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BACKGROUND: Liver inflammation or hepatitis is a result 
of pluripotent interactions of cell death molecules, cytokines, 
chemokines and the resident immune cells collectively called 
as microenvironment. The interplay of these inflammatory 
mediators and switching of immune responses during hepato-
toxic, viral, drug-induced and immune cell-mediated hepatitis 
decide the fate of liver pathology. The present review aimed 
to describe the mechanisms of liver injury, its relevance to 
human liver pathology and insights for the future therapeutic 
interventions.

DATA SOURCES: The data of mouse hepatic models and rele-
vant human liver diseases presented in this review are system-
atically collected from PubMed, ScienceDirect and the Web of 
Science databases published in English. 

RESULTS: The hepatotoxic liver injury in mice induced by the 
metabolites of CCl4, acetaminophen or alcohol represent ne-
crotic cell death with activation of cytochrome pathway, for-
mation of reactive oxygen species (ROS) and mitochondrial 
damage. The Fas or TNF-α induced apoptotic liver injury was 
dependent on activation of caspases, release of cytochrome c 
and apoptosome formation. The ConA-hepatitis demonstrat-
ed the involvement of TRAIL-dependent necrotic/necroptotic 
cell death with activation of RIPK1/3. The α-GalCer-induced 
liver injury was mediated by TNF-α. The LPS-induced hepa-
titis involved TNF-α, Fas/FasL, and perforin/granzyme cell 
death pathways. The MHV3 or Poly(I:C) induced liver injury 
was mediated by natural killer cells and TNF-α signaling. The 
necrotic ischemia-reperfusion liver injury was mediated by 

hypoxia, ROS, and pro-inflammatory cytokines; however, 
necroptotic cell death was found in partial hepatectomy. The 
crucial role of immune cells and cell death mediators in viral 
hepatitis (HBV, HCV), drug-induced liver injury, non-alcohol-
ic fatty liver disease and alcoholic liver disease in human were 
discussed.

CONCLUSIONS: The mouse animal models of hepatitis pro-
vide a parallel approach for the study of human liver pathol-
ogy. Blocking or stimulating the pathways associated with 
liver cell death could unveil the novel therapeutic strategies in 
the management of liver diseases.

(Hepatobiliary Pancreat Dis Int 2017;16:245-256)
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Introduction

The liver is a pivotal organ of the body and plays 
a crucial role in taking up of nutrients from the 
gastrointestinal tract, storage of nutrients, metab-

olism, homeostasis, detoxification, immune regulation 
and tolerance, synthesis of bile, serum proteins, coagu-
lating factors and complement proteins of the immune 
system. The liver is regarded as special immunological 
organ due to its enriched resident immune cell popula-
tion like natural killer (NK) cells, NKT cells (formally 
called pit cells), Kupffer cells (KCs, resident macrophages 
of liver), dendritic cells (DCs), hepatic stellate cells 
(HSCs), liver sinusoidal endothelial cells (LSEC), innate 
lymphoid cells (ILCs), B cells, T cells and cells of my-
eloid lineage.[1] The ILCs are distinctly classified as ILC1s, 
ILC2s and ILC3s depending upon cytokine production 
and transcription factors involved in their development 
and function. ILC1s produce interferon-γ (IFN-γ) and 
they are dependent of transcription factor T-bet, ILC2s 
secrete Th2 cytokines such as IL-4, IL-5, IL-9, IL-13 and 

Crosstalk of liver immune cells and cell death 
mechanisms in different murine models of 
liver injury and its clinical relevance
Hilal Ahmad Khan, Muhammad Zishan Ahmad, Junaid Ali Khan and Muhammad Imran Arshad

Faisalabad, Pakistan



Hepatobiliary & Pancreatic Diseases International

246  •  Hepatobiliary Pancreat Dis Int，Vol 16，No 3  •  June 15，2017  •  www.hbpdint.com

amphiregulin and require GATA3, and ILC3s produce 
IL-17 and/or IL-22 dependent on RORγt regulation.[2] 
The liver encounters many circulating antigens and tox-
ins of gut origin. In such a precarious milieu, the liver 
must have a robust immunologic mechanism to deal 
with constant exposure to potential insult. 

