, 27.1% were receiving mechanical ventilation, and 17.9% were
on hemodynamic support (inotropic drugs, vasopressors, intra-
aortic balloon pump, or LV assist device). TTE studies were obtained
a median of 3 days after admission (interquartile range, 1-9 days). The
mean time to follow-up was 230 6 115 days. Overall, 238 patients
(27.4%) died at time of final follow-up ($3 months from the time
of COVID-19 admission), 188 (21.6%) during the initial hospitaliza-
tion, and 50 (5.7%) during subsequent outpatient follow-up (Table 1).

Out of the 870 echocardiograms obtained, 449 (52%), 453 (52%),
and 624 (72%) cases were successfully manually contoured in
manual rounds 1, 2, and 3, respectively. Overall, 699 cases (80%)
were manually contoured in at least one of the three manual rounds
(Figure 1). AI-based contouring was performed on all 870 cases, and
the final contours were approved or rejected by a trained operator. In
the first AI round, 511 cases (59%) were approved for analysis (rea-
Table 2 Interoperator agreement using manual or AI-based analy

Method Measure Frame selection n R (Pearson correl

AI LVEF All 385 0.853 (0.824

Manual 319 0.670 (0.605

AI LVEF Same 49 0.996 (0.994

Manual 14 0.683 (0.239

AI LVEF Different 336 0.832 (0.796

Manual 305 0.671 (0.504

AI LVLS All 385 0.789 (0.784

Manual 339 0.430 (0.336

AI LVLS Same 49 0.987 (0.977

Manual 14 0.497 (<0.00

AI LVLS Different 296 0.761 (0.712

Manual 305 0.427 (0.330

ICC, Intraclass correlation coefficient.
sons for missing analysis were as follows: 166 were considered by
the operator to be of poor image quality, 43 were missing the needed
views, and the rest had image formatting incompatibilities or other
technical problems). In the second AI round (performed by different
operators), 449 cases were approved. A total of 476 studies (54.7%)
were successfully analyzed by both human experts and AI (Figure 1).
For the manual quantification, different cycles and end-diastolic and
end-systolic frames were selected by the operators in 305 cases
compared with 336 with different operators using the AI program
(Table 2).
Differences between Manual and AI Contouring

Therewas substantial overlap in the frequency distribution histograms
of LVEF and LVLS measurements between manual and AI analysis.
The intermethod analysis demonstrated a mean difference of
�1.756 (95% CI, �2.704 to �0.808; P < .001) for LVEF and
sis and dependent on frame selection

ation) (95% CI) ICC (95% CI) Coefficient of variation, %

-0.878) 0.854 (0.824-0.879) 10.74

-0.727) 0.655 (0.573-0.722) 19.74

-0.998) 0.996 (0.993-0.998)

-0.891) 0.680 (0.240-0.886)

-0.862) 0.832 (0.796-0.862)

-0.728) 0.654 (0.569-0.723)

-0.824) 0.789 (0.748-0.824) 19.15

-0.515) 0.430 (0.336-0.515) 39.95

-0.993) 0.987 (0.977-0.993)

1-0.813) 0.510 (<0.001-0.814)

-0.803) 0.761 (0.712-0.803)

-0.514) 0.426 (0.330-0.514)



Figure 2 AI interreader variability according to frame selection.
The vertical axis demonstrates variation from read 1 to read 2.
Interreader variability in LVEF and LVLS was larger when there
was discordance in frame selection for the measurements (left
plots). When the same frame was selected for measurement of
LVEF and LVLS, variability was minimal (right plots).
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�1.614 (95% CI, 2.140 to �1.087; P < .001) for LVLS. Interobserver
intraclass correlation coefficients for manual and AI reads are pro-
vided in Table 2, demonstrating lower interoperator reproducibility
for manual compared with AI reads. This reproducibility was further
reduced when operators chose different end-diastolic and end-
systolic frames compared with when they selected the same frames.
When choosing the same frames, the AI reads showed near perfect
interoperator reproducibility, which was reduced when choosing
different cycles, although it remained substantially better than for
the manual reads (Figure 2). Using a general linear mixed model,
the variability contributions attributed to operator, image quality,
and cycle frame selection were calculated for manual and AI reads
of LVEF and LVLS (Table 3). Frame selection contributed minimally
to interoperator variability both for the manual and AI reads. On
sensitivity analysis, a one-frame difference in diastolic contouring rep-
resented a mean LVEF change of 0.5 6 5.2% and a mean LVLS
change of �0.4 6 2.8% (a shift up to two frames did not change
the associations with outcomes). However, the variability attributed
to the operator in the manual reads (47.4% and 51.8% of the total
Table 3 Within-patient variability across manual and AI reads

Variable

LVEF

Manual AI

Variability (% total) Variability (%

Frame 1.033 (1.40) 2.362 (6.3

Operator 34.946 (47.39) 0.067 (0.1

Reading round <0.0001 (<0.001) 0.016 (0.0

Image quality <0.0001 (<0.0001) <0.0001 (<0.

Using a general linear mixed model, variability components for random nes

percentage of the total.
variability for LVEF and LVLS, respectively) was disproportionately
higher compared with the variability attributed to the operator in
the AI reads (0.18% and 1.42% of the total variability). Image quality
did not contribute to the observed variability.

Given that the operators represented the greatest source of vari-
ability by general linear mixed model analysis, operator influence on
the variability in LVEF and LVLS in manual and AI measurements
was visualized using principal-component analysis (Supplemental
Figure 1). This showed improved clustering of datapoints by AI anal-
ysis compared with the manual reads. The difference in variability
between manual and AI analysis was significant using the Levene
test for both LVEF (P = .003, F = 8.898, df = 1) and LVLS
(P = .005, F = 7.982, df = 1), which attributed to a higher statistical
power. Using the variability components for manual and AI reads,
manual reads would require a 1.8-fold increase in sample size to
achieve the same power (1 � b = 0.8) as AI reads. Correlations be-
tween LVEF or LVLS and other biomarkers were stronger for AI-
based than manual contouring, but they were low overall
(Supplemental Table 2).
Predicting Mortality with AI versus Manual LV Analysis

Univariable logistic regression showed that both LVEF and LVLSwere
significant predictors of mortality when measured with AI contouring
but not when done manually by experts (Supplemental Table 1). This
was true for both in-hospital and overall mortality (Table 4) and when
only the 4CH views were used (single-plane analysis). LV volumes, on
the other hand, failed to show predictive value when obtained by
eithermanual orAI analysis. AI-derived LVEF and LVLS showed signif-
icant association with mortality both in-hospital and at final follow-up
and when analyzed as a continuous or categorical variable. For the
manual reads, only LS analyzed as a categorical variable
(cutoff =�16%, obtained from receiver operating characteristic anal-
ysis) was a predictor of in-hospital mortality. In univariable logistic
regression, multiple additional variables showed significant predictive
value for mortality both in-hospital and through the final follow-up:
age, admission to the ICU, requiring mechanical ventilation or hemo-
dynamic support, previous heart disease or lung disease, C-reactive
protein, and BNP (Table 4).

