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SUMMARY

Genome-wide association studies (GWASs) identified hundreds of signals associated with type 

2 diabetes (T2D). To gain insight into their underlying molecular mechanisms, we have 

created the translational human pancreatic islet genotype tissue-expression resource (TIGER), 

aggregating >500 human islet genomic datasets from five cohorts in the Horizon 2020 consortium 

T2DSystems. We impute genotypes using four reference panels and meta-analyze cohorts to 

improve the coverage of expression quantitative trait loci (eQTL) and develop a method to 

combine allele-specific expression across samples (cASE). We identify >1 million islet eQTLs, 
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53 of which colocalize with T2D signals. Among them, a low-frequency allele that reduces T2D 

risk by half increases CCND2 expression. We identify eight cASE colocalizations, among which 

we found a T2D-associated SLC30A8 variant. We make all data available through the TIGER 

portal (http://tiger.bsc.es), which represents a comprehensive human islet genomic data resource 

to elucidate how genetic variation affects islet function and translates into therapeutic insight and 

precision medicine for T2D.

Graphical Abstract

In brief

Understanding human islet regulatory genetic variation is essential to better understand the 

pathophysiology of diabetes and related diseases. Here, Alonso, Piron, Moran et al. present a 

comprehensive characterization of expression regulatory variation in >500 human islet samples 

and facilitate its access to the scientific community through the TIGER web portal.

INTRODUCTION

Diabetes is a complex metabolic disease, characterized by elevated blood glucose levels, 

that affects >463 million people worldwide. Type 2 diabetes (T2D) accounts for >85% of 

diabetes cases and is strongly related to age, obesity, and sedentary lifestyle. Epidemiologic 

studies forecast increases in global prevalence up to 25% by 2030 (Khan et al., 2020; 

Saeedi et al., 2019; Wild et al., 2004). This makes the study and understanding of diabetes 
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a top research and healthcare priority. Progressive pancreatic islet dysfunction is central 

to the majority of all types of diabetes and thereby key to gain insight into disease 

pathophysiology.

Great efforts have been dedicated to uncover the link between genetic variation and complex 

disease susceptibility through large-scale genetic studies. For T2D, >700 genetic loci have 

been identified to date (Bonàs-Guarch et al., 2018; Mahajan et al., 2018; Spracklen et al., 

2020; Vujkovic et al., 2020). The vast majority of variants in these loci do not disrupt 

protein coding sequences (Miguel-Escalada et al., 2019; Pasquali et al., 2014). Thus, 

the mechanisms by which these variants influence predisposition to disease remain to be 

elucidated. As the number of newly identified risk variants keeps increasing, their functional 

interpretation constitutes the main bottleneck to gain insight into the underlying molecular 

mechanisms and, thus, to develop more effective and targeted preventive and therapeutic 

strategies (Claussnitzer et al., 2020).

To provide functional interpretation of non-coding variation, large international efforts 

have generated and integrated genomic, transcriptomic, and epigenomic data from a large 

variety of healthy and diseased samples to build comprehensive and genome-wide maps 

of functional annotations. Among others, the Genotype-Tissue Expression (GTEx) project 

uses expression quantitative trait loci (eQTL) analysis to link genetic variation with 

gene expression across 54 different human tissues (Aguet et al., 2020). The Roadmap 

Epigenomics Mapping project (Bernstein et al., 2010) and the International Human 

Epigenome project (Bujold et al., 2016) also provide a broad characterization of epigenomic 

signatures in a variety of tissues and cell types.

The functional interpretation of genetic variants, which are usually associated with moderate 

or small effect sizes, requires tools and resources that focus on cells and tissues that are 

affected in the disease of interest. The islets of Langerhans, which are clusters of specialized 

endocrine cells that are essential to maintain glucose homeostasis, play a central role in 

the etiology of T2D (Eizirik et al., 2020; Krentz and Gloyn, 2020). Because human islets 

are difficult to obtain (Barovic et al., 2019; Burgarella et al., 2013; Meier et al., 2015), 

large multi-tissue resources such as GTEx do not contain islet data and at best use whole 

pancreas as a proxy, despite the fact that 97% of the pancreatic tissue consists of exocrine 

cells that mask islet signals. Hence, the development of publicly available resources and 

tools that include data on islets is essential to translate T2D genetic signals into molecular 

and physiological mechanisms.

The first studies of eQTL in human islets pinpointed genes that may be influenced by 

genetic variants and thus possibly mediate T2D risk (van de Bunt et al., 2015; Fadista et al., 

2014). Despite the small number of samples, they identified a few loci linked to differential 

expression of islet genes, which were enriched in genome-wide association study (GWAS) 

signals for T2D and related traits. More recently, the InsPIRE Consortium generated a large 

islet eQTL study with a sample size of 420 islet donors, which identified 46 T2D GWAS 

signals that colocalize with islet eQTL (Viñuela et al., 2020).
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To further expand the understanding of human islet regulatory genomics and its role in T2D, 

the Horizon 2020 T2DSystems consortium gathered an extensive collection of human islet 

samples with gene expression, epigenomic data, and genotypic and phenotypic information, 

with a total of 514 samples, 207 of which were analyzed by the InsPIRE Consortium. In 

this study, we discovered 40 T2D risk signals that colocalize with eQTL or ASE signals by 

improving genotype imputation methods and analyses and by developing a new method to 

combine allele-specific expression (cASE) across samples, knowledge previously unknown.

Importantly, the results from this study are made publicly available to the community 

through the Translational human pancreatic Islet Genotype tissue-Expression Resource 

(TIGER, http://bsc.tiger.es) portal (Figure 1A). This portal integrates the newly generated 

data with publicly available T2D genomic and genetic resources to facilitate the translation 

of genetic signals into their functional and molecular mechanisms.

RESULTS

A catalog of genetic variation and gene expression in human pancreatic islets

To study gene expression and the effects of genetic variation in human pancreatic islets, 

we obtained newly generated and published human islet data from 514 organ donors of 

European background, distributed across 5 cohorts (Center for Genomic Regulation, Lund 

University, University of Oxford/University of Alberta, Università di Pisa, and Université 

Libre de Bruxelles) (Method details). The large majority of these samples came from 

non-diabetic adult donors, and only 30 were from diabetic organ donors (Table S1).

The DNA of 307 samples was isolated, sequenced, and genotyped (Table S1; Method 

details) and aggregated to be harmonized with the existing data from 207 samples. After 

quality control, filtering of RNA sequencing (RNA-seq) and genotyping array data (Method 

details), we had both high-quality genotypes and RNA-seq data for 404 human islet samples 

(Figure 1B), including 21 from diabetic donors.

To fully characterize the genetic variation present in the samples, genotype imputation 

was performed separately for each cohort using 4 different reference panels, as previously 

described (Bonàs-Guarch et al., 2018; Guindo-Martínez et al., 2021), 1000 Genomes Project 

(The 1000 Genomes Project Consortium et al., 2015), Genome of the Netherlands (GoNL) 

(Boomsma et al., 2014), the Haplotype Reference Consortium (McCarthy et al., 2016), and 

UK10K (Walter et al., 2015). The results were integrated by selecting, for each variant, 

the imputed genotypes from the reference panel that achieved the best imputation quality 

(IMPUTE2 info score > 0.7; Method details). We have previously demonstrated that this 

approach results in increased overall coverage of genetic variation, as well as an increased 

number of significant associations, including those that are covered by only one of the 

reference panels (Guindo-Martínez et al., 2021). This allowed imputation of >22 million 

unique high-quality genetic variants across all of the samples, 10% of which were indels 

and small structural variants (SVs), and >1.05 million variants in chromosome X (Figures 

1C and 1D; Table S2). Notably, this strategy allowed the accurate imputation of 4 million 

low-frequency (minor allele frequency [MAF] between 0.05 and 0.01) and 10 million rare 

(0.01 > MAF > 0.001) variants.
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In addition, we performed bulk RNA-seq in 514 human islet samples, 460 of which were 

retained after stringent quality control, including >52 billion raw short reads. We uniquely 

aligned >48 billion reads (median of 93 million per sample) (Table S3), which allowed us to 

observe >22,000 genes expressed at >0.5 transcripts per million (TPM) (Method details).