The liver is an organ with dual face immunologi-
cal functions. On one hand, immune reactions against 
harmless antigens have to be avoided (immune toler-
ance), but on the other hand, to combat against the hep-
ato-tropic infectious agents (viruses, bacteria, parasites), 
effective immune responses have to be induced.[3, 4] The 

“dual edge” functions are regulated and controlled by the 
resident immune cells of the liver by secreting chemical 
mediators such as chemokines (for chemotaxis, recruit-
ment of immune cells) and cytokines (pro-inflammatory 
and anti-inflammatory functions) collectively called as 

“microenvironment”. The pathophysiology of acute liver 
injury is orchestrated by the interplay of immune cells, 
cytokines, and parenchymal liver cells. The exacerbated 
immune responses following entry of antigens result in 
liver inflammation. Acute hepatitis is defined by liver 
cell death, cellular disarray and immune cells infiltration 
in the liver. The type of antigen, immunological reaction, 
cell death pathways or mode of liver cell death determines 
the fate of liver or immuno-pathogenesis of liver diseases 
(acute vs chronic) with distinct mechanisms of disease. 

Animal models of hepatitis provide an excellent tool 
to understand the pathophysiological mechanisms and 
to correlate the data with clinical findings. The use of 
animal models in scientific research is appreciable due 
to mimicry with many human pathologies, easy avail-
ability of technical tools for analysis, reproducibility of 
data, close relevance to human parameters (physiol-
ogy/metabolism), a minimal hazard to personnel and 
genetic deletion or insertion to study the effect of a 
specific gene. The animal models serve as an alternative 
approach for certain infectious diseases in human caused 
by HBV, HCV, influenza virus and HIV. Among various 
existent animal models of acute hepatitis, the present 
review summarized the mouse models of acute hepatitis 
with principal cellular and effective molecular players 
involved in liver cell death. The murine models of acute 
hepatitis have been categorized depending upon the na-
ture of hepatitis inducing agent, i.e. hepatotoxin, autoim-
mune, immune cell dependent, Toll-like receptor (TLR) 
agonists, viral and fulminant hepatic models.

The hepatocytes express death receptors like Fas 
(CD95), TRAIL-R1 (DR4), TRAIL-R2 (DR5), TNFR1 
and TNFR2 on their surface and the immune cells ex-
press death ligands like FasL, TRAIL, and TNF-α.[5] The 
interaction of these death ligands and receptors in dif-

ferent liver diseases lead to liver cell death (apoptosis, 
necrosis or necroptosis) and it determines the outcome 
of a disease. Briefly, the apoptosis is a highly organized 
and genetically controlled type of cell death mediated 
by distinct extrinsic (death receptor dependent) and 
intrinsic (mitochondrial/caspase dependent) pathways. 
The key features of the apoptotic mode of cell death are 
membrane blebbing, shrinkage of the cell, chromatin 
condensation, nuclear fragmentation and formation of 
apoptotic bodies.[6] Necrosis is characterized by oncosis 
(swelling) and the formation of plasma membrane blebs 
(devoid of organelles) and rupture of the plasma mem-
brane[6] accompanied by a complete release of cellular 
constituents into the extracellular environment.

Evolving data[5-7] have evidenced involvement of 
a novel cell death pathway in liver pathology termed 
as necroptosis. The term “programmed necrosis” or 

