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ABSTRACT

HIV-1 integrase (IN) oligomerization and DNA
recognition are crucial steps for the subsequent
events of the integration reaction. Recent
advances described the involvement of stable
intermediary complexes including dimers and tet-
ramers in the in vitro integration processes, but
the initial attachment events and IN positioning
on viral ends are not clearly understood. In order
to determine the role of the different IN oligomeric
complexes in these early steps, we performed
in vitro functional analysis comparing IN prepara-
tions having different oligomerization properties.
We demonstrate that in vitro IN concerted integra-
tion activity on a long DNA substrate contain-
ing both specific viral and nonspecific DNA
sequences is highly dependent on binding of pre-
formed dimers to viral ends. In addition, we show
that IN monomers bound to nonspecific DNA can
also fold into functionally different oligomeric
complexes displaying nonspecific double-strand
DNA break activity in contrast to the well known
single strand cut catalyzed by associated IN. Our
results imply that the efficient formation of the
active integration complex highly requires the
early correct positioning of monomeric integrase
or the direct binding of preformed dimers on the
viral ends. Taken together the data indicates that
IN oligomerization controls both the enzyme spec-
ificity and activity.

INTRODUCTION

The HIV-1 integration of viral DNA into the cellular
genome catalyzed by integrase (IN) is a key step in the
biological cycle of the virus. In the first step, IN removes
two nucleotides from both 3’-ends of the blunt-ended
DNA generated by reverse transcriptase (RT). In the
second step, the resulting 3’ OH ends, through a trans-
sterification reaction, integrate the processed viral molec-
ule into the target DNA with a cleavage site separated by
5bp in the case of HIV. In the cells, the viral DNA is part
of a large nucleoprotein complex called the pre-integration
complex (PIC) (1). Integrase and other viral and cellular
factors are associated with the viral DNA in the PIC and
transported to the nucleus where integration takes place.
PIC purified from infected cells can integrate the viral
DNA in vitro with a high fidelity and display the hall-
marks of HIV-1 integration (2—4).

Both 3’ processing and strand transfer can be partially
reproduced in vitro by using DNA substrates mimicking
the viral ends and pure recombinant IN (5-7). However, in
these assays, only one viral end is cleaved and/or inte-
grated (half site integration, HSI) in contrast to the two
viral LTR integration process observed in vivo (full-site
integration, FSI). More recent studies have shown that
in vitro recombinant IN is able to catalyze concerted inte-
gration in the absence of other cofactors (8—10). However,
in addition to the requirement of nonphysiological
compounds such as PEG and DMSO, HSI always
appeared more tolerant to the reaction conditions than
FSI. This suggests that in vitro IN does not fold in a
proper active structure. Some parameters are known
to improve FSI, such as the use of unprocessed

*To whom correspondence should be addressed. Tel: +33 557 57 17 40; Fax: +33 557 57 17 66; Email: vincent.parissi(@reger.u-bordeaux2.fr

© 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



7044 Nucleic Acids Research, 2008, Vol. 36, No. 22

blunt-ended substrates (11). But, despite the numerous
data obtained concerning the concerted integration reac-
tion, the different requirements for FSI and HSI remains
still obscure.

Functional analysis of the IN°DNA complexes using
chemical crosslink, time-resolved fluorescence anisotropy
and two-dimensional gel electrophoresis revealed specific
reaction intermediates (12—-14). Data indicate that, retro-
viral DNA integration occurs in the context of a series of
highly stable nucleoprotein complexes called stable synap-
tic complex (SSC) and strand transfer complex (STC),
leading to a tetrameric IN complex bound to both viral
and target DNA (13).

This sequence of events leading to the formation of
the integration complex remains unclear, particularly the
initial association between IN and DNA leading to the
tetramer associated with both viral ends. At least three
questions remain to be answered: (i) How the positioning
of IN takes place on the viral ends? (i) Does the IN
monomer play a role in this early step of the integration
process? (iii) Does the IN dimerize after binding to the
LTR leading to an association into the tetrameric form?

Previously, multimerization of IN following interaction
with DNA was revealed by small angle X-ray scattering
(SAXS) and time-resolved fluorescence anisotropy
(15-17). Those results strongly suggest the involvement
of different IN oligomers depending on the nature of the
DNA substrate.

Here we provide a functional study of the different IN
oligomers populations found in solution. Comparison of
IN activity using enzymes at different oligomerization
states showed that the integration activity was highly
dependent both on viral end sequences for the formation
of specific IN oligomers, or the presence of preformed
catalytically active oligomers in solution. Our data also
demonstrate that multimerization of IN on nonspecific
DNA leads to the formation of a new functional variant
of IN able to generate nonspecific random double-strand
breaks. Taken together our findings strongly suggest that
(1) enzyme specificity is determined by its oligomeriza-
tion and (ii) the initial binding of the enzyme to the viral
extremities, and thus its correct positioning on the LTRs,
constitutes a prerequisite step in the formation of active
complexes.

MATERIALS AND METHODS
HIV-11IN

Standard purification was performed essentially as pre-
viously described (18). The soluble fraction containing
the HIV-1 IN obtained from JSC 310 (IN), expressing
IN protein was loaded on a Hitrap butyl-sepharose 4B
column (1 ml, Pharmacia-LKB), washed with LSC buffer
(50mM HEPES pH 7.6, 0.2M NaCl, 0.1mM EDTA,
ImM DTT, 7mM CHAPS, 10% glycerol) and equili-
brated with 5 volumes HSC buffer (50 mM HEPES pH
7.6, 0.2M NaCl, 1 M ammonium sulfate, 0.1 mM EDTA,
ImM DTT, 7mM CHAPS). Proteins were eluted by a
decreasing ammonium  sulfate gradient (1-0 M).
Fractions containing IN activity were pooled and 7mM

CHAPS was added. Pooled fractions were 1/3 diluted
with 50mM HEPES pH 7.6, 0.1mM EDTA, 1 mM
DTT, 10% glycerol, 7mM CHAPS and loaded on a
Hitrap Heparine Sepharose CL-4B column (1 ml,
Pharmacia-LKB), washed with 5 volumes HS buffer
(50mM HEPES pH 7.6, IM NaCl, 0.1mM EDTA,
ImM DTT, 10% glycerol, 7mM CHAPS) and equilibra-
ted with a linear NaCl gradient (0—1 M NaCl). Fractions
containing IN activity (eluted at 300mM NaCl) were
pooled and either concentrated or not by ultrafiltration
(Centricon Millipore), followed by addition of 7mM
CHAPS. ZnSO,, 50uM, was added if necessary in
the stock fraction. Purified IN was kept at —80°C in
300 mM NaCl. Proteins were analyzed by electrophoresis
in a 12% SDS-PAGE and western blotting using a poly-
clonal anti-IN antibody (Invitrogen, Carlsbad, CA,
USA). Dilutions of the IN protein were carried during
various times reported in the results section in dilution
buffer without cation (HEPES 20 mM, pH 7.6) or with
either Mg™ ™ (7.5 mM MgCl,, HEPES 20 mM, pH 7.6) or
Mn" " (7.5mM MnCl,, HEPES 20mM, pH 7.6, stan-
dard conditions).