An atlas of eQTLs in human pancreatic islets

To explore the association between genetic variation and gene expression, we performed an 

eQTL meta-analysis across 4 cohorts. We performed a cis-eQTL analysis in 404 samples, 

using data from each cohort independently. For each analysis, we corrected for known 

covariates (age, sex, and body mass index [BMI]), 7 genetic ancestry principal components, 

and probabilistic estimation of expression residuals (PEER) factors for hidden confounding 

factors (Stegle et al., 2012). The eQTL results from each of the 4 cohorts were then 

meta-analyzed (Figure 2A). This resulted in >1.11 million significant eQTLs in >21,115 

eGenes (12,802 protein coding genes, 8,313 non-coding) at a 5% false discovery rate (FDR) 

after Benjamini-Hochberg correction for multiple testing (Benjamini and Hochberg, 1995) 

(Figure 2B). The quantile-quantile plot showed no baseline inflation in the results. More 

than 12% of all significant eQTLs were small indels or larger SVs, and this type of variation 

was the top associated variant for 14% of all genes. This is in line with what has been 

observed in primary human immune cell types, in which indels comprised 12.5% of the 

variants in the 95% credible sets for eQTLs (Kundu et al., 2020), and in GTEx, in which 

SVs were found to have a stronger effect than single nucleotide variants (Chiang et al., 

2017).

To assay the potential functional impact of the identified eQTL variants, we tested for 

their enrichment in human islet regulatory regions, defined by a variety of pancreatic 

islet chromatin assays (Miguel-Escalada et al., 2019). We observed that eQTL variants 

overlapped with gene promoters with very strong fold enrichment when compared with a 

control set of genetic variants (3.1-fold for 1% FDR eQTL variants, p = 3 × 10−166) (Method 

details), as well as with strong enhancers (Miguel-Escalada et al., 2019) (2-fold, p = 1.4 × 

10−16), and open-chromatin regions (1.4-fold, p = 3.9 × 10−45) (Figures 2C and S1). These 

results are consistent with eQTL studies in other tissues (Aguet et al., 2020).

Next, we contrasted the TIGER human islet results with the latest GTEx eQTL datasets, 

which comprised 54 human tissues, including whole pancreas, but not islets (Aguet et al., 

2020). Of all significant human islet eQTLs, 64.7% were also significant in at least 1 GTEx 

tissue, whereas 35.3% were exclusive to human islets (Figure 2D, left panel). Only 30.5% 

of human islet eQTLs were also significant in whole pancreas in GTEx, an overlap that is 

similar to the rest of the GTEx tissues (26% mean overlap with T2D-related tissues, 29% 

with other tissues), highlighting that whole pancreas is not a better proxy for pancreatic 

islets than other tissues. In addition, when considering rare and low-frequency variants, the 

proportion of TIGER islet exclusive eQTLs increased to 76.5% (Figure 2D, right panel). 

These observations highlight again the importance of assaying human islets, since a sizeable 

proportion of the eQTLs cannot be found in other tissues. Interestingly, these observations 

also held true when we compared TIGER results with recently published InsPIRE eQTLs 

(Viñuela et al., 2020). Because of its imputation approach, TIGER interrogated a larger 
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number of genomic variants (Figure S2A). Overall, 56.1% of the significant eQTLs were 

exclusive to our analysis (not assayed or non-significant in InsPIRE; Viñuela et al., 2020) 

(Figure S2B). Identification of eQTLs driven by low-frequency or rare variants may be 

more clinically effective, as significant low-frequency variants tend to have larger effects 

on disease risk and gene expression (Flannick, 2019). Notably, the proportion of TIGER 

exclusive eQTLs increased to 74.7% for low-frequency variants (Figure S2C), despite 

similar sample sizes between the studies. Overall, we identified 125,918 low-frequency 

eQTLs compared to 113,285 low-frequency eQTLs identified in the InsPIRE study (Figure 

S2C). This resulted in 20,742 eGenes, including the 69% of the 14,881 eGenes described 

in InsPIRE (Figure S2D). For eQTLs with variants present in both studies, the statistical 

strength of the association was correlated, as was the direction of effect for those <5% FDR 

significant in at least 1 of the 2 studies (Figures S2E and S2F). This indicates that the 

findings in the 2 studies are consistent, even when considering signals that did not reach 

significance in 1 of the 2.

Gene Ontology analysis of the significant human islet eQTL genes revealed signaling 

(including G protein-coupled receptor signaling) and metabolic regulation terms (Figure 

S3). In contrast, comparing TIGER-specific eQTL genes against those also present in GTEx 

tissues revealed strong enrichment for these terms as well as “response to stimulus” or 

“regulation of cell activation,” and immune system terms (including “lymphocyte/T cell 

activation” and “regulation of immune system process”) (Figure 2E). This suggests that 

these eQTLs involve β cell physiology genes, including some related to immune processes 

with potential relevance for T1D (Ramos-Rodríguez et al., 2019).

Islet eQTLs colocalize with T2D GWAS signals

To assess whether the identified eQTLs can help to identify effector transcripts for T2D risk 

variants, we investigated the intersection between cis-eQTLs and known T2D associations 

(Bonàs-Guarch et al., 2018; Mahajan et al., 2018; Vujkovic et al., 2020) by performing 

colocalization analyses using COLOC (Giambartolomei et al., 2014) (Method details).

This analysis uncovered 49 eQTL variants associated with the expression of 53 genes 

that significantly colocalized with T2D GWAS loci (Table S4), 32 of which were not 

previously reported (Table 1; Figure S4; Data S1). Among the 49 colocalizing signals 

(Data S1), rs77864822 (MAF = 0.07) minor allele (G) was associated with higher RMST 
(rhabdomyosarcoma 2 associated transcript) expression and decreased T2D risk (odds ratio 

[OR] = 0.93, p = 2.2 × 10−8) (Figure S4A). By interrogating the latest GWAS study on 

glycemic traits (Chen et al., 2021), we observed that the protective allele was associated 

with decreased fasting glucose (β = −0.024, p = 4 × 10−11), reduced HbA1c (β = −0.087, 

p = 4.6 × 10−4), and reduced 2-h glucose in an oral glucose tolerance test (β = −0.064, p 

= 2.4 × 10−4) (Table S4). Interestingly, we identified two low-frequency variants (Figures 

3C and 3G), which may have large effect sizes, that colocalized with gene expression, 

suggesting a target gene and direction of effect (i.e., whether the genetic variant is associated 

with increased or decreased gene expression). The variant rs1531583 colocalized with 

CPLX1 expression (Figures 3A–3C). Interestingly, the same variant was associated with 

PCGF3 but not with CPLX1 gene expression in whole pancreas in GTEx (Figure 3B), 
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demonstrating once again the importance of performing eQTL in the relevant tissue. A 

detailed analysis of enhancer chromatin marks in human islets showed that rs73221115 (r2 

= 0.978 with rs1531583) and rs73221116 (r2 = 0.98 with rs1531583) had allele-specific 

H3K27ac binding, suggesting that these 2 variants are the most likely causal variants of the 

CPLX1 locus (Figures 3D and 3E). We also identified significant colocalization between the 

low-frequency variant rs76895963, known to be associated with nearly half reduced T2D 

risk (Steinthorsdottir et al., 2014), and increased CCND2 expression in islets (Figures 3F 

and 3G). This variant was also associated with reduced fasting glucose (β = −0.033, p = 

0.0017), HbA1c (β = −0.042, p = 3.6 × 10−8), and 2-h glucose in oral glucose tolerance test 

(β = −0.095, p = 0.01) (Table S4).

An atlas of cASE in human pancreatic islets

Preferential expression of mRNA copies containing 1 of the 2 alleles of a genetic variant 

(allele-specific expression [ASE]) can result from cis-regulation. However, ASE can occur 

while the overall amount of expression of a gene remains constant, and therefore this type 

of regulation cannot be identified by conventional eQTL analysis. While some methods have 

been developed to identify ASE in gene expression data in single (Edsgärd et al., 2016; 

Mayba et al., 2014) or multiple samples (Fan et al., 2020; Liang et al., 2021), these methods 

did not aim to identify candidate cis-regulatory variants for the ASE effect.

We implemented a cASE pipeline for the analysis of ASE replicated across multiple samples 

that differ in age, gender, BMI, and environmental factors, thereby likely to stem from 

cis-regulatory genetic variants (Figure 4A). cASE analysis complements eQTL analysis, 

and additionally controls for (1) environmental and batch effects, which are important 

confounding factors in eQTL studies (Akey et al., 2007; Branham et al., 2007; Churchill, 

2002; Fare et al., 2003; Irizarry et al., 2005; Yang et al., 2002); (2) sample heterogeneity, 

which is prevalent in human islets (Leek and Storey, 2007); and (3) trans effects, since these 

would affect the 2 alleles in the same manner and thus cannot result in ASE. cASE combines 

ASE from each sample into a single Z score statistic that summarizes overall ASE across 

the cohort of samples (Figure S5; Method details,) (Newhall et al., 1949). Variants that 

preferentially express the reference allele result in a positive Z score and vice versa (Figure 

4A).