When including the human or AI echocardiographic measure-
ments in a forward-step multivariable logistic regression that indepen-
dently selected BNP as a covariate when restricted to LVEF inclusion,
and BNP and need for mechanical ventilation as covariates when
restricted to LVLS inclusion, a proportionally higher increase in
odds ratio (albeit fairly modest) was apparent for AI-based
LVLS

Manual AI

total) Variability (% total) Variability (% total)

0) 0.876 (2.74) 0.588 (5.96)

8) 16.537 (51.81) 0.140 (1.42)

4) 0.115 (0.36) 0.109 (1.11)

0001) <0.0001 (<0.0001) <0.0001 (<0.0001)

ted effect were calculated and described. Variability is expressed as a



Table 4 Univariable logistical regression against outcomes across AI and manual reads

Parameter

Mortality

In-hospital Follow-up

Odd ratio (95% CI) P Odds ratio (95% CI) P

Echocardiographic parameters (continuous)

LVEF manual 0.985 (0.969-1.003) .083 0.990 (0.975-1.005) .187

LVEF AI 0.970 (0.952-0.988) .001 0.974 (0.956-0.991) .003

LVLS manual 1.035 (0.999-1.074) .058 1.024 (0.991-1.059) .155

LVLS AI 1.082 (1.035-1.132) <.001 1.060 (1.019-1.105) .004

LVESV manual* 1.085 (0.806-1.456) .588 1.050 (0.799-1.378) .724

LVESV AI* 1.289 (0.935-1.771) .118 1.097 (0.801-1.495) .558

LVEDV manual* 1.087 (0.810-1.454) .575 1.050 (0.799-1.378) .724

LVEDV AI* 1.073 (0.675-1.700) .876 1.966 (0.622-1.493) .877

Echocardiographic parameters (categorical)

LVEF manual (reference <60%) 0.729 (0.457-1.159) .182 0.729 (0.457-1.159) .182

LVEF AI (reference <60%) 0.452 (0.282-0.722) .001 0.479 (0.311-0.736) .001

LVLS manual (reference <�16%) 2.061 (1.268-3.334) .003 2.061 (1.268-3.334) .003

LVLS AI (reference <�16%) 2.616 (1.833-4.208) <.001 1.887 (1.223-2.911) .004

Significant clinical parameters

Age 1.030 (1.013-1.048) <.001 1.026 (1.012-1.042) <.001

Status at initial TTE study

ICU 6.139 (3.650-10.708) <.001 3.777 (2.441-5.915) <.001

Ventilator 10.800 (6.421-18.491) <.001 7.215 (4.422-11.951) <.001

LV support 7.080 (4.054-12.504) <.001 6.295 (3.583-11.334) <.001

Previous conditions

Heart disease 1.907 (1.160-3.216) .013 1.540 (0.989-2.429) .059

Lung disease 1.952 (1.065-3.488) .0263 1.391 (0.722-2.290) .370

Biomarkers

CRP (reference normal)

Borderline 1.157 (0.055-9.714) .902 8.625 (1.785-63.116) .013

Abnormal 6.956 (2.484-29.042) .001 11.611 (3.497-71.959) <.001

BNP (reference normal)

Borderline 2.115 (0.596-6.911) .221 1.962 (0.726-5.138) .173

Abnormal 4.433 (1.971-11.017) <.001 2.333 (1.188-4.715) .016

DBP 0.959 (0.934-0.983) <.001 0.974 (0.952-0.995) .016

CRP, C-reactive protein; DBP, diastolic blood pressure; LVEDV, LV end-diastolic volume; LVESV, LV end-systolic volume.
Only parameters with P values < .05 in univariate logistic regression (binomial with logit link) are included. Odds ratios were analyzed as continuous

variable in 1% increments.

*Log2-transformed values.
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measurements compared with those produced by manual human
analysis (Table 5). As expected, AI LVLS values (but not manual
values) were a significant predictor in the nonventilated group. In
the ventilated group, however, prediction was dominated by the
ventilation factor for the LVLS models, rendering in no significant
addition in prediction of the other parameters.

Results of multivariable logistic regression models using AI and
manual measurements correcting for other clinical variables are pre-
sented in Table 6.

The Cox regression analysis for in-hospital mortality (Supplemental
Table 3) produced results similar to those observed with the logistic
regression, with AI reads showing significant hazards compared with
manual reads (Figure 3). Further cumulative hazards for cases read
manually or with AI for in-hospital mortality are shown in Figure 4.

For direct head-to-head comparison of AI versus manual measure-
ments, the increase in prognostic value was compared directly using a
likelihood ratio test comparing both prognostic models for goodness
of fit to all-cause mortality. In this analysis, the model with the higher
log likelihood is the one that fits the outcome better. The log likeli-
hood was �220.92 for manual LVEF and �217.19 for AI contouring
(P= .005), indicating better goodness of fit for the AI model. Similarly,
the log likelihood for the LVLS manual model was �220.54 and
�216.21 for AI contouring (P = .003), also indicating better goodness
of fit for the AI model.