Detergent free enzyme was purified following the new
purification procedure leading to INyyprig €nzyme. For
that purpose CHAPS 7mM was used during extraction
but omitted during the final purification steps and
ZnSO4 50 uM was added in all the chromatography buf-
fers described above.

Determination of oligomerization state

Gel filtration chromatography. Purified IN was diluted in
I ml loading solution (50mM HEPES pH 7.5, 7mM
CHAPS, 1mM DTT, 150mM NaCl, 0.1 mM EDTA) to
a final enzyme concentration of 150nM and chromato-
graphed through a Smart Superose 12 (Pharmacia-LKB)
on the Ettan LC system. The void volume was determined
with blue dextran (>2000kDa) and the column was cali-
brated with aldolase (158 kDa), bovine serum albumin
(67kDa), ovalbumin (43kDa) and chymotrypsinogen A
(25kDa) (Pfizer, Kirkland, Québec). Proteins were eluted
with a flow rate of 0.04 ml/min and recorded by continu-
ously monitoring the absorbance at 280 nm. Prior to chro-
matography, samples were centrifuged for 10min at
10000 r.p.m. to remove large protein aggregates.

Disuccinimidyl suberate crosslink. One picomole of puri-
fied IN was incubated for 30 min at 22°C (standard con-
ditions) with 0.8 pg of Disuccinimidyl suberate (DSS) in a
HEPES 50 mM pH 7.5 buffer and at a final NaCl concen-
tration of 30mM in a total volume of 20 pl. The cross-
linked products were separated on 12% SDS-PAGE gel
and detected by western blotting using a polyclonal anti-
IN antibody (Invitrogen).

SAXS. SAXS experiments were performed as described
by Baranova et al. (17). SAXS patterns were obtained
with a Siemens diffractometer (Germany) by step-by-step
scanning using a goniometer and an X-ray scintilla-
tion detector. Small-angle roentgenograms were mea-
sured in the angular range /4 = 0.013-0.22A~", where
h = 4rn sinf/x, 20, is the scattering angle, and A is the



X-ray wavelength. The first step in mathematical proces-
sing of the SAXS data and computational checks of func-
tions for size distribution of spherical particles were
performed using the computer program and algorithms
described earlier (19) as well as optimization programs (20).

In vitro activities

Processing and strand transfer. Standard assays were per-
formed as described previously (21) in 20mM HEPES
pH 7.5, 10mM DTT, 7.5mM MnCl,, 0.05% NP40 in a
total volume of 20 ul. The final NaCl concentration was
adjusted at 30mM in all reactions. The reaction mixture
was incubated at 37°C for 1h in the presence of IN
(50nM) and radiolabeled oligonucleotides (50nM) and
the incubation was stopped by adding 10pul of loading
buffer (95% formamide, 20mM EDTA, 0.05% bromo-
phenol blue) and heating at 90°C for 5 min (standard con-
ditions). The reaction products were analyzed by
electrophoresis on 15% polyacrylamide gels with 7M
urea in Tris—borate—-EDTA pH 7.6 and autoradiographed.
The sequence of the ODNs used to perform the processing
and strand transfer assays were the following:

ODN 70: SGTGTGGAAAATCTCTAGCAGT3?/,

ODN 71: YSGTGTGGAAAATCTCTAGCAZY,

ODN 72: YACTGCTAGAGATTTTCCACAC?Y'.

To perform the 3’ processing assay, the 5’ radiolabeled
ODN 70 hybridized to ODN 72 was used as a substrate
while the 5’ radiolabeled ODN 71 hybridized to ODN 72
was used as a substrate in the strand transfer reaction.

The unlabeled 21 bp hybrid 71-72 was used as specific
ODN for the reassociation experiments. As a control of
specificity a 21bp random ODN was also used and
obtained by hybridization of the following ODNs:

Random21_5: 5CGTAAGGTCATTTCAACTGAT?.

Random21_3": ATCAGTTGAAATGACCTTACG?.

Concerted integration DNA substrates. Standard con-
certed integration reactions were performed as described
previously (22), except that no cellular proteins were
added. Briefly, purified HIV-1 IN (50 nM) was pre-incu-
bated with both the 5-end-labeled donor DNA (10ng)
containing the 3’-processed U3 and U5 LTR sequences
and the target DNA plasmid pBSK ™ (100 ng) at 0° C for
20 min in a total volume of 5 ul. Then the reaction mixture
(20mM HEPES pH 7.5, 10mM DTT, 7.5mM MgCl,,
10% DMSO, 8% PEG, 30 mM NaCl) was added and the
reaction proceeded for 90 min at 37°C. Incubation was
stopped by adding a phenol/isoamyl alcohol/chloroform
mix (24/1/25 v/v/v). The aqueous phase was loaded on a
vertical 1% agarose gel in the presence of 1% bromophe-
nol blue and 1mM EDTA. After separation of the pro-
ducts, the gel was treated with 5% TCA for 20 min, dried
and autoradiographed. All IN activities were quantified by
scanning of the bands after gel electrophoresis and auto-
radiography using the Image J software. Both target and
donor plasmids were kind gifts from Dr Karen Moreau
(Université Claude Bernard-Lyon I, France). The target
corresponds to the plasmid pBSK * (Stratagene, La Jolla,
California) carrying the zeocin resistance encoding gene.
The 294 bp preprocessed donor substrate was obtained as
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described previously (12) and contains after cleavage by
Ndel the supF tRNA gene flanked by two pre-cleaved
extremities mimicking the 3’-processed U3 and U5 LTR
sequences. The unprocessed donor was generated by clon-
ing a donor containing Scal ends into a PGem-T vector
(Promega, Charbonnieres, France) as previously described
(11). The PGem-T-SupFScal resulting vector was cleaved
by Scal and the substrate fragment was purified.