Using this strategy, we identified 2,707 genes with 5,271 reporter variants showing cASE 

in human islets, at 5% FDR (Figure 4B). The similar number of reference and alternate 

imbalanced variants (2,606 and 2,589, respectively) showed that alignment biases toward the 

reference allele were successfully controlled (Figures S5B–S5E).

When comparing cASE genes against a set of non-significant genes (matched by gene 

expression level, Method details), we observed that cASE genes were enriched for islet-

specific expression (2.1-fold, p = 2.5 × 10−54 at 1% FDR) and preferentially located 

near islet regulatory regions (1.23-fold, p = 3.7 × 10−11) (Figure 4C). Gene Ontology 

analysis (Method details) revealed islet-specific terms such as “vesicle-mediated transport” 

and “regulated exocytosis” (Figure 4D), related to insulin production and secretion in β 
cells. As a notable example, the islet amyloid polypeptide gene (IAPP) was among the 

most imbalanced cASE genes. IAPP had 7 independent reporter SNPs at 1% FDR (Figure 
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4A, right panel), all of which had strong imbalance toward the reference allele in the 

>100 independent samples that were heterozygous for the variants. Notably, there were no 

significant eQTLs for this gene, highlighting the complementarity between the two methods 

to identify regulatory variation. These findings highlight the potential of cASE to identify 

genes involved in regulating pancreatic islet physiology.

Given that eQTL and cASE analyses are complementary methods to detect genes affected 

by cis-regulation, we assessed the concordance between each of them. We interrogated 

the proportion of genes with significant eQTL of all cASE genes across absolute Z score 

quartiles (strength of imbalance) and observed that the proportion of eQTL genes increased 

with increasing Z scores (Figure 4E), indicating that stronger cASE effects were more likely 

to be also identified in eQTL analysis, and showing a correlation between the 2 effects.

Of 2,707 cASE significant genes, 2,052 (75.8%) were detected in eQTL analyses, whereas 

655 (24.2%) were detected uniquely through cASE (Figure 4F, top panel). The same 

trend was observed when considering only islet-specific genes. Among 270 islet-specific 

significant eGenes detected by cASE, 218 were also detected by eQTL analysis, while the 

remaining 52 were exclusively found by cASE (Figure 4F, bottom panel).

Mapping distal cASE variants allows cASE colocalization analysis and implicates 
additional T2D effector genes

We next developed an approach to identify distal putative cASE regulatory variants by 

interrogating all of the variants within the same topologically associated domain as the 

reporter variant (i.e., the variant located in the transcribed gene region). For each candidate 

regulatory variant, we stratified samples between the heterozygous and homozygous for the 

candidate variant. We then recomputed cASE of the reporter variant (i.e., the transcribed 

variant) for each of the groups (Figure 5A). This approach allowed us to prioritize the 

candidate variant that had the highest reporter cASE when the candidate regulatory variant 

was also heterozygous, compared to when the regulatory variant was homozygous (Figure 

5B; Method details). This method does not require haplotype phasing since it compares 

heterozygous versus homozygous and is agnostic to the direction of the association.

This analysis uncovered 256,981 putative regulatory variants for 3,425 genes, including 570 

genes that had no significant reporter variant by themselves, but that did reach significance 

upon stratifying by the genotype of regulatory variants (Figure 5C, orange points). To 

assay the potential functional impact of the identified reporter variants, we tested for their 

enrichment in human islet regulatory regions (Miguel-Escalada et al., 2019), observing 

overlap with gene promoters with very strong fold enrichment when compared with a 

control set of genetic variants (4-fold for 1% FDR eQTL variants, p = 4 × 10−87) (Method 

details), as well as with strong enhancers (Miguel-Escalada et al., 2019) (2.5-fold, p = 7.8 × 

10−13) and open-chromatin regions (1.5-fold, p = 1.8 × 10−27) (Figure 5D). When comparing 

these cis-regulatory variants with the 1.11 million eQTLs, we found 123,748 variants were 

significant by both methods (3,138 with MAF <5%), and a further 133,233 (9,190 with 

MAF < 5%) were identified only by cASE (Figure 5E), showcasing the relevance of this 

analysis for enriching genetic cis-regulatory discovery.
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Assigning statistical significance to cASE distal regulatory variants allowed us to test for 

colocalization between cASE regulatory variants and T2D GWAS variants. For each T2D 

GWAS locus, we assessed all of the regulatory variants for all of the imbalanced genes in 

the region and identified 14 colocalized locus-gene pairs (Table 2; Figure S6; Data S2). 

Of these, 6 had also been identified in eQTL/T2D GWAS colocalization analyses, showing 

consistency between the 2 methods. Interestingly, the 8 colocalizations identified by cASE 

alone, WFS1, SLC30A8, RP11–613D13.5, KCNJ11, RP11–728F11.3, TSPAN8, C18orf8, 

and CALR, suggested that these T2D variants may mediate disease risk by causing an 

imbalance in allelic expression, rather than altering overall gene expression (Figure S6). A 

notable example was the highly significant cASE observed in SLC30A8 (rs11558471; p = 

2.9 × 10−14), which showed colocalization with a well-established T2D-associated variant 

(Figures 5F and 5G; Table S5) for which there was no eQTL colocalization. Thus, cASE 

analysis uncovered additional disease-relevant genomic regulation and provides a potential 

biological mechanism underlying the association.

A web portal to explore regulatory variation and genomic pancreatic islet information

Finally, to provide the research community with a user-friendly open access tool to explore 

these findings and mine the molecular basis of complex diseases influenced by pancreatic 

islet biology, we created TIGER (http://tiger.bsc.es) (Figure S7). This portal integrates the 

results obtained in this study with other public genomic, transcriptomic, and epigenomic 

pancreatic islet resources, as well as T2D GWAS meta-analysis summary statistics (Method 

details).

The TIGER website represents homogeneous gene expression levels from 446 RNA-seq 

pancreatic islet samples corrected for batch and covariate effects, and enables comparison 

with GTEx expression data (Aguet et al., 2020) (Method details).

In addition to the eQTL and cASE results and to provide further functional assessment, 

we gathered islet regulatory information (Akerman et al., 2017; Miguel-Escalada et al., 

2019; Pasquali et al., 2014), methylation marks (Hall et al., 2014; Thurner et al., 2018), 

and chromatin modification datasets (Dunham et al., 2012; Gaulton et al., 2010; Stitzel et 

al., 2010). Furthermore, to enable the translation of genetic variation to disease risk, we 

integrated the latest T2D GWAS meta-analysis summary statistics (Bonàs-Guarch et al., 

2018; Mahajan et al., 2014, 2018; Scott et al., 2017) (Figure 1A).

The TIGER database contains expression and molecular data for 59,625 Gencode genes 

(version gencode.v23lift37; Frankish et al., 2019) and >26 million variants. The portal 

allows users to perform both variant and gene-centric queries. The results are displayed in 

a set of graphical tools and a genomic browser (Down et al., 2011) that help visualize and 

interpret the molecular context of the query. Each table can be downloaded in csv format, 

and the genomic browser integrates tools to search and zoom in on a region, add new tracks, 

and export the data as publication image. As a result of these efforts, the TIGER resource 

has already been used in recent studies (Hodson and Rorsman, 2020; Saponaro et al., 2020a, 

2020b).
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As an example, we present the visualization of MTNR1B, a gene associated with T2D 

and impaired insulin secretion (Lyssenko et al., 2009). This gene is lowly expressed in 

pancreatic islets (median 0.25 TPM), but virtually absent in whole pancreas and other GTEx 

tissues (median 0 TPM), except for testis (median 0.61 TPM) and brain (median 0.06 TPM), 

highlighting the utility of this resource for studying human islet-specific expression (Figures 

S7A and S7B). A T2D risk-associated locus has been described and fine-mapped (Mahajan 

et al., 2018) to a single variant (rs10830963, p = 4.8 × 10−43, posterior probability [PP] = 

0.99; Figures S4B and S7C). Notably, this variant is located within islet H3K27ac peaks, 

suggesting potential regulatory implications (Figure S7D). The close-up look at this locus 

illustrates that the TIGER portal can be easily used to interrogate gene expression and the 

epigenomic and genomic variation regulatory landscape, providing a very valuable resource 

to the research community to study complex diseases affecting pancreatic islets.