Table 5 Multivariable forward-step logistical regression for outcomes by AI and manual reads

Parameter

Model 1 (LVEF manual) Model 2 (LVEF AI) Model 3 (LVLS manual) Model 4 (LVLS AI)

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

LVEF manual 0.992 (0.967-1.018) .532

LVEF AI 0.971 (0.945-0.997) .028

LVLS manual 1.038 (0.975-1.108) .254

LVLS AI 1.096 (1.022-1.179) .012

BNP

Borderline 2.069 (0.581-6.776) .236 1.795 (0.498-5.951) .346 1.238 (0.317-4.395) .746 0.909 (0.214-3.448) .892

Abnormal 3.998 (1.664-10.472) .003 3.134 (1.292-8.209) .014 2.896 (1.120-8.026) .033 2.662 (1.073-7.093) .040

Mechanical
ventilation

6.927 (3.000-16.500) <.001 7.582 (3.202-18.712) <.001

In patients on

mechanical
ventilation

LVLS manual 0.980 (0.866-1.105) .714

LVLS AI 1.093 (0.967-1.260) .178

BNP

Borderline 2.391 (0.317-23.200) .410 1.571 (0.185-16.350) .683

Abnormal 5.091 (0.785-47.10) .108 3.951 (0.668-32.951) .151

In patients not on

mechanical

ventilation

LVLS manual 1.064 (0.988-1.154) .116

LVLS AI 1.096 (1.006-1.201) .042

BNP

Borderline 0.576 (0.029-3.685) .621 0.574 (0.029-3.690) .619

Abnormal 2.323 (0.777-7.542) .140 2.359 (0.816-7.408) .121

The step-wise method uses Akaike information criterion metrics to build the stepwise model. Odds ratios were analyzed as continuous variable in

1% increments.
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DISCUSSION

In this study, we applied AI-based technology to perform automated
echocardiographic analysis of LV function. We have shown that quan-
tifying LV systolic function with AI was feasible in a similar proportion
of cases to manual contouring and that AI contours had less vari-
ability, although in many cases in our study it was performed solely
from a 4CH view (32.8% and 29.6% for AI and manual measure-
ments, respectively) because of limited acquisition (as opposed to
the recommended biplane or three-plane methods). Furthermore,
the use of AI increased the statistical power of both LVEF and LVLS
to predict all-cause mortality in hospitalized patients with COVID-
19 across different health care settings, using different TTE platforms,
and in a wide spectrum of image quality. Our findings highlight the
role of AI-assisted echocardiography in prediction of outcomes and
how it complements the prognostic role of other important clinical
variables such as requirement of mechanical ventilation.

Variability in Echocardiographic Analysis

The current American Society of Echocardiography guidelines
recommend that LVEF be measured using the Simpson biplane
method of disks, which involves manual tracing of the LV borders
in both apical 4CH and two-chamber views.20 However, quantifica-
tion by echocardiography is susceptible to significant inter- and intra-
observer variability, because of inherent subjectivity in endocardial
border delineation.21 Variability in measurements between readers
can occur because of beat-to-beat variations in LV size and shape
(i.e., respiratory cycle or arrhythmia), as well as reader bias resulting
from knowledge of patient diagnosis, condition, or previous results.
To address variability among readers, there has been growing interest
in the development of automated software tools.12,22,23 In this study,
the major source of variability was found to be differences in manual
contouring between the operators. Although differences in acquisi-
tion technique (i.e., sonographer experience, echocardiographic
equipment) could also account for variability, all readers in our study
(including the AI software) were presented with the same echocardio-
grams, thus eliminating this potential source of inconsistency, while
focusing on the analysis variability (specific loop selection and con-
touring). It is evident from our results that automated, AI-based anal-
ysis reduces variability almost exclusively to the selection of frames to
bemeasured (within the same or different cardiac cycles), which is the
only phase of this analysis in which humans can provide input while
using this specific AI software (as the AI-based analysis has a human
component, it is therefore not strictly automated). It is foreseeable



Table 6 Multivariate logistic regression models with in-hospital or follow-up death as outcome variables

Parameters

In-hospital death Follow-up

OR (95% CI) P OR (95% CI) P

Model A

LVEF, manual 0.984 (0.964-1.004) .121 0.988 (0.970-1.005) .166

Age 1.041 (1.020-1.063) <.001 1.031 (1.014-1.049) <.001

Sex (reference: female) 0.945 (0.541-1.650) .841 0.912 (0.561-1.483) .709

ICU (reference: no) 2.085 (1.053-4.124) .034 1.450 (0.800-2.585) .213

Ventilation 7.623 (3.685-16.294) <.001 5.118 (2.590-10.367) <.001

Hemodynamic support 1.423 (0.674-2.969) .350 1.824 (0.882-3.761) .103

Model B

LVEF, AI 0.974 (0.952-0.996) .022 0.976 (0.957-0.996) .017

Age 1.041 (1.020-1.064) <.001 1.031 (1.014-1.050) <.001

Sex (reference: female) 0.913 (0.521-1.601) .749 0.893 (0.548-1.457) .651

ICU (reference: no) 1.994 (1.004-3.952) .047 1.397 (0.769-2.498) .264

Ventilation 7.948 (3.827-17.027) <.001 5.345 (2.696-10.856) <.001

Hemodynamic support 1.308 (0.615-2.742) .481 1.692 (0.814-3.506) .156

Model C

LVLS, manual 1.017 (0.975-1.062) .450 1.014 (0.976-1.054) .471

Age 1.041 (1.020-1.064) <.001 1.031 (1.014-1.050) <.001

Sex (reference: female) 0.942 (0.539-1.646) .832 0.912 (0.561-1.484) .711

ICU (reference: no) 2.127 (1.071-4.223) .030 1.459 (0.802-2.616) .209

Ventilation 7.452 (3.601-15.915) <.001 5.089 (2.568-10.331) <.001

Hemodynamic support 1.369 (0.645-2.861) .408 1.761 (0.851-3.627) .125

Model D

LVLS, AI 1.056 (1.003-1.114) .039 1.043 (0.997-1.092) .072

Age 1.040 (1.019-1.063) <.001 1.031 (1.014-1.049) <.001

Sex (reference: female) 0.900 (0.510-1.572) .700 0.892 (0.548-1.453) .644

ICU (reference: no) 2.052 (1.037-4.057) .038 1.428 (0.789-2.546) .232

Ventilation 7.660 (3.691-16.430) <.001 5.229 (2.640-10.623) <.001

Hemodynamic support 1.308 (0.611-2.755) .483 1.680 (0.806-3.481) .163

Eachmodel contains the variables age, sex, ICU admission, ventilation, and hemodynamic support together with either manual or AI-derived LVEF

or LVLS. Odds ratios were analyzed as continuous variable in 1% increments.
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that a combination of an AI analysis and AI-guided acquisition could
further reduce variability.