Cloning of integration products  for FSI
quantification. The same protocol described previously
(12) was used. Briefly, after concerted integration the pro-
ducts were purified on a DNA purification system column
(Promega) as described by the supplier and then intro-
duced into a MCI1060/P3 Escherichia coli strain which
contained ampicillin, tetracycline and kanamycin resis-
tance genes. Both ampicillin and tetracycline resistance
genes carry an amb mutation. These proteins are thus
expressed only in the presence of the supF gene products.
Integration clones carrying both zeocin-resistance and
supF genes were therefore selected in the presence of
40 pg/ml ampicillin, 10 pg/ml tetracycline, 15 pg/ml kana-
mycin and 25 ug/ml zeocin. Plasmids were isolated from
quadruple resistant colonies and checked by PCR sequen-
cing (ABI Prism big dye terminator cycle sequencing
ready reaction kit, Applied Biosystems) using the Usj;
primer (5Y-TATGGAAGGGCTAATTCACT-3') and the
US primer (5-TATGCTAGAGATTTTCCACA-3').

Nonsequence-specific DNA endonuclease assay. Standard
reactions were performed as described previously (23).
Substrate of the non-sequence-specific endonuclease activ-
ity of HIV-1 integrase was the bacterial pUC19 DNA
plasmid from Gibco. Purified integrase (1 pmol) was incu-
bated with 200 ng of pUC19 DNA in a reaction mixture of
10l containing 20mM HEPES pH 7.5, 10mM DTT,
0.05% NP40, 30mM NaCl and MnCl, or MgCl,
(7.5mM). The reaction mixture was incubated up to 1h
at 37°C and stopped by addition of 2 ul of 95% forma-
mide, 20mM EDTA, 0.05% bromophenol blue stop solu-
tion (standard conditions). Samples were analyzed on a
1% agarose minigel containing ethidium bromide
(0.5 pg/ml). Electrophoresis was carried out for 30 min at
100V at room temperature. DNA was detected by fluor-
escence upon exposure to UV light. Activity was evaluated
by quantification of the bands corresponding to the differ-
ent topological forms of the plasmid using the Image J
software after scanning.

RESULTS
Purification of differently associated IN

In order to analyze the dynamic association of IN
with DNA, our first aim was to obtain different forms
of the associated enzyme in the absence of a crosslink
agent. Several parameters can affect IN oligomerization
such as enzyme concentration, presence of detergent
and Zn ions (15,16,24,25). Our standard preparations
of enzyme were all obtained in the presence of CHAPS
but differ in their protein concentrations and the
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Figure 1. Oligomerization state (A and B) and functional analyses (C and D) of the associated INz, preparation. One hundred and fifty picomole of
IN purified in presence of 50 um ZnSO, (INZ,, 10 puM) were submitted to gel filtration chromatography. (A) The nature of the IN peaks was
determined by comparing profiles obtained with proteins of known molecular weights aldolase (158 kDa), bovine serum albumin (67 kDa), ovalbumin
(43kDa) and chymotrypsinogen A (25kDa). One picomole of INz, was submitted to DSS crosslink (0.8 ug DSS, 50 mM HEPES pH 7.5, 30 mM
NacCl) for 15min and 60 min at 22°C and then 12% SDS-PAGE gel followed by western blot using polyclonal anti-IN antibodies. (B) Monomer
(Mo), dimer (Di) and tetramer (Te) positions were determined by comparison with a molecular weight marker (MQ). Concerted integration assay
(C) was performed without IN (lane -IN) or with 1 pmol of IN,, (same final protein and NaCl concentrations of respectively 50nM and 30 mM)
using 100 ng of acceptor DNA (3000 bp) and 10ng of **P 5'-labelled donor pre-processed DNA (296 bp). The reaction products were either loaded on
1% agarose gel or cloned in MC1060/P3 E. coli strain. The position and the structure of the different products obtained after half-site (HSI), full-site
(FSI) and donor/donor integration (d/d) are reported. The number of resistant selected colonies obtained in absence of IN (-IN) or after integration
reaction carried by INz, (mean & SD of three independent experiments) and the structure of the integration loci from 20 clones in each condition are
reported in D.

addition of Zn or not (Materials and Methods section). stored at initial protein concentration 12.5pum and
Different enzymes were obtained: (i) INyc stored at 50 uM Zn.
initial protein concentration <1 puM; (i) INgxc stored The oligomerization state of each sample was

at initial protein concentration 5puM; and (iii)) INg, checked by size exclusion (gel filtration) chromatography.



As shown in Figure 1A, we obtained in the presence
of Zn an IN solution containing monomers, dimers
and tetramers. In contrast, all the IN preparations
obtained in the absence of Zn and in the presence of
CHAPS were dissociated (Supplementary Material 1).
The oligomerization equilibrium of the associated pre-
paration was further checked by crosslink with DSS fol-
lowed by SDS-PAGE and western blot. As shown in
Figure 1B, the data obtained using chromatography
were confirmed since monomers, dimers and tetramers
were detected using this approach with similar propor-
tions than those obtained after gel filtration. Longer cross-
link incubation times did not change the oligomerization
profile, indicating that DSS was able to crosslink only
preformed oligomers without inducing further multimer-
ization. Same results were obtained when using the SAXS
methods (data not shown). Consequently, we assumed
that the crosslink analysis reflects the proportion of oligo-
mers in the IN solutions, and thus, this method was used
to evaluate all the IN preparations throughout this work.

Integrase dissociation inhibits in vitro integration activity

The in vitro activity of the IN,, preparation was checked
using the concerted integration assay. Standard reaction
was initially performed using a 294bp DNA substrate
containing the 21nt pre-processed HIV-1 viral ends at
each extremity, as described previously (12). Figure 1C
shows that the INz, enzyme was highly active since
all the expected integration products were detected.
In order to precisely monitor the full site integration
events the circular forms of integration were cloned and
quantified. As reported in Figure 1D analysis of the inte-
gration loci structure indicated that the 5bp duplications
was found confirming that the enzyme catalyzed concerted
integration with a good efficiency and fidelity. In contrast,
the dissociated enzymes mentioned above were found less
active and the IN monomers were found totally inactive
(Supplementary Material 1).

In order to determine the relationship between the activ-
ity and the oligomerization state of IN, we analyzed the
activity of the INy, preparation before and after dissocia-
tion (strategy described in Supplementary Material 2). The
highly concentrated enzyme was diluted at a protein con-
centration ranging from 12.5um to 0.125uM and the oli-
gomerization state was checked by DSS crosslink and
quantified by densitography of the western blot analysis.
DSS crosslink analysis shown in Figure 2 indicated that
the dilution led to the dissociation of IN. Samples at con-
centrations below 1.5uM appeared mainly as monomers
under these conditions while dimers appeared when
the concentrations were increased. Tetramers were
observed only at the highest concentration of 12.5uM
of the initial stock solution, in agreement with the results
obtained by exclusion size chromatography and crosslink-
ing (Figure 1).