DISCUSSION

By analyzing a large multi-cohort dataset of pancreatic islets with gene expression and dense 

genotyping data, we have uncovered 1 million significantly associated variant-gene pairs. Of 

all of the associations we found, 35.3% were islet specific, highlighting the importance of 

performing tissue-specific eQTL studies (Figure 2D). Remarkably, 17 human islet eQTLs 

that colocalized with T2D GWAS signals were not associated with gene expression in any 

GTEx tissue, including whole pancreas, which emphasizes the fact that pancreas cannot be 

used as a proxy for pancreatic islets and vice versa.

We compared our findings with those obtained in the InsPIRE islet eQTL study that 

comprised 420 samples (Viñuela et al., 2020), 207 of which were also included in our 

study. We observed that 18 (34%) of the 53 eQTLs that colocalized with T2D GWAS signals 

were also identified in InsPIRE (Table S4). The improved power in our study obtained by 

the use of integrative approaches, such as combined reference panels genotype imputation 

and meta-analysis allowed us to detect lower MAF eQTL signals (10.4% with <5% MAF), 

representing a 7-fold increment of low-frequency eQTL variants compared to this previous 

islet eQTL study. Importantly, the meta-analyses also allow us to compare the heterogeneity 

of the associations between cohorts and filter out signals that are not consistent across 

cohorts, thereby avoiding false positives.

We uncovered 32 T2D colocalizations, 2 of which were led by low MAF variants, 

including variants associated with the expression of CCND2, RMST, and CPLX1. The 

variant rs76895963 (MAF = 0.02) that upregulates CCND2 is associated with a nearly 50% 

reduced risk of T2D (OR = 0.58) (Mahajan et al., 2018; Steinthorsdottir et al., 2014) and 

is potentially implicated in the peri-natal development of human β cells (Osonoi et al., 

2020). While the PP of the colocalization was below the threshold of 0.8, the SNP had 

a clear eQTL with the gene, and LocusCompare plots showed convincing colocalization 

(Figure 3G). The variant rs77864822 (MAF = 0.07) upregulates RMST expression and 

decreases T2D risk. RMST is a reportedly neuron-specific long non-coding RNA involved 

in neurogenesis (Ng et al., 2013); it is well expressed in human islet cells (Kaur et al., 

2018), but its function in β cells is unknown. The variant rs1531583, with the minor 

T allele associated with increased T2D risk (Mahajan et al., 2018), upregulates CPLX1, 
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encoding complexin-1, again, a reportedly neuron-specific gene. Complexin-1 plays a role 

in Ca2+-dependent insulin exocytosis in rodent β cells, although it is intriguing that both 

CPLX1 silencing and overexpression impaired insulin secretion (Abderrahmani et al., 2004). 

GWAS often report as a target the gene that is closest to the variant, in this case PCGF3. 

Notably, rs1531583 lies in an intronic region of PCGF3 and is an eQTL for this gene in 

several GTEx tissues. In human islets, however, it is specifically associated with CPLX1 
expression and not with PCGF3, challenging the hypothesis that the closest gene is often the 

most likely target gene (Figures 3A–3E).

The imputation with 4 reference panels allowed us to analyze different sources of genetic 

variation, including indels and SVs. In our study, 12.6% of the eQTL are indels. This 

stresses the fact that indels are a significant part of the genetic background influencing RNA 

expression. Unfortunately, the largest available T2D GWAS dataset (Mahajan et al., 2018) 

did not consider indels, and so we could not include them in our colocalization analyses. In 

the near future, this approach could be used to finemap the contribution of indels and SVs to 

disease risk.

Capitalizing on this valuable pancreatic islet resource, we also analyzed for the first time 

cis-regulation via ASE. We developed a method called cASE, which combines ASE across 

samples, maximizing the power to detect variants associated with ASE. We identified 

variants associated with allelic imbalanced expression while not changing overall gene 

expression, and thus undetectable by eQTL. We extended the cASE results in co-localization 

analysis and identified 14 T2D colocalizations. Among them, 8 signals non-detected in 

the eQTL/T2D GWAS colocalization included widely reported T2D-associated signals in 

WFS1, SLC30A8, KCNJ11, TSPAN8, C18orf8, and CALR. For these, the lead SNP causes 

allelic imbalance but no overall gene expression change. These findings suggest that a 

subset of regulatory genetic variants confer disease risk by causing imbalance in the allelic 

expression of their target genes, a mechanism for which knowledge is lacking. A particular 

locus of interest was the colocalization for common variant rs3802177 associated with 

SLC30A8. rs3802177 is in strong linkage disequilibrium with rs13266634 T2D-associated 

variant, widely discussed in the literature (Carvalho et al., 2017; Gupta and Vadde, 2020; 

Li et al., 2017; Sladek et al., 2007). In our study, both variants had nearly identical p 

values (p = 2.9 × 10−14 for rs3802177 and p = 3.3 × 10−14 for rs13266634), showing that 

either or both could induce allelic imbalance. Rare loss-of-function variants in SLC30A8 
strongly reduce T2D risk (Flannick et al., 2019) by enhancing insulin secretion (Dwivedi 

et al., 2019). However, the direction of effect of the common coding variants is not known. 

Our cASE results suggest that imbalanced expression toward the rs13266634-T allele is 

protective for T2D. Since SLC30A8 loss-of-function decreases risk, these results suggest 

that the rs13266634-T allele may cause reduced SLC30A8 function.

This study has a number of limitations. First, there is a substantial overlap of samples 

between the TIGER and InsPIRE studies. For the variants that were present in both studies, 

~70% of TIGER eQTLs were also identified in InsPIRE. The difference in overlapping 

signals could be due to the lack of power to identify associations or to heterogeneity in the 

samples or eQTL methodology used. Since TIGER has samples overlapping with InsPIRE, 

we cannot consider TIGER a replication of InsPIRE results or vice versa. However, results 
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identified in both studies can be considered confirmed. Future efforts should focus on the 

careful analysis of non-overlapping islet samples from the 2 initiatives. Power will increase 

further with the integration in TIGER of additional datasets by the human islet community, 

which we will warmly welcome. A second limitation of this study is that the majority of 

samples is of European ancestry. Hence, whereas it is a great resource for functional follow 

up of variants associated with diabetes and related traits, this resource is not useful as a 

follow-up of variants that are frequent enough only in non-European populations (Mercader 

and Florez, 2017; Spracklen et al., 2020; Vujkovic et al., 2020). Future human islet omics 

and genetic studies should focus on collecting data from diverse ancestries. Third, the 

analysis of pancreatic islet bulk RNA-seq data does not allow the comparison of different 

cell types that are present in pancreatic islets. Studies using single-cell sequencing will 

enable the identification of cell-type-specific eQTLs. However, large enough sample sizes of 

human islet single-cell RNA-seq and paired genotype array datasets are not available yet.

In summary, we generated a large expression regulatory variation resource in human 

pancreatic islets, a tissue with a central pathogenic role in most, if not all, types of diabetes. 

The results are available through the TIGER web portal, which constitutes a user-friendly 

visualization tool that facilitates the exploration of the datasets, democratizing human islet 

genomic information to all islet researchers and clinicians. We expect that this resource, 

in combination with the growing number of large-scale genetic and functional studies, 

will represent a critical step forward toward understanding the molecular underpinnings of 

complex diseases that affect pancreatic islet biology and provide a path for the identification 

of novel and personalized drug targets.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Miriam Cnop (mcnop@ulb.ac.be)

Materials availability—This study did not generate new unique reagents.

Data and code availability—RNA-seq and genotyping array data from PISA cohort 

Sequence data have been deposited at the European Genome-phenome Archive (EGA), 

which is hosted by the EBI and the CRG, under accession number EGAS00001005535.

Further information about EGA can be found on https://ega-archive.org “The European 

Genome-phenome Archive of human data consented for biomedical research”(https://

www.nature.com/ng/journal/v47/n7/full/ng.3312.html).

RNA-seq and genotyping array data from CRG cohort should be requested through Miguel-

Escalada et al. (2019) and coauthor Goutham Atla.

The eQTL and cASE results are available for browsing at TIGER (http://tiger.bsc.es), and 

the full summary statistics are available for download.
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Source data and publicly available resources used for this study supporting all findings are 

detailed in the key resources table.

The cASE code is available through https://github.com/imoran-BSC/TIGER_cASE.

Any additional information required to reanalyze the data reported in this work paper is 

available from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Islet sample collection and genotyping—TIGER data consist of 514 RNA-seq and 

485 genotyped array data of deidentified cadaveric human pancreatic islet samples from 

five research centers: 1) Centre for Genomic Regulation, 2) Lund University Diabetes 

Centre, 3) University of Oxford/University of Alberta, 4) Department of Endocrinology and 

Metabolism, University of Pisa and 5) ULB Center for Diabetes Research, Universite Libre 

de Bruxelles (Table S1). For the latter two centers, islets are prepared from the body and tail 

of the pancreas.