“necroptosis” was described as an alternative recep-
tor interacting protein kinase (RIPK) mediated form 
of cell death initiated by necrosis factor receptors, Fas 
and TNF-related apoptosis inducing ligand (TRAIL).[7] 
The necroptosis pathway is initiated by TNF receptors 
mainly dependent on RIPK1/RIPK3 activation and it is 
identified as “back up” cell death mechanism of apopto-
sis. Necroptosis is marked by cell and organelle swelling, 
extensive formation of intracellular vacuoles and rapid 
rupture of the plasma membrane.[6, 8] The execution of 
necroptosis starts from binding and trimerization of 
death ligands (TNF-α, FasL, and TRAIL) to their cognate 
receptors. Briefly, the downstream events of TNF-in-
duced necroptosis are initiated by the activation/trimer-
ization of TNF and its receptor (TNFR1) that promotes 
the formation of complex I (containing signaling mol-
ecules TRADD, TRAF2, TRAF5, cIAP1, cIAP2 and RIP1) 
and complex II (caspase-8-dependent cleavage of RIPK1 
and RIPK3). Moreover, the interplay of RIPK1, capase-8 
and substrate of RIPK3 called as phosphorylated mixed 
lineage kinase domain-like (MLKL) defines the mode of 
cell death. The RIPK3-MLKL pathway (ubiquitylation) is 
essential to drive the necroptotic cell death while RIPK1-
caspase-8 activation is required for the apoptotic cell 
death.[9] However, in the absence of caspase-8, RIPK1 
stimulates necroptotic cell death.[9] It has been shown 
that necroptosis plays a crucial role in immune cell me-
diated hepatitis in mice because the inhibitors of necrop-
tosis (i.e., necrostatin-1 and PJ34) protected liver injury 
in mice.[10, 11] Necrostatin-1 (Nec-1), a small tryptophan-
based compound, an inhibitor of RIPK1 activity (phos-
phorylation), blocks the interaction between RIPK1 and 
RIPK3 and inhibits necroptosis. Nec-1 is widely used 
in cellular and animal disease models to prevent the 
necroptotic cell death.[12] The present review comprehen-
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sively describes the cellular, molecular, immunological 
and cell death mechanisms of liver injury or hepatitis, 
its relevance with the human pathology and insights for 
novel therapeutic interventions.

Hepatotoxic murine liver injury models
Carbon tetrachloride (CCl4) induced acute hepatitis

CCl4 is a highly toxic liquid principally used in the 
manufacture of dichlorodifluoromethane, it was used 
as refrigerant and propellant, and it is contained in fire 
extinguishers and in spot removers. However, CCl4 expo-
sure induced acute and chronic hepatitis. In mice, a sin-
gle oral administration of CCl4 triggers acute liver injury 
which is a widely studied model of acute hepatotoxicity. 
The hepatotoxic molecule CCl4 activates cytochromes 
(CYP2E1, CYP2B1 or CYP2B2) to form trichloromethyl 
(CCl3) radical that reacts with oxygen to form a highly 
reactive oxygen species (ROS) that initiate lipid peroxi-
dation and mitochondrial dependent liver injury and 
fatty degeneration.[13] The highly reactive species named 
as CCl3OO* starts lipid peroxidation and denaturation 
of polyunsaturated fatty acids. As a result, the mitochon-
drial, endoplasmic reticulum and plasma membrane 
permeability is lost with deregulation of Ca++ in the cells 
leading to cellular demise.[13] Additionally, CCl4 toxicity 
leads to hypomethylation of cellular components and 
liver damage.[13]

The increased influx of cytokines, chemokines and 
immune cells like neutrophils following CCl4-induced 
liver injury result in hepatocyte damage (necrosis).[14] 
The IL-6 deficient mice exhibited increased liver injury, 
inflammation, and delayed recovery following CCl4-
induced liver injury compared to wild-type mice, sug-
gesting a protective role of IL-6 via down-regulation of 
matrix metalloproteinase-2 (MMP-2).[15] The deficiency 
of IL-10 led to more extensive CCl4-induced liver fibrosis 
and more prominent neutrophilic infiltration in IL-10 
knockout mice during the acute CCl4 challenge.[16] The 
neutrophils are crucial in this hepatic model and the 
liver invariant NKT (iNKT) cells have known to protect 
CCl4-induced hepatitis by limiting neutrophil infiltra-
tion.[14, 17] The iNKT-deficient mice (Jα-18 knockout) are 
more susceptible to CCl4-induced acute liver injury and 
inflammation[17, 18] and the activation of iNKT cells by 
α-GalCer accelerates CCl4-induced acute liver injury, in-
flammation, and fibrosis.[18] The KCs play a vital role in 
CCl4-mediated hepatitis in mice as depletion of KCs pro-
tects CCl4-induced liver necrosis and IL-6 production.[19] 
Another study[20] demonstrated that CCl4-mediated hep-
atitis was dependent upon the activity of KCs via TNF-α 
and FasL. The deficiency of chemokine receptor CCR6 

in mice exacerbated the CCl4-induced liver inflamma-
tion with enhanced KCs recruitment.[21] Recently, it has 
been shown that chemical inhibition of c-Jun N-terminal 
kinase (JNK) 1 and 2 provided hepato-protection against 
CCl4-mediated hepatitis in mice.[22] 