In a multicenter study by Knackstedt et al.,24 a fully automated
analysis of two-dimensional echocardiograms provided both rapid
and reproducible assessment of LVEF and LVLS. The investigators
Figure 3 Forest plot for Cox proportional hazard regression
against outcomes across AI and manual reads. EF, LV ejection
fraction; LS, LV longitudinal strain.
found significant differences in interobserver variability among study
sites but no significant variability with respect to the automated LVEF
tracings, findings similar to our study and to those in other fields, such
as cardiac magnetic resonance or computed tomography.25-27
Novel Uses of AI in Echocardiography

A recent study by Asch et al.,12 using an unconventional algorithm for
automated LVEF calculation, helped pave the way for our present
study using a different, novel deep learning algorithm to analyze a
large cohort of patients with acute COVID-19. The good perfor-
mance of the AI analysis in our study was possible despite challenges
with image quality, which is a common problem in patients with acute
COVID-19 or other diseases in the ICU or on mechanical ventilation.
In the European Association of Cardiovascular Imaging/American
Society of Echocardiography Inter-Vendor Comparison Study, it
was possible to analyze LVLS in 72% to 100% of studies, a higher pro-
portion than in our study.28 In this study, participants were scanned in
a dedicated research setting, while in ours, all were inpatients with
acute COVID-19, many intubated in an ICU setting with significant



Figure 4 Kaplan-Meier cumulative hazards plots for Cox proportional hazard regression against in-hospital (<30-day) mortality
across LVLS manual (A), LVLS AI (B), LVEF manual (C), and LVEF AI (D) reads.
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difficulties imposed by strict safety precautions.18 As a result, most
centers performed limited TTE studies, such that the median number
of video loops was 32 (interquartile range, 19-42), manywithout elec-
trocardiography.

The value of AI in cardiac imaging, however, goes beyond image
analysis.29,30 Recent advances have made automated image acquisi-
tion, segmentation, and interpretation possible across multiple imag-
ing modalities, including computed tomography, cardiac magnetic
resonance imaging, and echocardiography.22,31 Automated LVEF
and LVLS analysis and even disease identification are possible through
the use of convolutional neural networks.15,32,33 Lang et al.13 recently
described in healthy adults the high performance of a novel deep
learning algorithm that automatically identifies and organizes images
into ‘‘thematic stacks,’’ while making automated measurements to
accelerate and streamline the image review process.13 In our study,
AI software was able to reliably quantify LVEF and LVLSwith less vari-
ability than manual expert readers.
Reduced Variability Improves Prediction of Outcomes

By reducing variability, prediction models can be more powerful and
accurate than conventional interpretation by expert readers. AI con-
touring resulted in a marked increase in association to clinical out-
comes, predicting mortality to a greater degree of accuracy and
with increased correlations to other objective serum biomarkers.
The predictive ability of AI-based measurements was additive and in-
dependent to that of other clinical variables in patients without me-
chanical ventilation. In the ventilated group, however, prediction
was dominated by the ventilation factor. It is postulated that this is
due to a more consistent or predictable behavior associated with AI
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quantification, possibly subject to fewer human biasing factors. Until
recently, AI-based algorithms for predicting outcomes from cardiac
imaging were based on databases comprising static images or reports
rather than video analysis.10,11,34 More recently, however, the use of
AI-assisted analysis of echocardiographic videos in a broad population
has shown to be superior in predicting mortality than other clinical
prediction models or the cardiologist’s impression from echocardio-
graphic and clinical data.16 In a different study of nonacute asymp-
tomatic patients with risk factors for heart failure, automated LVLS
measurement was not superior to semiautomated analysis in predict-
ing future cardiac events.35 Our study is unique in that the improved
predictive ability was achieved with a simple AI output of a single
echocardiographic variable (LVEF or LVLS) and was further improved
by combination with biomarkers. To our knowledge, this is the first
report on the use of AI-based automated echocardiographic analysis
for prediction of mortality in patients with acute COVID-19. Our
study highlights that more sensitive results can be obtained using AI
compared with manual measurements, which does not conflict
with prior data supporting the value of LVLS as a predictive tool in
other disease states.
Limitations

The main limitations of the study are that patients were enrolled in a
retrospective manner, with no echocardiographic standardized acqui-
sition. In addition, although image analysis was standardized, not all
echocardiograms could be quantified. Although these findings may
be applicable to patients with COVID-19, they do not necessarily
apply to other disease states or other AI technologies. However, if
these findings were broadened to awider patient population with bet-
ter image quality, it is conceivable that AI contouring could be feasible
in a much higher proportion of patients. Were this to be the case, then
AI could increase statistical power to predict outcomes, possibly
requiring smaller sample sizes in clinical trials. The application of
this methodology should thus be further assessed in more typical car-
diology patient cohorts and clinical settings. Finally, we acknowledge
that our study was a focused evaluation of LV variables and that we
were looking at the relative contribution of these variables versus
the clinical course of the patient, which is an important consideration
in the setting of this highly ill population.
CONCLUSION

Automated quantification of LVEF and LVLS using AI in the WASE
COVID-19 Study had similar feasibility to manual contouring, mini-
mized variability, and consequently increased the statistical power
to predict mortality. AI-based but not manual analyses were signifi-
cant predictors of in-hospital and follow-up mortality. Application
of this technology to other diseases or clinical trials may increase
the accuracy of predicting outcomes or detecting clinical changes
over time.
ACKNOWLEDGMENTS

We thank Victor Mor-Avi of the University of Chicago; Katie Ions,
Nancy Spagou, Alex Hudson, Jake Kenworthy, Lokken Wong,
Angela Mumith, Will Hawkes, and Louise A. Tetlow of Ultromics;
Andrea Van Hoever of the American Society of Echocardiography;
and Patricia Marques, Gaynor Jones, Seamus Walker, Gurpreet
Dhadday, Aiko Nepomuceno, Jherick Tay, Claire Mitchell, Sarah
Hastings, Emma-Jayne Robins.
REFERENCES

1. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prev-
alence and impact of myocardial injury in patients hospitalized with
COVID-19 infection. J Am Coll Cardiol 2020;76:533-46.

2. Uriel N, Sayer G, Clerkin KJ. Myocardial injury in COVID-19 patients: the
beginning or the end. J Am Coll Cardiol 2020;76:547-9.

3. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac
injury with mortality in hospitalized patients with COVID-19 in Wuhan,
China. JAMA Cardiol 2020;5:802-10.

4. Abbasi J. Researchers investigate what COVID-19 does to the heart.
JAMA 2021;325:808-11.

5. Li Y, Li H, Zhu S, Xie Y, Wang B, He L, et al. Prognostic value of right ven-
tricular longitudinal strain in patients with COVID-19. JACC Cardiovasc
Imaging 2020;13:2287-99.