Centre for Genomic Regulation (CRG)—The DNA of 127 CRG samples was isolated, 

sequenced, and genotyped using Illumina’s Human OmniExpress 12 v1 and 2.5–8 v1.1 

chips, as described in Miguel-Escalada et al. (2019). Genotype array was done in 125 

samples with Illumina’s Genome Studio software providing information on a total of 624k 

SNPs.

Lund University Diabetes Centre (Lund)—The DNA of 89 Lund samples from 

cadaver donors of European ancestry provided by the Nordic Islet Transplantation 

Programme was isolated as described in Fadista et al. (2014). The samples were genotyped 

using Illumina’s HumanOmniExpress 12v1 C chips passing standard quality control metrics 

providing information on a total of 609k SNPs.

University of Oxford/University of Alberta (Oxford)—The DNA of 118 Oxford 

samples was isolated from either spleen or the exocrine fraction of the islet isolation using 

the Tissue DNA Purification Kit. When no other tissue was available, DNA was extracted 

from human islets using the Trizol fraction remaining after extraction of RNA as described 

in van de Bunt et al. (2015). The samples were genotyped using Illumina’s Human Omni 

2.5 exome array following the Illumina Infinium protocol providing information on a total of 

2.5M SNPs.

University of Pisa (Pisa)—The DNA of 154 Pisa samples was isolated according to 

previously described in Marselli et al. (2020) and sequenced. Genotype calling was done in 

153 samples with Illumina’s Human Omni 2.5 exome array providing information on a total 

of 2.6M SNPs.

ULB Center for Diabetes Research (ULB)—The 43 ULB samples were isolated in 

Pisa using collagenase digestion and density gradient purification from beating-heart organ 

donors with no medical history of diabetes or metabolic disorders. Following islet shipment 
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to Brussels, mRNA was extracted and processed following the RNeasy QIAGEN protocol as 

described in Cnop et al. (2014).

METHOD DETAILS

Genotyping quality control—PLINK v1.9 (Purcell et al., 2007) was used to do standard 

quality control of the genotype data, at the variant and sample level (Bonàs-Guarch 

et al., 2018). At the variant level, we discarded rare variants (Minor Allele Frequency 

MAF < 0.01) and applied Hardy-Weinberg equilibrium test filtering (p ≤ 1 × 10−6) 

(Graffelman, 2015; Graffelman and Camarena, 2008). Further, we filtered the variants below 

a missingness threshold of 0.05. At the sample level, we discarded samples presenting a 

gender discordance between the reported gender in the metadata and the genetic sex, as well 

as the subjects with at least a 3rd degree of relatedness, those below a missingness threshold 

of 0.02 and, finally, individuals not clustering within the 4 standard deviations of the first 

four principal components from the multidimensional scale analysis. The ancestry of the 

individuals was assessed by principal components analysis comparisons with phase3 1000 

Genomes Project populations (The 1000 Genomes Project Consortium, 2015).

After QC this resulted in a total of: 1) 103 individuals, 559,083 SNPs in the CRG cohort, 2) 

88 individuals, 596,273 SNPs in the Lund cohort, 3) 102 individuals, 1,487,651 SNPs in the 

Oxford cohort and 4) 144 individuals, 1,542,765 SNPs in the Pisa cohort.

Genotype phasing and imputation—The autosomal genotypes were phased with 

Eaglev3 (Loh et al., 2016a, 2016b) using the Human Reference Consortium Project 

reference panel (McCarthy et al., 2016). The X chromosome was phased without reference 

panel with SHAPEIT (Delaneau et al., 2011). Then, GUIDANCE (Guindo-Martínez et 

al., 2021) integrating IMPUTE2 (Marchini et al., 2007) was used for imputation, using 

4 reference panels: the 1000 Genomes Project phase 3 (The 1000 Genomes Project 

Consortium, 2015), the Genome of the Netherlands Project (Boomsma et al., 2014), the 

Haplotype Reference Consortium Project (McCarthy et al., 2016) and the UK10K Project 

(Walter et al., 2015), with an IMPUTE2 info score threshold of ≥ 0.7. This resulted in a 

total of 13.7–16.3M SNPs for each cohort separately, that were merged considering the best 

info score obtained across all panels, resulting in 22,983,795 genotyped and imputed genetic 

variants with MAF > 0.001.

RNA-seq read mapping—RNA from 514 human donor islet samples was isolated 

and purified, and was used to construct RNA-seq libraries. These bulk RNA-seq assays 

generated a total of > 72 billion pair-ended fragments of 75, 76, 100, 101, 125 bp read 

lengths.

To perform eQTL analysis, we aligned all samples against the transcriptome reference 

gencode.v23lift37 (Frankish et al., 2019) with STAR v2.4.0 (Dobin et al., 2013), using

• –paired-end –p 8

An alternative mapping strategy was used for RNA-seq read mapping to be used for cASE. 

Given that the standard reference genome contains only one allele in polymorphic sites, 

standard RNA-seq read mapping can produce reference-biased alignments, leading to false 
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positives in the study of ASE. To align RNA-seq datasets in an allele unbiased manner, two 

modified reference genomes were built, defined as a ‘masked’ and an ‘enhanced’ genome. 

The ‘masked’ reference genome was built by substituting with an ‘N’ the nucleotide position 

of each common SNP in dbSNP142 (Pagès, 2015) (MAF > 1%), using the vcf2diploid.jar 

(Rozowsky et al., 2011) tool. To construct the ‘enhanced’ reference genome, we modified 

the scripts developed by Satya et al. (2012) to accommodate RNA-seq reads, which added 

artificial contigs to the reference genome containing all possible SNP allele combinations. 

For this step, we used the subset of 4M common SNPs located within gene coordinates in 

the Ensembl (Yates et al., 2020), RefSeq (O’Leary et al., 2016) and UCSC (Haeussler et 

al., 2019) annotations, or within previously identified human islet lncRNAs (Akerman et al., 

2017) (Figure S5).

STAR v2.2.0 (Dobin et al., 2013) was used to align the RNA-seq datasets against the masked 

genome, using

• –outFilterMultimapNmax 1–outFilterMismatchNmax 10

• –outSAMstrandField intronMotif–outSAMattributes All

in order to allow up to 10% of nucleotide mismatches, suppress multimapped reads, and 

make the output compatible with downstream software. Bowtie v2.0.5 (Langmead et al., 

2009) was used to align the RNA-seq data against the enhanced genome, using

• –n-ceil L,0,0.03–score-min C,−14,0 -N 1 -X 50000

to allow up to 3 nucleotide mismatches evenly distributed within the read, and long range 

read pairs. Bowtie2 (Langmead and Salzberg, 2012) was chosen because it does not map the 

RNA-seq spliced reads, (only the reference allele-containing spliced sequences were present 

in the enhanced genome) which prevents the generation of allelic alignment bias.

After mapping the RNA-seq datasets to the two modified reference genomes, the outputs 

of both alignments were combined into one non-redundant set of reads, using the read 

merging C++ scripts available in our github repository (https://github.com/imoran-BSC/

TIGER_cASE, scripts 02 and 03). Reads that aligned to the same genomic positions by both 

methods were kept, as well as reads mapped only by one of the two methods. In addition, all 

reads that mapped partially to intronic regions were discarded. The resulting set of reads was 

named ‘unbiased alignment’ (Figure S5A). This method successfully eliminated alignment 

bias in heterozygous positions (Figure S5B), and mapped 86.2% of all RNA-seq reads. 

When comparing this alignment with one using the standard reference genome and STAR 

v2.2.0 using a subset of the samples, we recovered an extra 8.5% more reads using the 

unbiased alignment method (Figure S5C).