Diluted samples were tested in vitro for concerted inte-
gration under standard conditions (7.5mM MnCl,,
HEPES 20mM, pH 7.6), using pre-processed substrate
and FSI was quantified by selection of integrants clones.
The final concentration of IN and NaCl were adjusted
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Figure 2. Effect of enzyme initial concentrations on IN oligomerization
in solution. One picomole of each diluted fraction was submitted to
DSS crosslinking. Then monomer, dimer and tetramer bands were
quantified using the Image J software. The percentage of each oligomer
was plotted versus the initial IN concentration.

respectively to 50nM and 30mM for each experiment.
As shown in Figure 3A and quantification in Figure 3B,
no integration activity was detected with the dissociated
enzyme appearing as monomers in the previous DSS anal-
ysis (lanes 6-7). The integration activity was found highly
dependent on the amount of oligomers in the initial IN
solutions, especially dimers. Increasing the proportion of
oligomers also improved the level of FSI activity as shown
by the results of integrants cloning (figure 3C), without
affecting the quality of the integration since no significant
changes were observed regarding the proportion of 5bp
duplication as seen in Figure 3D. The same effect was
observed when IN was diluted in presence of Mg " " or
in the absence of cations (data not shown).

The viral end structure was previously found to affect
the in vitro concerted integration activity (11). To deter-
mine whether the inhibition of the activity concomitant
with IN dissociation was dependent on the viral end struc-
ture from the donor DNA, we used a DNA carrying the
intact unprocessed 21nt LTR ends. The substrate was
generated using a DNA fragment containing the Scal
restriction site as reported previously (11). Using this sub-
strate a higher proportion of FSI was detected (Figure 4).
Analysis of the integration loci indicated that the use of
intact viral ends improved both, the efficiency and the
quality of the integration (Figure 4C and D, to be
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1 pmol of IN from the different diluted preparations of INz, as shown (D): 12.5uM (lane 1), 6.25uM (lane 2), 3.125uM (lane 3), 1.56 uM (lane 4),
0.78 uM (lane 5), 0.3 uM (lane 6) and 0.125uM (lane 7). The final NaCl concentration was adjusted to 30 mM in all assays. The reaction products
were either loaded on 1% agarose gel (A) or cloned in MC1060/P3 E. coli strain (C). The position and the structure of the different products
obtained after half-site (HSI), full-site (FSI) and donor/donor integration (d/d) are shown (A). (B) corresponds to the densitometry estimation of the
FSI and FSI+ HIS bands of experiments shown in A. The different integration products were quantified using the Image J software. Values are the
mean =+ SD (error bars) of three independent experiments. The number of resistant selected colonies (C) obtained after integration reaction carried by
the different diluted IN and the structure of the integration loci (D) from 20 clones in each condition are reported.

compared with Figure 3C and D), thus confirming a pre-
vious report (11). However, as observed with the pre-
processed substrate, IN dissociation led to the inhibition
of integration without affecting the quality of the integra-
tion (no change was observed in the integration loci struc-
ture as seen in Figure 4D). The profile obtained with the
unprocessed substrate remained similar to that observed
with the pre-processed DNA except the inhibition rate that
was found different since FSI and HSI appeared less tol-
erant to the dissociation step (compare Figure 4B to 3B).

This indicates that the initial oligomerization state of IN
in solution affects the efficiency of the integration reaction
independently of the viral end structure. Since the quality
of the integration was found to be highly dependent on the
formation of the synaptic IN tetramer complex on viral
ends (12), our data suggest that only the initial attachment
step was affected by the dissociation and not the final
active complex structure. Furthermore, since integration
activity appeared only in the presence of oligomers
in solution we concluded that either preformed active oli-
gomers can exist in solution, or that preformed oligomers
in solution are required to be activated on DNA.
The striking result obtained with the IN samples

dissociated into monomers suggested that, under our con-
ditions, monomers of IN are inactive probably because
they were unable to associate on DNA to form the
active oligomers. Therefore, it was tempting to speculate
that preformed oligomers (dimers or tetramers) could bind
directly to DNA to form the active IN° DNA complexes.

The inactivity of the IN monomers on a long DNA
substrate used for the concerted integration assay could
be due to their inability to bind DNA, to catalyze the
integration reaction and/or to actively oligomerize on
viral ends. To answer this question we further analyzed
the functional association of dissociated preparations of
IN focusing on short ODN mimicking the viral end.

Integrase monomers can actively associate on short
ODN mimicking the viral ends to catalyze
3’ processing and strand transfer activities

Dissociated samples after dilution were tested for their
folding into active complexes on short DNA carrying
only the final 21 bp of viral LTR or nonspecific sequences.
Surprisingly, dissociated IN,, (0.125 uM) was able to cat-
alyze the processing (Figure 5A) and the strand transfer
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Figure 4. Effect of initial IN concentrations on in vitro integration of the unprocessed donor DNA. Concerted integration assay was performed with
1 pmol of IN from the different diluted preparations of INz, as shown in Figure 3: 12.5um (lane 1), 6.25 um (lane 2), 3.125 pm (lane 3), 1.56 uM (lane
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reaction products were either loaded on 1% agarose gel (A) or cloned in MC1060/P3 E. coli strain (C). The position and the structure of the different
products obtained after half-site (HSI), full-site (FSI) and donor/donor integration (d/d) are shown in (A). (B) corresponds to densitometry of the
FSI and FSI+HIS bands of experiments shown in A. The different integration products were quantified using the Image J software. Values are the
mean &+ SD (error bars) of three independent experiments. The number of resistant selected colonies (C) obtained after integration reaction carried by
the different diluted IN and the structure of the integration loci (D) from 20 clones in each condition are reported.

reactions (Figure 5B). However, this activity was revealed
only when incubations were performed at times longer
than the standard conditions (2 h instead of 1). This sug-
gests that IN monomers can fold into active complexes
when bound to short specific DNA in contrast to the
situation with the longer substrate used for concerted inte-
gration assay.

However, standard processing reactions were per-
formed using Mn " while concerted integration assays
were done in the presence of Mg " " or not. Since different
metal ions are known to affect IN conformational changes
(26-28), we performed new processing experiments using
Mg" " cations. As reported in Figure 5C, the use of
Mg ™ " decreased the activity for both associated and dis-
sociated IN with a more dramatic effect on enzyme mono-
mers. Indeed, no activity was observed after 2h using
monomers while a significant activity of the associated
IN activity was observed. Since the associated IN activity
was also affected by the nature of the cations, it remains
difficult to conclude about the effect of Mg " on the
active complexes. However, it has previously been shown
that the half-life of IN\DNA complexes is dependent upon
the cations (29,30) and lower in the presence of Mg " .
One explanation why the 3’ processing catalyzed by

monomers was more severely impaired in presence of
Mg* " could be the lower stability of the complexes
formed from the sequential recruitment of a second mono-
mer by a first one already bound to DNA. This also sug-
gests the emergence of a more stable complex issued from
the binding of IN oligomers explaining why the associated
IN remains active even in presence of Mg ™ .