Acetaminophen/paracetamol induced acute hepatitis

Acetaminophen-induced hepatitis shares many fea-
tures of hepatotoxic liver injury and administration of 
acetaminophen induces fulminant hepatitis with acute 
liver failure in mice.[23] In this model, mechanism of liver 
injury (necrosis) is dependent on the accumulation of 
acetaminophen metabolites formed by cytochrome P450, 
N-acetyl-p-benzoquinone imine (NAPQI), NAPQI pro-
tein adducts, glutathione depletion, oxidative stress, and 
mitochondrial damage.[24, 25] The role of JNK1 and JNK2 
was elaborated in acetaminophen-mediated liver injury 
as the use of chemical inhibitor (SP600125) of JNK pro-
tected mice against acetaminophen hepatitis.[22]

The inflammatory cytokines, such as TNF-α, IFN-γ, 
and IL-1β are crucial for the development of acetamino-
phen hepatitis.[26] The NK and NKT cells play a detri-
mental role in acetaminophen hepatitis as depletion 
of NK and NKT cell by anti-NK1.1 antibody protected 
mice against acetaminophen-induced liver injury.[27, 28] 
The underlying liver injury was mediated by production 
of IFN-γ, chemokines, and up-regulation of FasL expres-
sion in the liver. A study demonstrated that the use of 
dimethyl sulfoxide (DMSO) to solubilize acetamino-
phen resulted in detrimental effect of NK and NKT cells 
in mice following acetaminophen hepatitis.[29] Indeed, 
the DMSO activated hepatic NK and NKT cells in vivo, 
with increased NKT cell numbers and higher intracel-
lular level of cytotoxic effector molecules like IFN-γ and 
granzyme B.[29] The necroptosis or programmed necrosis 
is involved in acetaminophen-mediated liver injury be-
cause blockade of either RIPK1 or RIPK3 was protective 
in acetaminophen liver injury.[30]

Alcohol induced acute hepatitis

The murine models of acute alcoholic hepatitis are 
widely used to correlate the findings with human pa-
thology.[31] The experimental model of ethanol-induced 
liver injury represents a model of acute hepatitis and 
predominantly depends upon apoptotic liver damage.[32] 
Increased gut permeability to endotoxin leads to hypox-
ia-dependent liver injury[33] with induction of CYP2E1, 
cytochrome P450 isoforms, formation of ROS and lipid 
peroxides.[34] Furthermore, the release of pro-apoptotic 
factors such as cytochrome c into the cytosol and caspase 
activation leads to apoptotic liver injury in this model.[34] 
The immune molecules play an important role in alco-
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holic hepatitis as the alcohol-mediated hepatitis is as-
sociated with up-regulation of hepatic TLR9 and TNF-α 
activation.[35] The IL-22 was shown to induce hepato-
protective effects in alcohol-induced hepatotoxicity in 
mice with decrease in inflammation and promotion of 
anti-apoptotic activities.[36]

Cell death ligand mediated murine hepatic models
Anti-Jo2/FasL induced acute hepatitis

The liver is very sensitive to Fas mediated apoptosis be-
cause Fas receptor is constitutively expressed on hepa-
tocytes. When mice are injected with anti-Fas antibody, 
death due to fulminant hepatitis and acute liver failure 
follows.[37, 38] The administration of anti-Fas antibody 
rapidly induces severe damage to the liver (hepatocytes 
and sinusoidal endothelial cells) via massive apoptosis, 
indicating this animal model can be used in investigating 
human fulminant hepatitis.[37] The mode of apoptotic 
liver injury in this model largely depends upon activa-
tion of caspase-3 and caspase-7, release of cytochrome 
c and apoptosome formation.[39] Following injection of 
Jo2, it directly binds to Fas receptor in liver with CXC 
chemokine formation and inflammation dependent on 
caspases/mitochondrial damage and the transcription 
factor activator protein 1 (AP-1).[40, 41] 