6. Szekely Y, Lichter Y, Taieb P, Banai A, Hochstadt A, Merdler I, et al. Spec-
trum of cardiac manifestations in COVID-19: a systematic echocardio-
graphic study. Circulation 2020;142:342-53.

7. Citro R, Pontone G, BellinoM, Silverio A, Iuliano G, Baggiano A, et al. Role
of multimodality imaging in evaluation of cardiovascular involvement in
COVID-19. Trends Cardiovasc Med 2021;31:8-16.

8. Kirkpatrick JN, Grimm R, Johri AM, Kimura BJ, Kort S, Labovitz AJ, et al.
Recommendations for echocardiography laboratories participating in car-
diac point of care cardiac ultrasound (POCUS) and Critical care echocar-
diography training: report from the American Society of
Echocardiography. J Am Soc Echocardiogr 2020;33:409-22.e4.

9. Shi S, QinM, Cai Y, Liu T, Shen B, Yang F, et al. Characteristics and clinical
significance of myocardial injury in patients with severe coronavirus dis-
ease 2019. Eur Heart J 2020;41:2070-9.

10. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-
Mallah MH, et al. Machine learning for prediction of all-cause mortality
in patients with suspected coronary artery disease: a 5-year multicentre
prospective registry analysis. Eur Heart J 2017;38:500-7.

11. Samad MD, Ulloa A, Wehner GJ, Jing L, Hartzel D, Good CW, et al. Pre-
dicting survival from large echocardiography and electronic health record
datasets: optimization with machine learning. JACC Cardiovasc Imaging
2019;12:681-9.

12. Asch FM, Poilvert N, Abraham T, Jankowski M, Cleve J, Adams M, et al.
Automated echocardiographic quantification of left ventricular ejection
fraction without volume measurements using a machine learning algo-
rithm mimicking a human expert. Circ Cardiovasc Imaging 2019;12:
e009303.

13. Lang RM, Addetia K, Miyoshi T, Kebed K, Blitz A, Schreckenberg M, et al.
Use of machine learning to improve echocardiographic image interpreta-
tion workflow: a disruptive paradigm change. J Am Soc Echocardiogr
2021;34:443-5.

14. Narang A, Bae R, Hong H, Thomas Y, Surette S, Cadieu C, et al. Utility of a
deep-learning algorithm to guide novices to acquire echocardiograms for
limited diagnostic use. JAMA Cardiol 2021;6:1-9.

15. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L,
et al. Fully automated echocardiogram interpretation in clinical practice.
Circulation 2018;138:1623-35.

16. Ulloa Cerna AE, Jing L, Good CW, vanMaanen DP, Raghunath S,
Suever JD, et al. Deep-learning-assisted analysis of echocardiographic

http://refhub.elsevier.com/S0894-7317(22)00351-0/sref1
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref1
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref1
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref2
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref2
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref3
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref3
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref3
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref4
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref4
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref5
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref5
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref5
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref6
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref6
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref6
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref7
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref7
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref7
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref8
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref8
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref8
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref8
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref8
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref9
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref9
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref9
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref10
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref10
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref10
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref10
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref11
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref11
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref11
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref11
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref12
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref12
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref12
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref12
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref12
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref13
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref13
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref13
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref13
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref14
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref14
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref14
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref15
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref15
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref15
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref16
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref16
https://doi.org/10.1016/j.echo.2022.07.004
https://doi.org/10.1016/j.echo.2022.07.004


12 Asch et al Journal of the American Society of Echocardiography
- 2022
videos improves predictions of all-cause mortality. Nat Biomed Eng 2021;
5:546-54.

17. Drake DH, De Bonis M, Covella M, Agricola E, Zangrillo A,
Zimmerman KG, et al. Echocardiography in pandemic: front-line perspec-
tive, expanding role of ultrasound, and ethics of resource allocation. J Am
Soc Echocardiogr 2020;33:683-9.

18. Kirkpatrick JN, Mitchell C, Taub C, Kort S, Hung J, Swaminathan M. ASE
statement on protection of patients and echocardiography service pro-
viders during the 2019 novel coronavirus outbreak: endorsed by the
American College of Cardiology. J Am Soc Echocardiogr 2020;33:
648-53.

19. Karagodin I, Carvalho Singulane C, Woodward GM, Xie M, Tucay ES,
Tude Rodrigues AC, et al. Echocardiographic correlates of in-hospital
death in patients with acute COVID-19 infection: the World Alliance So-
cieties of Echocardiography (WASE-COVID) study. J Am Soc Echocar-
diogr 2021;34:819-30.

20. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al.
Recommendations for cardiac chamber quantification by echocardiogra-
phy in adults: an update from the American Society of Echocardiography
and the European Association of Cardiovascular Imaging. J Am Soc Echo-
cardiogr 2015;28:1-39.e14.

21. Muraru D, Badano LP. Quantitative analysis of the left ventricle by echo-
cardiography in daily practice: as simple as possible, but not simpler. J Am
Soc Echocardiogr 2014;27:1025-8.

22. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, et al.
Artificial intelligence in cardiovascular imaging: JACC state-of-the-art re-
view. J Am Coll Cardiol 2019;73:1317-35.

23. Medvedofsky D, Mor-Avi V, Amzulescu M, Fern�andez-Golf�ın C,
Hinojar R, Monaghan MJ, et al. Three-dimensional echocardiographic
quantification of the left-heart chambers using an automated adaptive an-
alytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Im-
aging 2018;19:47-58.

24. Knackstedt C, Bekkers SC, Schummers G, Schreckenberg M, Muraru D,
Badano LP, et al. Fully automated versus standard tracking of left ventric-
ular ejection fraction and longitudinal strain: the FAST-EFs multicenter
study. J Am Coll Cardiol 2015;66:1456-66.
25. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Auto-
mated cardiovascular magnetic resonance image analysis with fully convo-
lutional networks. J Cardiovasc Magn Reson 2018;20:65.

26. Tao Q, Yan W, Wang Y, Paiman EHM, Shamonin DP, Garg P, et al. Deep
learning-based method for fully automatic quantification of left ventricle
function from cine MR images: a multivendor, multicenter study. Radi-
ology 2019;290:81-8.

27. Asch FM, Yuriditsky E, Prakash SK, RomanMJ, Weinsaft JW, Weissman G,
et al. The need for standardized methods for measuring the aorta: multi-
modality core lab experience from the GenTAC registry. JACCCardiovasc
Imaging 2016;9:219-26.