The hypothesis of differences in the kinetic and stability
of the complexes depending of the cations was (i) con-
firmed by the detection of some processing activity
for IN monomers in experiments performed after lon-
ger reactions time (more than 4h) in presence of Mg™* ™
(Supplementary Material 3) and (ii) strongly supported by
the following reassociation experiments.

Reactivation of integrase monomers by short specific ODNs

IN monomers appeared inactive on long DNA while they
present 3’ processing and strand transfer activity on short
specific viral sequences. This indicates that they can bind
DNA and actively oligomerize on the viral end. Thus, the
inactivity of monomers on long DNA substrate could be
due to their inefficiency to be positioned on the viral ends
in contrast to the associated forms which could bind more
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Figure 5. IN activity and oligomerization on short ODN mimicking the viral ends. 1 pmole of associated (12.5uM initial concentration) and
dissociated (0.125uM) INy, were analyzed for 3’ processing (A) and strand transfer activities (B). Reactions were performed under standard
conditions (7.5mM MnCl,, 20mM HEPES pH 7.6) for 0 to 120 min. The final NaCl concentration was adjusted to 30 mM in all reaction solutions.
IP, integration product; P, processing product. 3’ processing activity detected after 120 min of reaction with both enzyme preparations was analyzed
using either MgCl, or MnCl, (7.5mM) and the percentage of activity recovered was reported in C. Results are the mean +SD (error bars) of three

independent experiments.

specifically the end sequence to form the active complexes.
If this hypothesis is correct, the reassociation of mono-
mers into dimers should lead to the reactivation of the
dissociated preparation of IN. It has been described pre-
viously that the preincubation of IN with short ODNs
leads to its oligomerization and to the activation of 3’
processing reaction (17,18), suggesting that active oligo-
mers could be released from the IN*DNA complex. To
verify this point, we performed a reassociation experiment
of IN monomer preparations.

One picomole of dissociated INz, was incubated over-
night with 1 pmole of the 21 nt ODN presenting the LTR
ends or random nonviral ODN under our standard con-
ditions (7.5 mM MnCl,, HEPES 20 mM, pH 7.6). The self
association of the protein was analyzed using DSS cross-
link before performing concerted integration assays.
Results in Figure 6 indicate that preincubation of the dis-
sociated enzyme with either short specific viral ODN or
random ODN led to its reassociation into oligomers
(mainly dimers). These data have been validated by
SAXS experiments (data not shown) confirming that
monomers can bind either to specific or nonspecific
DNA and associate on it. In order to determine whether
the oligomers formed on both ODN were functionally
similar, we tested the reassociated fractions in concerted
integration assays. Results are reported in Figure 7A and
show that the incubation of IN monomers with the 21 nt
viral ends led to recovery of integration (lane 3 compared
to lane 2). In contrast, no integration was detected after
incubation with nonviral ODN (lane 4), indicating that,
in this case, the multimer enzyme was inactive. Selection
of integrants carrying the circular form of FSI products
indicated that this reaction was also recovered, at least
partially, when the dissociated enzyme was pre-incubated
with specific ODN but not with random sequences
(Figure 7B). Sequencing of the integration loci showed
a similar profile with associated and reassociated IN.
The effect of the viral end structure was also analyzed

MQ (kDa) 1 2 3 4
130 ™ « Te
o5 W
72 “

t "‘ <« Di
55
s M | - - u <« Mo

Figure 6. Effect of specific and nonspecific ODN on integrase self asso-
ciation. One picomole of IN,, 12.5um or 0.125uM (lanes | and 2) pre-
incubated with specific or nonspecific 21 bp ODN (lanes 3 and 4) were
submitted to DSS crosslink for 30min at 22°C and loaded on 12%
SDS-PAGE before western-blotting with polyclonal anti-IN antibody.
In all reactions the final NaCl concentration was adjusted to 30 mM.
Monomer (Mo), dimer (Di) and tetramer (Te) positions were deter-
mined by comparison with a molecular weight marker (MQ).

using the blunt substrate for the concerted integration
assay. As reported in Figure 7C and D, the same reactiva-
tion was observed under these conditions, confirming that
the enzyme dissociation affected the early steps of IN
attachment to DNA and not the formation of the final
synaptic complex.
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Figure 7. Effect of reassociation of INz, on in vitro integration activity. Assays were performed with 100 ng receptor DNA and 10 ng pre-processed
(A) or unprocessed donor (C) with 1 pmol of IN,, 12.5um or 0.125uM diluted in standard dilution buffer (7.5mM MnCl,, HEPES 20 mM, pH 7.6)
without preincubation (respectively lanes 1 and 2) or after preincubation with 1 pmol of specific 21 bp viral ODN (lanes 3) or random 21 bp ODN
(lane 4) under standard conditions (7.5mM MnCl,, HEPES 20mM, pH 7.6). The reaction products were then loaded on 1% agarose gel. The
position and the structure of the different products obtained after half-site (HSI), full-site (FSI) and donor/donor integration (d/d) are reported in the
figure. Effect of reassociation on full site integration. Reaction products obtained with the pre-processed (B) or the unprocessed (D) donor were
cloned in MC1060/P3 E. coli strain as described in Materials and methods section. The number of resistant selected colonies obtained after
integration reaction under the different conditions is reported in the figure. Results are the mean 4+ SD (error bars) of three independent experiments.