TNF-α/D-galactosamine (D-GalN) induced acute 
hepatitis

Acute hepatitis induced by administration of TNF-α/
D-GalN represents an apoptotic model of hepatitis and 
death of mice occurs due to enhanced systemic shock 
and liver insufficiency. Indeed, the amino sugar GalN 
sensitizes the host when it is metabolized in the liver 
and results in selective depletion of uridine nucleotides, 
which specifically inhibits transcription at hepatocyte 
level.[42] Deficiency of TNFR1 in mice makes them resis-
tant to TNF-α/D-GalN treatment, demonstrating an es-
sential role for TNFR1 in this apoptosis model.[42] How-
ever, the TNFR2 deficient mice are more susceptible to 
TNF-α/D-GalN-induced liver injury suggesting that in 
the absence of TNFR2, more TNF-α is available to bind 
TNFR1 to enhance apoptosis.[42] The toxicity in the mu-
rine TNF-α model resembles viral form of acute hepatic 
failure in patients characterized by massive hepatocyte 
apoptosis via engagement of TNF receptors and down-
stream caspase-dependent liver injury.[25, 43]

Immune cell mediated murine hepatic models
Concanavalin A (ConA)-induced acute hepatitis

ConA-induced hepatitis is a T-cell driven liver injury 
model and its features resemble with viral or autoim-
mune hepatitis in human.[35, 44, 45] ConA is a lectin, iso-
lated from jack bean (Canavalia brasiliensis), it binds 
to mannose residues (α-D-mannoside, methyl-α-D-
mannopyranoside, α-D-glucose, and methyl-α-D-glucose) 
of different glycoproteins and thereby activates lympho-
cytes. The ConA-induced murine hepatic model was first 
developed by Tiegs and colleagues in 1992.[44] Upon a 
single intravenous injection to mice, ConA induces acute 
liver damage within 8 hours in a dose range from 10-25 
mg/kg. It has been shown that 15 minutes after intra-
venous administration of ConA, it binds to LSEC, KCs, 
CD4+ T cells and NKT cells to induce inflammation and 
hepatocyte damage.[46] ConA induces hepatocyte death 
by stimulation of CD4+ T cells, NKT cells and KCs in 
liver, resulting in secretion of copious amounts of pro-
inflammatory cytokines like TNF-α, IFN-γ, IL-6, IL-12, 
IL-18, and chemokines.[35, 44, 45] In addition, the IL-10 is 
considered to be an anti-inflammatory cytokine and 
have a protective effect in this model.[47]

The necrotic death of hepatocytes induced by ConA 
is accompanied by release of the aminotransferases (ALT 
and AST) from the cytoplasm of hepatocytes into the 
blood, inflammatory infiltration into the liver consist-
ing of neutrophils, macrophages and T cells.[35, 44, 45] The 
cytotoxic effector molecules and their receptors play a 
key role in the development of ConA-induced liver cell 
death. Among these molecules, the perforin-granzyme 
system is essential for ConA hepatitis along with induc-
tion of intracellular adhesion molecules as well as influx 
of IFN-γ.[48] In ConA-induced hepatitis, the production 
of large amounts of IFN-γ by activated T cells is essential 
for liver injury,[35, 45] and ConA hepatitis is suppressed in 
IFN-γ deficient mice, explaining its critical contribution 
in this model.[49] A crucial role for TNF-α and FasL/Fas in 
ConA hepatitis is evident from previous studies[50] because 
anti-TNF-α antibodies inhibited hepatitis in this model.[51] 

Evolving data has implied the role of TRAIL and 
its receptor (death receptor 5, DR5) in liver diseases in 
mice by the use of recombinant TRAIL or agonist anti-
DR5-antibody in murine hepatitis.[52-54] The TRAIL is 
expressed by myeloid or lymphoid immune cells in the 
liver like NK and NKT cells while DR5 expression is 
mainly found on hepatocytes. Expression of TRAIL and 
DR5 is increased following ConA hepatitis evidencing a 
critical contribution of these molecules to the develop-
ment of hepatitis. The study[52] demonstrated the critical 
role of TRAIL in ConA hepatitis because liver cell death 
was suppressed in TRAIL-knockout mice or by blocking 
of DR5 receptor. In human, TRAIL interacts with four 
receptors i.e. TRAIL-R1 (death receptor 4), TRAIL-R2 
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(death receptor 5, KILLER, or TRICK-2), TRAIL-R3 
(DcR1) and TRAIL-R4 (DcR2), however, TRAIL-R1 
and TRAIL-R2 induce apoptosis while TRAIL-R3 and 
TRAIL-R4 could not induce apoptosis.[55, 56] In mice, 
only one TRAIL receptor (DR5) has been identified that 
shares homology with human DR5 or TRAIL-R2 and ac-
tivates cell death.[57] The STAT4 was proved to be hepato-
protective during ConA hepatitis in mice as genetic abla-
tion of STAT4 in mice exhibited enhanced liver injury.[58]