28. Farsalinos KE, Daraban AM, €Unl€u S, Thomas JD, Badano LP, Voigt JU.
Head-to-head comparison of global longitudinal strain measurements
among nine different vendors: the EACVI/ASE Inter-Vendor Comparison
Study. J Am Soc Echocardiogr 2015;28:1171-81.e2.

29. Lim LJ, Tison GH, Delling FN. Artificial intelligence in cardiovascular im-
aging. Methodist Debakey Cardiovasc J 2020;16:138-45.

30. Quer G, Muse ED, Nikzad N, Topol EJ, Steinhubl SR. Augmenting diag-
nostic vision with AI. Lancet 2017;390:221.

31. Krittanawong C, Johnson KW, Rosenson RS, Wang Z, Aydar M, Baber U,
et al. Deep learning for cardiovascular medicine: a practical primer. Eur
Heart J 2019;40:2058-73.

32. Narula S, Shameer K, SalemOmar AM,Dudley JT, Sengupta PP. Machine-
learning algorithms to automate morphological and functional assess-
ments in 2D echocardiography. J Am Coll Cardiol 2016;68:2287-95.

33. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, et al.
Cognitivemachine-learning algorithm for cardiac imaging: a pilot study for
differentiating constrictive pericarditis from restrictive cardiomyopathy.
Circ Cardiovasc Imaging 2016;9:e004330.

34. Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep echocardiography:
data-efficient supervised and semi-supervised deep learning towards auto-
mated diagnosis of cardiac disease. NPJ Digit Med 2018;1:59.

35. Kawakami H, Wright L, Nolan M, Potter EL, Yang H, Marwick TH. Feasi-
bility, reproducibility, and clinical implications of the novel fully auto-
mated assessment for global longitudinal strain. J Am Soc Echocardiogr
2021;34:136-45.e2.

http://refhub.elsevier.com/S0894-7317(22)00351-0/sref16
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref16
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref17
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref17
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref17
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref17
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref18
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref18
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref18
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref18
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref18
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref19
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref19
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref19
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref19
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref19
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref20
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref20
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref20
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref20
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref20
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref21
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref21
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref21
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref22
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref22
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref22
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref23
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref23
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref23
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref23
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref23
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref23
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref23
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref24
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref24
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref24
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref24
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref25
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref25
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref25
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref26
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref26
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref26
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref26
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref27
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref27
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref27
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref27
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref28
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref28
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref28
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref28
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref28
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref28
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref29
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref29
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref30
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref30
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref31
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref31
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref31
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref32
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref32
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref32
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref33
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref33
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref33
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref33
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref34
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref34
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref34
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref35
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref35
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref35
http://refhub.elsevier.com/S0894-7317(22)00351-0/sref35


Journal of the American Society of Echocardiography
Volume - Number -

Asch et al 12.e1
ADDITIONAL WASE COVID INVESTIGATORS

Vince Ryan V. Munoz, MD (Philippine Heart Center, Quezon City,
Philippines); Rafael Porto De Marchi, MD (Radiology Institute of
the University of S~ao Paulo Medical School, S~ao Paulo, Brazil);
Sergio M. Alday-Ramirez, PhD, and Consuelo Orihuela, MD
(Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City,
Mexico); Anita Sadeghpour, MD, FASE (Rajaie Cardiovascular
Medical and Center, Echocardiography Research Center, Iran
University of Medical Science, Tehran, Iran); Jonathan Breeze, MD,
and Amy Hoare (King’s College Hospital, London, United
Kingdom); Carlos Ixcanparij Rosales, MD (Centro Nacional 20 de
Noviembre, ISSSTE, Mexico City, Mexico); Ariel Cohen, MD
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SUPPLEMENTARY APPENDIX
DESCRIPTION OF ECHOGO METHODS

The image processing pipeline used consists of two primary AI-based
methods, a view classifier and an auto-contouring model, both
composed of two-dimensional (2D) convolutional neural networks
(CNNs).

All studies consisted of a set of 2D videos in Digital Imaging and
Communications in Medicine format. CNN frameworks were devel-
oped in Python version 3.5 with Keras version 2.2.4 and TensorFlow
version 1.13.
Fig. 1 Modified U-net architecture used for auto-contouring. The fea
the original U-net because the convolutions were set to have half th
For the view classification model, a bespoke CNN was built using
10 convolutional layers that identifies apical two-chamber (A2C),
apical 4CH (A4C), short-axis (SAX), and apical three-chamber
(A3C) views acquired with and without contrast, respectively.
Before view classification model training, images were processed us-
ing standard techniques to ensure homogenous and normalized im-
age inputs. For the view classification model, the categorical cross
entropy between the predicted view probability and manual label
was used as loss function. For optimization, the RMSprop optimizer
was used with an initial learning rate of 1e-4 and a decay rate of 1e-6
to allow time inverse decay of learning rate. We ran our training for
50 epochs or about 165,000 iterations, and the one with the highest
validation accuracy was selected as the best model. Real-time data
augmentation was applied during training to improve model
generalizability.

A U-net-based CNN segmentation frameworks (see Supplemental
Figure X for themodel architecture) was developed to contour the LV
endocardium in A2C and A4C studies. End-diastolic (ED) and end-
systolic (ES) image labels were used to train the CNNs initially
contoured manually by British Society of Echocardiography (BSE)–
accredited echocardiographers.