Interestingly, the reassociated monomers obtained
after preincubation with the specific ODN were also
found more active for 3’ processing especially when
reaction was performed in presence of Mg' = (Supple-
mentary material 3). This confirmed that the differences
of activity observed between Mg*™ " and Mn™ " condi-
tions were due to differences in kinetics. In addition,
the same re-association and reactivation effects were
observed when the experiments were performed with
IN diluted in presence of Mg" " (7.5mM MgCl,,

HEPES 20mM, pH 7.6) (data not shown) demonstrat-
ing that the reassociation of monomers into oligomers
and their reactivation were not only Mn" © dependent.
Furthermore, the reassociation experiments performed
with other IN preparation obtained with different pur-
ification procedures described in Materials and methods
section led to the same results demonstrating that the
reassociation of monomers into active oligomers was
not dependent of the purification method (Supplemen-
tary material 4).
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In order to obtain more information on the mechanism
of reactivation, we examined the kinetic of reactivation of
the dissociated IN,, enzyme in presence of Mg" ™ or
Mn ™" ". As shown in Figure 8, the kinetic of reactivation
was found different when comparing both conditions.
Indeed, the activation detected in presence of Mg" ™
was observed after 2h and was maximal at 6h. In con-
trast, when Mn* " was used the activation was not
detected before 10h. These results are consistent with
the half-life of the IN*DNA complexes determined
before in the presence of both cations (31). Taken together
these results indicate that monomer reactivation was
mainly due to IN reassociation on short ODNs followed
by the release of active oligomeric complexes. But the

Re-activation (%)

0 4 8 12 16 20 24
Time (h)

Figure 8. Effet of cations on the kinetic of reactivation of dissociated
INz,. One picomole of dissociated IN,, 0.125uM was preincubated
with specific 21 bp ODN for 0-24h in presence of Mg ™ or Mn™ "
(7.5mM) and then tested for concerted integration. Enzyme activity
was compared to that of the dissociated IN, incubated under the
same condition but without ODN. The percentage of activation was
reported.

previous demonstration of the displacement of viral
DNA termini from stable IN nucleoprotein complexes
induced by the secondary DNA binding interaction (31)
meant that we could not rule out a possible tertiary com-
plex between IN, the short ODN and the concerted inte-
gration substrate as a possible mechanism of activation.

Our major observation is that both ODNs led to the
formation of oligomers, mostly dimers, from monomers,
but only specific viral DNA led to active integration com-
plexes. We conclude that active dimers can be formed
from monomers only after oligomerization of the
enzyme on the specific 21 nt viral ends. Furthermore the
close association profile obtained in both preincubation
conditions (specific or nonspecific ODN) and the differ-
ence of in vitro activity summarized for IN, in Table 1
strongly indicate that the dimeric complexes fold on each
type of DNA are functionally different.

Taken together these data strongly suggest that the inef-
ficiency of monomers to catalyze integration on long
DNA substrate was mainly due to their inability to
become adequately positioned on the viral ends, where
their association should lead to active dimers. Since,
under in vitro integration assay conditions in presence of
long substrates, IN mainly interacts with nonspecific
DNA, we further studied the function of the IN*DNA
complexes formed on these nonviral sequences.

IN monomers association on nonspecific DNA leads
to double-strand endonuclease activity

Previous reports indicated that IN displays an endonu-
cleolytic non-sequence-specific activity on heterologous
DNA (23, 32). However, neither the role of this activity
nor the nature of IN forms catalyzing the cleavage has
been determined. We investigated the activity of the oli-
gomers induced by the binding to nonspecific ODNs. The
activity of the associated and dissociated preparations of
IN (INz,, 12.5um and 0.125 pM) were compared using the

Table 1. Summary of the association and activity analyses of the different enzyme preparations

Enzymes IN,,, IN, ¢ INyyoria
Concentration (pM) 12,5 0.125 1 50 1
Oligomerization Mo, Di, Mo Mo Mo, Di, Mo
Te Te
Activity on 3’ Processing +++ + + +++ +
short ODNs
(21bp) Strand transfer +++ + + +++ +
Preincubation No No Spe NSpe No Spe NSpe No No Spe NSpe
Activity on . - f ;
long Oligomerization Mo, Di, Mo Mo, Di \ Mo Mo, Di Mo, Di | Mo, Di, Mo Mo, Di Mo,
substrates Te Di, Te Te Di, Te
(294bp) HSI +++ - ++ - ++ S+ _ S+ _
FSI ++ - + - +++ - ++ - ++ -

The INz,, INy ¢ (purified in presence of 7mM CHAPS in addition or not of 50 uM ZnSO,) were compared for self association, 3’ processing, strand
transfer, HSI and FSI products after pre-incubation or not (No) with specific (Spe) or nonspecific (NSpe) 21 bp ODN. The presence of oligomers was
evaluated by DSS crosslink and western blotting, monomers (Mo), dimers (Di) and tetramers (Te) are reported. In vitro activities were quantified
using Image J software or counting of FSI integrant clones. More than 20% of 3’ processing and strand transfer (+ + +), 5-20% (+), 15-25% of
HSI (+ + +), 5-15% (+ +), no activity (=), Above 100 FSI integrant clones (+ + +), 50-100 (+ +), 10-50 (+). All the activities reported here
were obtained under standard conditions (7.5 MnCl, for 3’ processing and strand transfer; 7.5 MgCl, for concerted integration). Pre-incubations with

ODN were performed in presence of MgCl, during 16h.



nonspecific DNA cleavage assay previously described (23).
The enzyme displaying a mixture of monomers, dimers
and tetramers presented a classical profile of single-
strand non-sequence-specific DNA (Figure 9A, quantified
in Figure 9B). Interestingly, the monomers showed a dif-
ferent profile characterized by the formation of linear
molecules indicating a double-strand DNA endonuclease
activity (Figure 9A quantified in Figure 9C). Both single-
strand and double-strand DNA cleavages were inhibited
by the IN-specific ODN inhibitor 93 del (33,34), indicating
that the breaks were due to intrinsic IN activity.

Since Mg * and Mn™ " have been shown to influence
the specificity of the enzyme (27,28,30), we further studied
the effect of both cations on the nonspecific cleavage cat-
alyzed by IN. Figure 9D and E show that double strand
DNA cuts catalyzed by the dissociated enzyme were less
tolerant to the cations used in the assay. Indeed Mg™ *
decreased the double strand cleavage activity without
inducing significant changes in the single strand cuts cat-
alyzed by the associated IN. These results support the data
obtained in the specific processing cleavage (Figure 5C)
indicating that the complexes issued from the association
of monomers on DNA may require Mn" " to be efficient
in contrast to the IN\DNA complexes obtained from the
association of preformed IN oligomers on the substrate.
This could be linked to the better stability of these com-
plexes in presence of Mn" " as previously observed (29).

Since monomers were able to oligomerize on nonviral
DNA without displaying specific IN integration activity,
we may propose that the dimers formed from monomers
on unspecific DNA (i) acquired a new non-sequence-
specific endonucleolytic activity and (ii) were functionally
and probably structurally different from the dimers folded
on viral ends.