Sample concordance verification between genotype and gene expression—
To avoid mislabeled samples leading to mismatching errors between genotype-phenotype 

samples, and to discard samples with poor quality or possible contamination, we used 

verifyBamID v1.1.3 (Jun et al., 2012) with “–best,” applied to the RNA-seq alignments 

sorted and indexed with samtools v1.1 (Li et al., 2009), and comparing with their 

genotypes. After these steps, 404 samples with good quality genotype and RNA-seq data 

and concordance remained for further analysis.
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TIGER web portal development—The TIGER web portal (http://tiger.bsc.es) is the 

comprehensive integration in an ElasticSearch v1.4.4 database of a) T2D GWAS variants 

identified in 70KforT2D (Bonàs-Guarch et al., 2018), diagram DIAMANTE (Mahajan et 

al., 2018), diagram Trans-ethnic (Mahajan et al., 2014), diagram 1000G (Scott et al., 2017) 

T2D meta-analyses or included in the GWAS Catalog v1 release 2021-06-08 (Buniello 

et al., 2019), b) variant annotation and characterization through Variant Effect Predictor 

v87.27 (McLaren et al., 2016) and Gnomad v2.0.2 (Karczewski et al., 2020), c) epigenomic 

marks from islet DNA-methylation sites (Hall et al., 2014; Thurner et al., 2018), chromatin 

accessibility (Dunham et al., 2012; Gaulton et al., 2010; Stitzel et al., 2010) and CHiP-seq 

profiles (Miguel-Escalada et al., 2019), d) annotation from Gene Ontology (Ashburner et 

al., 2000; The Gene Ontology Consortium, 2017), lncRNAs (Akerman et al., 2017) and 

islet regulome (Miguel-Escalada et al., 2019; Pasquali et al., 2014) in a publicly available 

platform. Genes are referenced to Gencode annotation v23 lift 37 (Frankish et al., 2019) 

and RefSeq BUILD.37.3 (O’Leary et al., 2016) and enriched with DisGeNET (Piñero et 

al., 2017) (May 2017) and Reactome Pathway (Jassal et al., 2020) database information. 

It contains results on gene expression integrating the results of a) gene expression from 

normalized islet RNA-seq counts, microarrays (Solimena et al., 2018), and the Genotype-

Tissue Expression database (GTEx) (Lonsdale et al., 2013), and b) computed eQTL and 

cASE.

The portal was built upon [ICGC software codebase], the front-end coded in angular v1.5.7 

with embedded biodalliance v1.4.4 genomic browser (Down et al., 2011), plotly v1.54.1 

(Plotly Technologies, 2015) and highcharts libraries and the back-end coded in Java.

QUANTIFICATION AND STATISTICAL ANALYSIS

eQTL analysis—The cis-eQTL analysis of 404 human pancreatic islets for which both 

RNA-seq and genotyping data remained after QC was performed by cohort with fastQTL 

v2.0 tool (Ongen et al., 2016). The analysis was run for regions one million base pairs up- or 

downstream of the transcription start site of each gene using gencode.v23lift37 (Frankish et 

al., 2019) version. For each cohort, we corrected for known covariates (age, sex and BMI), 

7 genomic ancestry principal components, and 15 PEER v1.3 (Stegle et al., 2010) factors 

in order to account for hidden confounding factors. For the X chromosome, we used 5 

PEER factors and 4 genomic ancestry principal components and the cis-eQTL analysis was 

performed stratified by sex and combined. The full command for fastQTL is

fastQTL–log ‘chr1.log’–vcf. ‘chr1.bcf.’–bed ‘rsem.bed’ -C ‘covariates.tsv’–threshold 

‘0.01’–out ‘chr1.fastQTL.gz’

Age and BMI missing metadata were imputed using the cohort mean.

The by-cohort fastQTL (Ongen et al., 2016) results were then meta-analyzed with METAL 

(Willer et al., 2010) using the sample size strategy and computing heterogeneity. For the X 

chromosome, the meta-analysis was run over the 4 cohorts for both sexes together and over 

the 8 eQTL analysis (4 cohorts, 2 sexes). The full configuration files for METAL are given 

by:

SEPARATOR WHITESPACE
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MARKER ensg.snp

ALLELE a0 a1

EFFECT slope

PVALUE pval

WEIGHT N

PROCESS cohort_CRG

PROCESS cohort_OXFORD

PROCESS cohort_LUND

PROCESS cohort_PISA

OUTFILE metal .tsv

ANALYZE HETEROGENEITY

QUIT

Identifying variant regulatory enrichments using GREGOR—To test the eQTL and 

cASE variants for enrichment in islet regulatory overlaps, we used the Genomic Regulatory 

Elements and Gwas Overlap algoRithm (GREGOR) (Schmidt et al., 2015), designed to 

calculate such enrichment while controlling for linkage-disequilibrium between variants, 

MAF and distance to nearest gene. We used the 1% and 5% FDR set of significant eQTL 

variants, after selecting them by linkage disequilibrium < 0.2 using PLINKv1.9 (Purcell 

et al., 2007) with “–indep-pairwise 100k 5 0.2”. We tested enrichment against a set of 

human islet regulatory regions, including gene promoters, enhancers, and open-chromatin 

derived from ChIP-seq experiments in human islets (Figures 2C and S1) (Miguel-Escalada 

et al., 2019). Specifically, we used an R2 threshold of 0.99, a window size of 1,000,000, a 

min_neighbor_num of 500, and European (EUR) as the population.

Comparison of TIGER eQTLs with the GTEx and InsPIRE datasets—To assess 

the degree of concordance between the TIGER significant eQTLs and those reported in the 

GTEx v8 dataset (Aguet et al., 2020), we searched for exact variant-target gene matches 

among the dataset of significant eQTLs in all 54 GTEx tissues. To analyze the overlap of 

eQTLs with low-frequency variants, we repeated the analysis, but first filtered the TIGER 

and GTEx eQTLs to include only those with variants with a MAF < 0.05 in the EUR 

population of the 1000 genomes phase-3 dataset (The 1000 Genomes Project Consortium, 

2015).

To obtain a relevant comparison with the InsPIRE (Viñuela et al., 2020) dataset, we first 

applied the same multiple-testing correction method used in this study to the full nominal p 

values of the InsPIRE dataset. The Benjamini-Hochberg corrections for 1 and 5% FDR 

resulted in the nominal p-value thresholds of p = 8.55 × 10−5 and p = 6.2 × 10−4, 

corresponding to 974,435 and 1,408,891 significant eQTLs. Two eQTLs were considered 

significant by both methods if they were detected at < 5% FDR in both studies, and had 
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an exact match in both variant and target gene. The low-frequency variant eQTLs were 

determined as described above.

Colocalization analysis—COLOC 4.0 (Giambartolomei et al., 2014) R package was 

used for the colocalization analysis of cis-eQTL and T2D GWAS. We used the coloc.abf 

method which implements a variation of the Approximate Bayes Factor computations 

(Wakefield, 2009). The coloc.abf function was called with two R lists, one for the eQTL 

and one for the GWAS:

list pvalues = …, N = …, MAF = …, snp = …, type = “quant”

with a vector of p-values, N the sample size, MAF the minor allele frequency and snp the 

rsid of the variant.

In order to select regions for colocalization analyses, we selected genes associated with 

at least one significant eQTL SNP which had been previously reported as a GWAS lead 

variant (Bonàs-Guarch et al., 2018; Mahajan et al., 2018; Vujkovic et al., 2020). The 

significant eQTL SNPs were determined based on a 0.05 threshold Benjamini-Hochberg 

FDR (Benjamini and Hochberg, 1995). Similarly, we used the p-values of the cASE analysis 

to perform colocalization, considering loci with an at least 5% FDR significant signal. The 

colocalization was run over regions ranging from one million base pairs downstream to one 

million upstream of the cis-regulatory target gene transcription start site.

The colocalization plots were generated by the locuscompare R package v1.0.0 (Liu et al., 

2019) (Data S1 and S2).

Generation of an unbiased set of ASE reporter variants—To identify loci under 

mappability related allelic biases, a C++ script available in the github repository (https://

github.com/imoran-BSC/TIGER_cASE, script 01) was used to generate all possible reads 

containing both alleles of all possible reporter SNPs. A splice junction database was created 

using the Ensembl (Yates et al., 2020), RefSeq (O’Leary et al., 2016), UCSC (Haeussler et 

al., 2019) and human islet lncRNA (Akerman et al., 2017) gene annotations, to take splice 

junctions into account.

The resulting dataset, consisting of 240M artificial reads, was aligned using the unbiased 

mapping strategy described above, and the allelic ratios (i.e., the percentage of reference-

allele carrying reads) were quantified. Since the same number of reads were purposely 

generated carrying both alleles, any observed allelic imbalance would derive exclusively 

from mapping biases. SNPs whose allelic ratio was not between 49%–51% were blacklisted. 

Additionally, all SNPs located within 100 bps of a common or low-frequency indel present 

in dbSNP142 (Pagès, 2015) were also blacklisted.

The remaining curated set of 3.97M SNPs were used as bona-fide SNPs for reporting ASE.