Raw images were processed and fed into the modified U-net
CNN framework along with their corresponding contours (which
were converted to binary masks so the model could be trained as
a segmentation problem). Real-time data augmentation was per-
formed during training to increase the accuracy of the model. The
efficacy of the network’s segmentation performance was assessed
using the Sørensen-Dice coefficient (DC), and this was used as the
training loss function. The optimization was performed using the
Adam optimizer, with the initial learning rate set to 1e-4, and run
for 400 epochs. The model with the lowest validation loss was
selected for use.
ture depth of the layers is substantially smaller than those used in
e number of filters.
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DEVELOPMENT OF VIEW CLASSIFICATION
studies. Images had been acquired from hospitals with a range of sizes,
View classifier final performance matrix.
Model development and validation were based on a data set of
clinical information and images extracted from several multicenter

types of operators, and ultrasound vendor equipment representative
of ‘‘real world’’ echocardiography. Data were accessed with partici-
pants’ informed consent, and ethical approval for the study was ob-
tained from Health Research Authority National Research Ethics
Service Committee South Central – Berkshire (Integrated Research
Application System reference 14/SC/1437). For model training, a
set of images were identified that included A4C and A2C views,
had endocardial visualization in $14 of 16 segments in available im-
ages (on the basis of consensus review by three BSE-accredited car-
diac physiologists), and had ED and ES frames with a minimum of
four frames between end-diastole and end-systole. The echocardio-
grams were used to develop a series of sequential image processing
algorithms. All studies consisted of a set of 2D videos in Digital
Imaging and Communications inMedicine format. CNN frameworks
were developed using Python version 3.5 with Keras version 2.2.4
and TensorFlow version 1.13. For the view classification model, a
bespoke CNN was built using 10 convolutional layers that identifies
A2C, A4C, SAX, and A3C views acquired with and without contrast,
respectively. Training data comprised 1,250 2D echocardiograms
from 1,014 subjects.
Development of View Classification

Before view classification model training, images were processed us-
ing standard techniques to ensure homogenous and normalized im-
age inputs to the training pipeline. Before processing, the data were
split into 90% for model training (211,958 image frames) and 10%
used as a testing data set (23,946 frames). Image frames from
different subjects were separated out entirely among the training
and testing data sets. Furthermore, a separate validation data set of
240 studies was acquired from the ultrasound testing data and used
as an independent test data set (39,401 frames). Before independent
validation of the entire sequential AI pipeline in the quarantined vali-
dation datasets, image frames from different subjects were separated
out entirely among the training and testing data sets. Overall accuracy
of 95% was achieved for the CNN view classifier used to identify
eight echocardiographic views.
Development of LV Segmentation

Following view classification, a U-net-based CNN segmentation
framework was developed to contour the LV endocardium in the
A2C and A4C views. ED and ES image labels were used to train
the CNNs images initially contoured manually by three BSE-
accredited echocardiographers. The model was trained from data
comprising 5,692 frames. The data sets were split into 80% training
and 20% testing data sets for training the CNNs. Raw images were
processed and fed into the modified U-net CNN framework. The
CNNs produced contours that were able to track the endocardial
walls smoothly through time. The efficacy of the network’s segmenta-
tion performance was assessed using the DC. An algorithmwas estab-
lished from the image clips and LV contours to identify the cardiac
cycle and ED and ES frames, comprising assessment of contour areas
and R-wave triggers. Where the R-wave trigger was not available, the
heart rate was inferred from the image LV segmentation. Heart rate
extraction required the reduction of image dimensionality, followed
by signal period extraction, using dimensionality reduction
methodologies.

Performance of Auto-View Classification

Using an unseen data set of 240 studies (23,946 frames), overall ac-
curacy of 95%was achieved for the CNN view classifier used to iden-
tify and label eight echocardiographic views. Classification accuracy
of noncontrast views (A2C, A3C, A4C, and SAX) exceeded 97%,
while the accuracy of contrast A3C, A4C, and SAX view classification
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was >93%, and that of contrast A2C views was 85%. Differentiation
between contrast and noncontrast views was 100%.

Performance of LV Contouring and Segmentation

For the auto-contouring model, a testing data set of 436 image frames
were contoured by the model, which demonstrated high concor-
dance with manual contours from three BSE-accredited echocardiog-
raphers, as measured by theDC. Themodel achieved amean contrast
A2C and A4C DC of 93.25%, exceeding that seen in other works.
The auto-contouring model performed consistently well on data
captured using multiple ultrasound vendors and models and did
not exhibit significant declines in DC scores across the range of image
quality considered clinically acceptable for stress echocardiography.
For LV segmentation, included images met the following require-
ments: at least one of LV-focused A4C and standard A2C views pre-
sent and endocardial visualization in$14 of 16 segments in available
images by consensus of three BSE-accredited cardiac physiologists. A
U-net-based CNN segmentation framework was developed to con-
tour the LV endocardium in both the A2C and A4C views. ED and
ES image labels were used to train the U-net-based CNN initially con-
toured manually by three BSE-accredited echocardiographers. The
images comprised 5,692 and 2,182 frames for A2C and A4C views,
respectively. Both data sets were split into 80% training and 20%
testing data sets. Raw images were resized, filtered, normalized, and
applied to the modified U-net CNN framework. The CNN produced
contours that were able to track the endocardial walls smoothly
through time. The efficacy of the network’s segmentation perfor-
mance was assessed using the DC. High concordance with manual
contours from three BSE-accredited echocardiographers, as
measured by the DC was achieved for the LV segmentation model.
The model achieved a mean A2C and A4C DC of 92.47%.
Example of an LV AI auto and manual tracing.
Cycle and Frame Selection: A rule-based algorithmic method was
established from the image clips to identify the cardiac cycle and ED
and ES frames, comprising assessment of maximum andminimumLV
segmentation areas in combination with the R-wave triggers or R-
wave inference when the R-wave was not available. Frame selection
was evaluated as part of the final AI pipeline independent validation.

Quantification of Measures: For LS, Euclidean distances between
contour points was calculated, moving sequentially from the starting
basal point to the end basal point. The sum of the individual Euclidean
distance values is calculated over the entire contour. End-diastole
(base length) and end-systole (shortened length) were used to calcu-
late longitudinal strain as follows:

Longitudinal strain (%) = [(shortened length � base length)/(base
length)] �100.
For LVEF, the volume of the left ventricle is first calculated using
Simpson’s biplane method using the following formula:

V ¼p� d
Xnd

i¼1
aibi;

The contours are assumed to be directly perpendicular to one
another and to meet at the apex as per the standard Simpson biplane
method. The ejection fraction is calculated using the following for-
mula:

EF¼
�
VD � VS

�

VD
� 100

Accuracy Assessment during AI Development: To assess the accu-
racy and precision of the complete AI pipeline (comprising the view
classification model, LVautomated contouring model, and ED and ES
frame selection algorithm), a quarantined data set of echocardiograms
were processed through the AI pipeline and TomTec software by five
qualified observers (three echocardiographers and two cardiologists)
to derive global measures of LV function comprising ED and ES vol-
umes, LVEF, and LVLS. Accuracy was defined as the mean value pro-
duced across observers during echocardiographic examination. As
each measurement was made by a different independent observer,
mean values (AI vs TomTec) as an overall assessment of performance
was appropriate using standard Bland-Altman analysis and Deming
regressions, because repeated measures were not observed in this
instance. No observable differences in accuracies were noted be-
tween ultrasound vendors, with mean ES volume, ED volume,
LVLS, and LVEF root mean square error values of 7.8 mL, 9.9 mL,
2.6%, and 5.3%, respectively for Philips models and 8.0 mL, 12.2
mL, 2.56%, and 4.75%, respectively for GE models. For LVLS, the
overall mean bias was shown to be 0.19%, and root mean square er-
ror was 2.89%, consistent with literature reports of intervendor com-
parisons. For LVEF, the overall mean bias was �1.18%, with a root
mean square error of 5.02%.
Principal-Component Analysis Methodology

Principal-component analysis (PCA) is a multivariate statistical
method frequently used in exploratory data analysis. Although
PCA is traditionally used as a dimensionality reduction method, by
projecting each data point (each patient) onto the first two principal
components, here we define the first principal component as a direc-
tion that maximizes the total variance of the projected data (patient
read), on the basis of the input variables (LVEF and LVLS). In this
manner, PCA plots the projected data on the basis of the variance
rather than the dimension reduction. In effect, the closer the data
points are together, the less variance can be thought to be between
them. If unbiased, the projection of the data should be independent
of the operator who produced the measurement. However, if bias
is observed, groupings by operator will be observed, strongly suggest-
ing operator influence on the observed LVEF and LVLS values. As
such we see, visually, a higher degree of operator associated grouping
for LVEF and LVLS values in manual reads than compared with the
grouping observed for the AI reads, implying a greater operator-
associated bias in the manual reads. The overall wider spread of data-
points in the manual reads implies a greater variance, while on AI
reads this operator-associated bias is not observed to the same degree,
with a tighter cluster of all data points, which implies less overall vari-
ance for this dataset.



Supplemental Figure 1 Operator influence on the variability in LVEF and LVLS in manual and AI measurements was visualized using
PCA. PCA eigenvalues were calculated on the basis of LVLS and LVEF values from manual and AI contouring separately. Each data
point was subsequently labeled according to the individual operator in order to investigate whether operator-based clustering was
present. PCA visualizing the summary variability information contained in the data set described by LVEF and LVLS, colored by oper-
ator (each operator is named with a letter and represented with a color). Each data point identifies a TTE study, and each TTE study is
colored by the operator who performed the contouring. (Left) PCA of manual contouring clusters the TTE studies by operator, iden-
tifying the operator as a possible confounder. (Right) No clustering (i.e., good grouping of points) is present in the PCA on AI-
contoured TTE studies.
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Supplemental Table 1 Univariable logistic regression to outcomes by reading round

Parameter

In-hospital death Death at follow-up

Odds ratio [95% CI] P Odds ratio [95% CI] P

LVEF manual

Round 1 0.988 (0.970-1.006) .104 0.995 (0.978-1.012) .568

Round 2 0.986 (0.969-1.003) .104 0.988 (0.972-1.004) .137

Round 3 0.987 (0.970-1.004) .119 0.987 (0.972-1.003) .108

LVEF AI

Round 1 0.971 (0.953-0.989) .002 0.975 (0.958-0.992) .005

Round 2 0.976 (0.958-0.995) .013 0.985 (0.967-1.004) .109

LVLS manual

Round 1 1.012 (0.976-1.050) .521 1.011 (0.979-1.045) .510

Round 2 1.002 (0.960-1.048) .908 1.007 (0.976-1.040) .658

Round 3 1.045 (1.009-1.085) .017 1.038 (1.004-1.076) .033

LVLS AI

Round 1 1.080 (1.034-1.130) <.001 1.057 (1.017-1.101) .006

Round 2 1.068 (1.020-1.119) .005 1.049 (1.006-1.096) .025
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Supplemental Table 2 Pairwise Pearson correlation (r) matrix to clinical measures for AI and manual reads

LVLS LVEF BNP CRP SBP DBP

Manual reads

LVLS 1.000 �0.735 0.499 0.146 �0.113 �0.082

LVEF �0.735 1.000 �0.517 �0.102 0.081 0.043

AI reads

LVLS 1.000 �0.744 0.336 0.235 �0.176 �0.149

LVEF �0.744 1.000 �0.467 �0.219 0.185 0.199

CRP, C-reactive protein; DBP, diastolic blood pressure; SBP, systolic blood pressure.
Only those significant after Bonferroni correction are displayed in the network.
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Supplemental Table 3 Cox proportional-hazards regression against in-hospital outcomes across AI and manual reads

Outcome: in-hospital mortality

Hazard ratio (95% CI) P

Echocardiographic parameters (continuous)

LVEF manual 0.988 (0.973-1.003) .110

LVEF AI 0.979 (0.963-0.995) .011

LVLS manual 1.031 (0.996-1.066) .080

LVLS AI 1.046 (1.005-1.089) .028

LVESV manual (log2) 1.026 (0.777-1.355) .855

LVESV AI (log2) 1.146 (0.849-1.547) .373

LVEDV manual (log2) 0.999 (0.654-1.525) .995

LVEDV AI (log2) 0.972 (0.623-1.518) .901

Echocardiographic parameters (categorical)

LVEF manual (reference: <60%)

>60% 0.833 (0.533-1.30 .422

LVEF AI (reference: <60%)

>60% 0.571 (0.365-0.894) .014

LVLS manual (reference: <�16%)

>�16% 1.701 (1.075-2.692) .023

LVLS AI (reference: <�16%)

>�16% 1.721 (1.100-2.691) .017

Significant clinical parameters

Age 1.026 (1.010-1.044) .002

Outcome

ICU 3.907 (2.304-6.625) <.001

Ventilator 4.512 (2.853-7.136) <.001

Hemodynamic support 3.503 (2.221-5.526) <.001

Previous conditions

Lung disease 1.775 (1.033-3.048) .038

Heart disease 1.638 (0.991-2.707) .054

Biomarkers

CRP (reference: normal)

Borderline 3.546 (0.222-56.70) .371

Abnormal 12.157 (1.688-87.540) .013

BNP (reference: normal)

Borderline 2.245 (0.709-7.108) .169

Abnormal 3.366 (1.444-7.846) .005

DBP 0.967 (0.946-0.989) .003

CRP, C-reactive protein; DBP, diastolic blood pressure; LVEDV, LV end-diastolic volume; LVESV, LV end-systolic volume.
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