DISCUSSION

The initial interaction of IN with its substrate is a crucial
step for the specific recognition of the viral ends and deter-
mines the following phases of the integration reaction. It
has been proposed that during integration, changes in the
oligomerization state of IN may lead to the formation of
several forms displaying different functions (12,17). Even
if all the data point to the requirement of a stable synaptic
complex involving an IN tetramer and both viral LTR
(12,13), the precise folding pathway of this complex on
the viral ends remains to be established. The use of
enzyme preparations with different oligomerization pro-
files, described in this work, sheds new light on the early
events of integration in vitro and the role of IN oligomers
in the initial steps. Functional and structural analyses
of the different IN preparations are summarized in
Table 1.

Formation of active SSC IN*DNA complexes depends
on dimers binding to viral sequences or early
dimerization on viral ends

All the preparations of IN monomers used in our work
and obtained following different procedures were found
inactive for integration using a 294 bp DNA containing
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the 21 nt viral ends processed or unprocessed at both
ends. In contrast, IN oligomers were able to display inte-
gration activity. SAXS and crosslink experiments showed
that IN monomers were able to oligomerize both on short
specific and nonspecific DNA (Figure 6). However, oligo-
mers generated either on specific or nonspecific substrates
differed in their activity (Figure 7).

Analysis of monomer activities on a short ODN
mimicking the viral ends showed that they retained low
but significant processing and strand transfer activities
(Figure 5 and Supplementary Material 3). In addition,
integration activity was recovered after reassociation on
specific viral ODN in contrast to nonspecific ODN
(Figure 7). Thus, the lack of monomers activity on
longer DNA mimicking the viral substrate was not due
to an oligomerization or a catalytic deficiency but to
inadequate positioning of IN on the specific viral ends,
leading to incorrect binding in internal positions on the
DNA molecule competing with the shorter specific viral
ends. Consequently (i) the formation of active IN com-
plexes on DNA directly depends on the correct position-
ing of IN on viral ends and (ii) dimers folded on specific or
nonspecific DNA are not functionally similar. This is
strongly supported by our previous structural analysis
using SAXS method of the IN° DNA complexes formed
on both type of ODN leading to the identification of
dimers differing in their radii of gyration [type 1 on specific
DNA and type 2 on nonspecific DNA, Ref. (17)].

Correct positioning on viral ends is dependent on IN
oligomerization or viral sequences accessibility to
monomer binding

The results obtained with associated preparations of IN
and the reactivation of monomers by preincubation with
specific ODN (see summary in Table 1) strongly suggest
that preformed active oligomers, especially dimers, can
bind the viral ends as functional complexes while mono-
mers can not. This is firmly supported by the demonstra-
tion that purified cross-linked oligomers retain in vitro
activity in contrast to monomers (12).

Previous binding studies did not show any significant
difference of IN affinity for either the specific 21 nt viral
derivative or for nonspecific random ODNSs (18). In addi-
tion, we and others observed that retroviral IN protected a
larger region above 100 bp beyond the 21 nt specific LTR
sequence on the integration substrate in vitro (35-37).
Thus, during in vitro assays there is a higher probability
for IN to bind the longer nonspecific internal region of the
substrate and thus to form inactive oligomers, as reported
above.

Consequently we propose two ways to form active com-
plexes: (i) by direct binding of preformed active (or ‘acti-
vable’) dimers on viral ends; (ii) by binding of IN
monomers and further dimerization on viral ends. In the
first case, the formation of the active complexes is highly
dependent of the oligomerization state of the enzyme
interacting with DNA, as supported by the difference of
activity observed for dissociated and associated IN. Our
data obtained with IN monomers clearly indicate that in
this case the binding to viral ends is poorly efficient,
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Figure 9. Non-sequence-specific endonuclease activity of IN preparations (A quantified in B and C). One pmole of associated (12.5uM initial
concentration) and dissociated (0.125uM) INz, were incubated 0-60min with 200ng of pUCI19 plasmid in standard conditions (7.5MnCl,,
20mM HEPES pH 7.6). The final NaCl concentration was adjusted to 30mM in all reaction solutions. Same reactions were performed for 1h
in presence of 10nM of the 93del inhibitor aptamer. The Close Circular (CC), Open Circular (OC) and Linear (L) forms of the plasmid are shown
and quantified. The percentage of each form was plotted versus time for each reaction conditions performed with the 12.5uM (B) and 0.125uM (C)
INz,. Values are the mean+SD (error bars) of three independent experiments. Effect of cations on the single strand DNA cuts catalyzed
by associated INz, (D) and double strand DNA cuts catalyzed by dissociated INz, (E). One picomol of dissociated IN, (0.125uM) was incubated
0-120 min with 200ng of pUCI9 plasmid in standard conditions and in the presence of either 7.5mM MnCl, (standard conditions) or 7.5mM
MgCl,. The final NaCl concentration was adjusted to 30 mM in all reaction solutions. The Close Circular (CC), Open Circular (OC) and Linear (L)
forms of the plasmid were quantified and the percentages of single and double strand cuts were reported. Values are the mean 4+ SD (error bars) of
two independent experiments.



probably due to the low affinity of IN for viral sequences
in comparison to unspecific DNA. This is strongly sup-
ported by recent analysis from Deprez and co-workers
revealing a nonspecific DNA binding mode of the
enzyme and an optimal activity leading to DNA binding
and cooperativity (38), confirming the requirement for
dimers assembling on viral ends.

Additional nonspecific DNA binding factors may opti-
mize the IN positioning on its substrate. Vpr, a compo-
nent of the PIC, has been previously shown to be a
nonspecific DNA binding protein (39,40). In addition,
the Ct terminal (52-96) domain of the protein was
shown to stimulate in vitro homologous strand transfer
of mini-viral DNA (41). The HIV-1 nucleocapsid protein,
NCp7, has been shown to activate in vitro integration by
an undetermined mechanism (42). Our data raise the ques-
tion of whether such DNA binding proteins if present in
the PIC should be required to help the correct positioning
of IN by binding to nonspecific DNA sequences. Since no
data indicate an important role for such proteins in inte-
gration during infection, the eventual physiological rele-
vance and the mechanism of IN positioning by these
factors remain to be established.

IN monomers oligomerization on nonspecific DNA leads
to complexes having double-strand nonsequence-specific
DNA cleavage activity

Single-strand endonuclease activity has been previously
described for HIV-1 IN (23,32). This activity was assumed
to reflect an inefficient 3’ processing reaction on an aber-
rant DNA substrate. As shown in Figure 9, dissociated IN
displayed a new double-strand DNA cleavage activity on
nonspecific DNA in contrast to the associated forms of the
enzyme. Even if the physiological relevance of this activity
remains to be elucidated some aspects of the struc-
ture of the IN° DNA complexes can be highlighted. Our
main conclusion is that dimers formed on viral ends
and those formed on unspecific DNA are functionally
and probably structurally different as supported by the
demonstration by SAXS of types 1 and 2 dimers folding
on respectively specific and nonspecific DNA and differing
in their radii of gyration (17).