Identification of ASE—The number of reads containing the reference and alternate 

alleles RNA-seq reads overlapping each reporter SNP were quantified using the mpileup 
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command of samtools v1.1 (Li et al., 2009), with the flags “-A -B -d 20000”, and 

the ComputePileupFreqs.pl script (Satya et al., 2012). Sample-specific ASE was assessed 

calculating the allelic ratio, i.e., the fraction of reads containing the reference allele over the 

total number of reads. We selected the set of SNPs with at least 3 heterozygous samples with 

≥ 15 RNA-seq reads (of which ≥ 10 non-clonal), resulting in a set of > 170k informative 

reporter SNPs.

A binomial test (Bernoulli, 1899) was used to assess the significance of ASE for all reporter 

SNPs, using the number of reads carrying the reference and alternate alleles. To account 

for any possible remaining alignment bias in the datasets, the median allelic ratio for each 

possible bi-allelic SNP (AC, AG, AT, CG, CT, GT) across the genome was calculated and 

used as null, instead of the theoretical 50%. Similarly, the allelic ratios were proportionally 

adjusted using the sample and nucleotide-pair specific median value.

The resulting p-values were used to calculate a sample-specific 1% and 5% FDR Benjamini-

Hochberg (Benjamini and Hochberg, 1995) thresholds, to correct for multiple testing.

Assessing cASE using Stouffer’s Z-score—To assess cASE in a given heterozygous 

variant in many independent samples, the Stouffer’s Z-score (Newhall et al., 1949) method 

was used. This method combines independently obtained p-values into a Z statistic, 

which increases in absolute value with significance. The method allows for weighting 

of independent p-values and, additionally, it accounts for a positive or negative direction 

in the magnitude associated with the p-values. Thus, this method allows to differentiate 

between significant reference and alternate reporter variants, as well as providing a way to 

account for the variance inherent to differing numbers of informative RNA-seq reads in each 

reporter.

For each reporter, a Z-score was calculated as follows:

Z =
∑wiZi

∑wi2

where wi was the total read coverage of sample i, and Zi was the transformed binomial 

p-value pi:

Zi = ± θ−1 1 −
pi
2

where the sign was positive if the value of the allelic ratio was > 50%, zero if exactly 

50%, and negative otherwise, and θ−1 was the inverse of the standard normal cumulative 

distribution function, calculated using the qnorm function in R. A threshold of 10−15 was 

imposed as the minimum possible binomial p-value, in order to prevent single events 

with very significant p-values from dominating the Z-score value, while still maintaining 

their relevance. Therefore, Stouffer’s Z-score (Newhall et al., 1949) method accounted for 

consistency in the overall reference or alternate direction of the allelic bias across samples, 

and considered all p-values into account, regardless of their sample-specific significance.
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Z-scores were only calculated if the reporter SNP was heterozygous in 3 or more samples, 

and only samples with a read coverage of ≥ 15 RNA-seq reads, of which ≥ 10 non-clonal, 

were used in the calculation.

Assessing the significance of cASE Z-scores—To assess the significance of the 

obtained Z-scores, we performed 1,000 permutations of the reference/alternate read counts 

between heterozygous SNPs, and calculated their binomial p-values and resulting control 

Z-scores (https://github.com/imoran-BSC/TIGER_cASE, script 04). To account for the 

differences in gene expression, all reporter SNPs were distributed in 5 bins: one containing 

all SNPs with a median coverage of 0 reads, and 4 more bins containing the remaining SNPs 

according to their read coverage quartile, and the read counts of heterozygous SNPs were 

only shuffled within their bins. By permuting only the values of the heterozygous SNPs 

while keeping the reference and alternate homozygous values invariant, the distribution of 

the number of samples in heterozygosity for each SNP was kept constant.

The resulting null distribution of Z-scores was therefore attributable only to stochasticity, 

and so for each empiric Z-score, a p-value was calculated from this null distribution. The 

Benjamini-Hochberg method (Benjamini and Hochberg, 1995) was then used to obtain 

q-values from these p-values and thus correct for multiple testing.

Regulatory enrichment of cASE significant genes—To calculate these regulatory 

enrichments, we first generated a null distribution of control genes that were non-significant 

for cASE but had similar expression levels. First, we separated the cASE significant genes 

in 4 bins of expression, and randomly selected the same number of non-significant genes 

of the same expression quartile, 1,000 times. We then calculated, in the 1% and 5% FDR 

cASE genes and in each of the 1,000 control sets, the proportion of genes that were in 

the islet-specifically expressed genes list (Miguel-Escalada et al., 2019) (Figure 4C, left). 

The same procedure was performed to calculate the enrichment for proximity to islet 

enhancers, by calculating the proportion of genes located at less than 25kb from islet 

enhancers (Miguel-Escalada et al., 2019). The p-values were obtained by approximating 

these permuted control distributions as Gaussian distributions and deriving a p-value using 

the pnorm R function.

Gene ontology analyses and islet-specific expression—Gene ontology terms in 

the analyses of eQTL and cASE genes were obtained using the PANTHER (Protein 

ANalysis THrough Evolutionary Relationships) (Thomas et al., 2003, 2006) classification 

system.

For eQTL, we analyzed all 5% FDR significant genes versus a background list of all genes 

expressed in islets (Figure S3), and the list of TIGER exclusive eQTL genes versus a 

background of all eQTL genes shared with GTEx (Figure 2E).

For cASE, we studied 5% FDR cASE genes versus a background dataset of all genes 

for which the calculated cASE was non-significant (Figure 4D). The visualization of the 

syntactic terms was obtained using the REVIGO web tool (Supek et al., 2011).
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Identifying candidate SNPs putatively leading to cASE—We aimed to characterize 

the set of SNPs putatively causal of cASE (referred to as ‘candidate SNPs’). To that end, 

we first identified all variant pairs consisting of a cASE-significant reporter and a candidate 

variant, as long as both were located within the same topologically associating domain 

(TAD) (Dixon et al., 2012), plus a boundary leeway of ± 200kbs. Then, we separated 

the samples using the candidate variant genotype in two groups: those heterozygous 

(Het), and those homozygous (Hom). Finally, we calculated the reporter Z-score of both 

sample groups, and selected the candidate variants with significant Z-scores for the Het 

individuals, which were also non-significant for the Homs (https://github.com/imoran-BSC/

TIGER_cASE, script). The underlying hypothesis was that if the candidate variant was 

homozygous, it was unlikely to be causal.

Putative causal variants were also interrogated for the set of non-cASE significant reporter 

variants, following the same procedure described above. This produced an additional 1,247 

genes that reached cASE significance only after being considered with these putative causal 

variants.

Scaling human islet gene expression values to allow comparisons with the 
GTEx expression datasets in TIGER—The RNA-seq expression of human islet 

samples was measured with RSEM v1.3.0 (Li and Dewey, 2011) in 60,261 transcripts from 

Gencode database (v23lift37 annotation) (Frankish et al., 2019) using STAR v2.5.3.a (Dobin 

et al., 2013) and BOWTIE v2.3.2 (Langmead and Salzberg, 2012) hg19 aligned-reads as 

follows:

STAR–runMode genomeGenerate–genomeFastaFiles 

GRCh37.primary_assembly.genome.fa–sjdbGTFfile gencode.v23lift37.

annotation.gtf

rsem-prepare-reference–gtf gencode.v23lift37.annotation.gtf–bowtie2 

GRCh37.primary_assembly.genome.fa

rsem-calculate-expression–paired-end–star–paired-end -p 8

We obtained measures of raw counts, counts normalized by transcript length (TPM - 

transcripts per million) and fragment length (FPKM - fragments per kilobase). The batch 

effects and covariate differences between samples captured in the TPM measures were 

removed with limma removeBatchEffect function (Ritchie et al., 2015), using the log10 

normalized expression of the genes that were expressed in at least 80% of human islet 

samples. The results of this normalization were evaluated with Spearman correlation, 

ensuring that there was a correlation above 0.8 between all the samples independently of 

the cohort after correction.

TPM expression datasets from the 54 tissues available in GTEx (Lonsdale et al., 2013) 

(20 samples per tissue) were collected, and a decile distribution analysis was performed 

excluding genes from GTEx samples that miss expression in at least 50% of the samples. 

Then, TIGER islet expression was scaled to fit these measures according to the following 

criteria:
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1. Each GTEx decile bin [DG;i,DG;i+1] has TPM values in [TG;i,TG;i+1], thus the 

corresponding decilic straight will be: yG = (TG;i + 1 − TG;i)X + TG;i.

2. Each pancreatic islet decile bin [DG;i,DG;i+1] has TPM values in [TPI;i,TPI;i+1], 

thus the corresponding decilic straight will be: yPI = (TPI;i + 1 − TPI;i)X + TPI;i.