The 3’ processing and the single-strand DNA nuclease
activity observed with associated IN are catalytically
similar but differ in specificity suggesting that the same
dimers (type 1) are involved in both reactions and could
fold on both viral ends to form the active complexes
performing single-strand 3’ processing of the LTR. In
addition, a recent study reports that a two-LTR junction
could be cleaved on both strands by a tetramer of IN
probably formed by the juxtaposition of two type 2
dimers cutting each strand at the specific CA sequence
(43). Some structural data support this hypothesis: the
C-terminal domain of one monomer acts with the central
catalytic domain from another monomer at each viral
DNA end. In this dimer one monomer could carry the
catalytic property as well as the substrate capture (44)
while the other monomer could be involved in the correct
folding of the complex. This would result in an asym-
metric dimer, as suggested by crosslink experiments
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indicating that no trimers of IN could be detected,
which in turn suggested that intra-dimer and inter-dimer
contacts in the tetramer are not equivalent (12,13). Thus,
in asymmetric dimers (type 1), one catalytic site could be
positioned for the DNA cleavage on one strand and espec-
ially for the 3’-end processing of the LTR, as described
for other proteins from the same family where this asym-
metry defines the single strand cut [Mu, Cre transposases
(45,46)]. More recently modelling analyses on the complex
between the IN active site and viral DNA also suggest that
only the active sites from two central monomers in con-
trast to distal ones could be involved in the 3’ processing
leading to asymmetrical dimers in the active tetramer (47).

On the basis of this model, we propose that the IN
type 1 dimers could differ from type 2 IN dimers formed
on the nonspecific sequence by the symmetrical position-
ing of both catalytic sites on the complex. Consequently,
the nature of the tetramer resulting from the contact
between two dimers depends on the nature of each
dimer. A recent single-image reconstitution of a tetramer
of IN bound to DNA showed that the complex probably
involves asymmetrical interactions (48). This confirms that
the final active SSC complex is probably folded from
different types of dimers.

A model for the in vitro positioning of HIV-1 IN on viral ends

Our in vitro data led us to propose a model described in
Figure 10 for the initial attachment of IN on viral DNA.
IN can bind DNA under all the different oligomeric forms
including monomers. Interaction between IN monomers
and DNA might induce oligomerization of the enzyme,
leading to dimers and tetramers whose structures and
functions depend of the bound DNA sequence. Interac-
tion between monomers and nonspecific DNA induce the
formation of dimers inactive for processing, strand trans-
fer and integration activities (type 2) but displaying a
non-sequence-specific double strand endonuclease activity
(way A). The interaction of monomers with the specific
21 nt viral DNA end sequence would allow the formation
of type 1 dimers able to catalyze processing and strand
transfer reactions in the so-called Strand Transfer Com-
plex (way B), (13).

In the presence of longer DNA containing both short
specific DNA regions and larger unspecific domains and in
the absence of targeting to the specific ends (standard
in vitro conditions), IN would bind with higher frequency
to nonspecific sequences. This would lead mainly to the
formation of inactive type 2 dimers (way A). In solution
and especially in associated IN preparations, preformed
dimers (including types 1 and 2) are present. Type 1
dimers bind the viral ends better than nonspecific DNA
[the type 1 dimer association with the specific viral ends
was found to be more stable, Ref. (17)] and perform the
integration reaction either without or after structural
changes, thereby allowing the formation of the active tet-
ramer synaptic complex (SSC), (way B). In contrast to
monomers a better interaction of associated IN with
viral ends can be explained by the closed structure adopted
by IN and revealed by single-image reconstitution of a
tetramer of IN bound to DNA (48). This study suggests
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Figure 10. Model of the in vitro IN positioning on viral ends. Interaction of monomers with short nonspecific nonviral DNA induces the formation
of dimers inactive for processing, strand transfer and integration activities (type 2 dimers, way A). The interaction of monomers with the specific
21 nt viral DNA ends allow the formation dimers able to catalyze the processing and strand transfer reactions (type 1 dimers, way B). In the presence
of longer DNA mimicking the viral genome and containing both short specific DNA regions and larger unspecific domains and in the absence of
targeting, IN (standard in vitro conditions) will bind more frequently the nonspecific sequences (way Al). This will lead to the major formation of
inactive type 2 dimers (A2). In solution and especially in associated IN preparations (concentrated one or enzyme purified in absence of detergent, in
presence of Zn" "), preformed dimers (including types 1 and 2) are present. Type 1 dimers can bind the viral ends (B1) allowing the formation of the

active tetrameric synaptic complex (SSC, B2).

the presence of a central channel resembling a variety of
other DNA-binding proteins wrapped around their sub-
strate. In the preformed dimer the only way to interact
with DNA could be the entry of the DNA substrate end
inside the channel. That process would favour the specific
binding of the enzyme to the viral ends. In contrast the
monomer could bind the DNA at an internal position of
the substrate before recruiting another monomer to wrap
the DNA around the channel favouring interactions with
multiple nonspecific binding sites. This mechanism could
require a better stability of the INsDNA complex as sug-
gested by the better activity observed for dissociated IN
preparations in all assays performed with Mn " ", cations
known to increase the half-life of these complexes
(29, Figures 5 and 8).

Consequently, we propose that IN oligomerization con-
trols both the enzyme specificity and its activity on DNA.
Despite some differences observed in the kinetics per-
formed in presence of Mg™ " or Mn" * similar conclu-
sions were raised indicating that our in vitro observations
could also be relevant in the case of infected cells. In the
cell the formation of active type 1 dimers and integration
must be optimal. This is especially important since we
show here that the dimerization IN on non-LTR
sequences leads to the formation of dimer complexes
having a double-strand DNA cleavage activity able to
digest the viral genome if unprotected. Viral factors of

the PIC, displaying nonspecific DNA-binding properties,
may be involved in IN to the specific viral ends by mask-
ing IN nonspecific DNA binding sites and protecting
the viral genome. Strategies aimed to stimulate genome
destruction on the basis of this proposal appear as a
new therapeutic axe to be developed.

The precise structure of each oligomer variant remains
to be resolved. A priority should be to conduct structural
studies of the IN complexed to the two viral ends. Studies
of the enzyme structure in complex with nonspecific DNA
and with one specific DNA end should provide interesting
data on types 1 and 2 dimers, respectively, and should
confirm their structural differences. The detailed biochem-
ical study of the conditions leading to the formation of
specific active oligomers of HIV-1 IN, as described here,
should be useful to accomplish these structural studies.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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