From Equation (2) one can derive: X =
yPI − TPI; i

TPI; i + 1 − TPI; i
 (3) thus, allowing the relation 

between the TPM pancreatic islet values yPI and the TPM GTEx values yG by replacing (3) 

in (1): yG =
TG; i + 1 − TG; i

TPI; i + 1 − TPI; i
yPI − TPI; i

TG; i + 1 − TG; i
TPI; i + 1 − TPI; i

+ TG; i the scaling factor.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Human pancreatic islets are key drivers of diabetes and related 

pathophysiology

• TIGER integrates omics and expression regulatory variation in 514 human 

islet samples

• TIGER expression regulatory variation allows the identification of diabetes 

effector genes

• The integrated human islet data in TIGER are publicly available through 

http://tiger.bsc.es
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Figure 1. Project overview and genotype imputation
(A) Overview of the TIGER data portal.

(B) Datasets of the T2DSystems Consortium and project workflow.

(C and D) Multi-panel genotype imputation identified 13.1–15.7 million autosomal variants 

(top) and 550,000–700,000 chrX variants (bottom) (C), with (D) a large proportion of 

low-frequency (minor allele frequency [MAF] 1%–5%) and rare (<1%) variants, with 10.2% 

of structural variants (SVs), including small indels and large SVs.
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Figure 2. cis-eQTL meta-analysis in human pancreatic islets
(A) Overview of the meta-analysis.

(B) Manhattan plot of all eQTLs, including chrX, analyzed with female-only (F) or male-

only (M) samples, and jointly (X).

(C) Fold enrichment over controls of significant eQTL variants, in islet regulatory chromatin 

regions. p values for 1% FDR eQTL enrichments are shown.

(D) Proportion of exclusive eQTLs in TIGER human islets (green) and previously found in 

GTEx project: tissues related to T2D etiology (orange), other tissues (blue); means in dashed 

lines. Right panel restricted to low MAF variants only.

(E) Gene Ontology analysis of the genes of TIGER-specific eQTLs.
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Figure 3. Examples of colocalization of pancreatic islet eQTLs with T2D GWAS
(A) Boxplots representing expression of CPLX1 across different genotypes of variant 

rs1531583 in each of the cohorts and final meta-analysis results.

(B) rs1531583 was not significant in GTEx whole pancreas for CPLX1, but instead it was 

for PCGF3 (bottom).

(C) LocusZoom plots of islet eQTL (top) and T2D GWAS (bottom) signals for rs1531583-

CPLX1, and their co-localization (right). ABF, approximate Bayes factor, PP, posterior 

probability.

(D) An islet enhancer overlaps with rs73221115 and rs73221116, part of the CPLX1 
credible set of SNPs.
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(E) Two human islet samples heterozygous for rs73221115 and rs73221116 showed allelic 

imbalance in their H3K27ac enhancer chromatin marks.

(F) eQTL meta-analysis of CCND2 and the low-frequency cis-regulatory variant 

rs76895963.

(G) Co-localization plots for rs76895963-CCND2, as in (B).
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Figure 4. Combined ASE analysis in human islets
(A) Overview of the cASE analysis, with IAPP as example of a gene with an imbalanced 

reporter variant, rs12826421.

(B) Manhattan plot of cASE, positive values refer to reference-biased genes, negative to 

alternate.

(C) Significant cASE genes are enriched for islet-specific expression and proximity to 

islet-regulatory regions. p values for 1% FDR eQTL enrichments are shown.

(D) Gene Ontology analysis of cASE significant genes.

(E) In genes with significant cASE, the proportion of those also identified as eGenes grew 

with increasing cASE magnitude.

(F) Total number of cis-regulated genes (top) and of islet-specific expressed (bottom), 

identified only by the eQTL analysis (green), cASE (purple), and both (orange).
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Figure 5. Identification of cis-regulatory variants in combined ASE
(A) Overview of the analysis.

(B) An example of cis-regulatory variant analysis; the samples Het for the candidate variant 

(green) have a higher cASE Z score for the reporter SNP, while samples that are Hom for the 

candidate (yellow) do not show significant imbalance for the reporter SNP.

(C) Candidate variants often have stronger Z scores than the reporters, including some 

reporter variants that were non-significant by themselves (orange).

(D) Fold enrichment over controls of significant cASE candidate cis-regulatory variants, in 

islet regulatory chromatin regions. p values for 1% FDR cASE enrichments.

(E) Total number of candidate cis-regulatory variants (top) and low-frequency variants 

(bottom) identified by only the eQTL analysis (green), cASE (purple), and both (orange).
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(F) cASE analysis for SLC30A8, its best reporter SNP (top), and best candidate variant 

(bottom).

(G) LocusZoom plots of islet cASE (top) and T2D GWAS (bottom) signals for rs3802177-

SLC30A8, and their colocalization (right).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq and genotyping array data 
(in this paper)

Marselli et al., 2020 EGA: EGAS00001005535

RNA-seq and genotyping array data Fadista et al., 2014 GEO:GSE50244

RNA-seq and genotyping array data van de Bunt et al., 2015 EGA:EGAD00001001601

RNA-seq data Cnop et al., 2014 GEO:GSE53949

RNA-seq and genotyping array data Akerman et al., 2017 EGA:EGAS00001002865

RNA-seq and genotyping array data Miguel-Escalada et al., 2019; data not shown EGA pending accession number

Expression array Solimena et al., 2018 GEO:GSE76896

DNA-methylation Hall et al., 2014 EGA:EGAD00001003946

Bisulphite sequencing Thurner et al., 2018 EGA:EGAD00001003947

Cohesin Miguel-Escalada et al., 2019 EGA:EGAD00001005203

Mediator Miguel-Escalada et al., 2019 EGA:EGAD00001005203

H3K27ac Miguel-Escalada et al., 2019 EGA:EGAD00001005203

ATAC-seq Miguel-Escalada et al., 2019 EGA:EGAD00001005203

Islet regulome annotations, ChIP-seq 
and ATAC-seq processed files

Miguel-Escalada et al., 2019 EGA:EGAD00001005203

Pancreatic islet enhancer clusters Pasquali et al., 2014

H3K4me1 Pasquali et al., 2014

Long non-coding RNAs (lncRNAs) 
annotation

Akerman et al., 2017

Pancreatic islet open chromatin 
DNase

Stitzel et al., 2010 ENCODE (2012–2016) Open Chromatine Dnase

Pancreatic islet open chromatin 
DNase

Gaulton et al., 2010 ENCODE (2012–2016) Open Chromatine Dnase

Glycemic traits data MAGIC investigators (http://
magicinvestigators.org.); members of MAGIC 
are provided in Appendix S1

70KforT2D GWAS meta-analysis 
summary statistics

Bonàs-Guarch et al., 2018 http://cg.bsc.es/70kfort2d/

DIAGRAM 1000G GWAS meta-
analysis Stage 1 Summary statistics

Scott et al., 2017 https://diagram-consortium.org/downloads.html

DIAGRAM Trans-ethnic T2D GWAS 
meta-analysis

Mahajan et al., 2014 https://diagram-consortium.org/downloads.html

DIAMANTE T2D GWAS meta-
analysis

Mahajan et al., 2018 https://diagram-consortium.org/downloads.html

GTEx Analysis V7 - Transcript TPMs GTEx Portal https://www.gtexportal.org/home/

FastDMA probe full annotation Wu et al., 2013 http://bioinfo.au.tsinghua.edu.cn/member/jgu/
fastdma/

Gene Ontology The Gene Ontology Consortium, 2017 http://geneontology.org/

Reactome Reactome Pathway database https://reactome.org/download-data/

DisGeNET, May 2017 Piñero et al., 2016 https://www.disgenet.org/

GWAS Catalog version 1.0 release 
2021-06-08

MacArthur et al., 2017 https://www.ebi.ac.uk/gwas/downloads

Ensembl Variant Effect Predictor 
version 87.27

McLaren et al., 2016 https://m.ensembl.org/info/data/ftp/index.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RefSeq BUILD.37.3 O’Leary et al., 2016 ftp://ftp.ncbi.nlm.nih.gov/genomes/
Homo_sapiens/ARCHIVE/BUILD.37.3

Gencode v23 lift 37 annotation Frankish et al., 2019 ftp://ftp.ebi.ac.uk/pub/databases/gencode/
Gencode_human/release_23/GRCh37_mapping/
gencode.v23lift37.annotation.gtf.gz

gnomAD version 2.0.2 gnomAD database https://gnomad.broadinstitute.org/downloads
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