During ConA hepatitis, the downstream cascade of 
cell death signaling and adaptor protein complexes after 
engagement of cell death ligands and receptors result in 
necrotic and necroptotic liver cell death. Recent findings 
demonstrated the involvement of necroptotic cell death 
pathway in ConA hepatitis and pre-treatment of mice 
with Nec-1 and PJ34 (inhibitors of RIPK1 and PARP-1) 
ameliorated ConA-induced liver injury.[10, 11] These stud-
ies suggested that inhibition of necroptotic cell death 
pathway may have therapeutic potential in the treatment 
of immune cell mediated hepatitis.

α-Galactosylceramide (α-GalCer)-induced acute 
hepatitis

The α-GalCer is a glycolipid, originally isolated from 
a marine sponge (Sphingomonas microorganism), which 
specifically activates iNKT cells (Vα14 NKT cells) via 
antigen presenting cells in the context of CD1d. The 
α-GalCer-induced hepatitis is associated with up-regulat-
ed expression of pro-inflammatory cytokines like TNF-α, 
IFN-γ, IL-2, IL-4, and IL-6 produced by activated NKT 
cells in the liver.[59, 60] However, the acute liver injury in-
duced by α-GalCer administration in mice is mediated 
by TNF-α and independent of KCs.[60] Pre-treatment of 
mice with D-GalN exacerbated the α-GalCer mediated 
hepatitis in mice with massive parenchymal hemorrhage, 
hepatocyte apoptosis and sinusoidal endothelial cell inju-
ry.[61] Recently, it is reported that the liver iNKT cells pro-
duce IL-17 in response to α-GalCer stimulation which 
induce protective effect on α-GalCer liver injury.[62] 
Depletion of IL-17 by neutralizing antibodies aggravates 
the α-GalCer-induced liver injury, with increased hepatic 
neutrophil and monocyte infiltration.[62] The administra-
tion of recombinant IL-17 abolishes these effects.[62] The 
role of resident hepatic B cells was dissected in α-GalCer 
mediated liver injury demonstrating that iNKT cells 
stimulation and recruitment of innate-like regulatory B 
cells to the liver suppressed the liver inflammation.[63]

TLR3 agonist, Poly(I:C) induced acute hepatitis

The polyinosine-polycytidylic acid Poly(I:C) is a 
synthetic analog of double-stranded RNA (dsRNA), a 
molecular pattern associated with viral infections. The 

Poly(I:C) is a viral dsRNA mimetic, sensed by the endo-
somal receptor, TLR3,[64] as well as recently discovered 
cytoplasmic receptors, such as RNA helicase retinoic 
acid-inducible gene-I (RIGI) and melanoma differentia-
tion-associate gene 5 (MDA-5).[65] Upon Poly(I:C) recog-
nition by the immune cells, TLR3 activates the transcrip-
tion factor interferon regulatory factor 3 (IRF3), through 
the adapter protein Toll-IL-1 receptor (TIR) domain 
containing adapter inducing IFN-α (TRIF, also known as 
TICAM-1).[66] Activation of IRF3 leads to the production 
of type I IFN, especially IFN-β. A second pathway in-
volves the recruitment of TNF receptor-associated factor 
6 (TRAF6) or receptor interacting protein 1 (RIP1), with 
the subsequent activation of transcription factors NF-κB 
and AP-1.[67]

Poly(I:C) activates macrophages, NK cells, and other 
lymphocyte sub-population[68] with induction of inflam-
matory cytokines (TNF-α, IFN-γ, IL-6, and IL-12) and 
Type I IFN (IFN-α and IFN-β), a similar signature found 
during viral hepatitis.[64, 69, 70] The Poly(I:C) administra-
tion in mice induces acute liver injury and the liver in-
jury becomes lethal or aggravates if mice are pre-treated 
with D-GalN.[70] The NK cells mediated acute hepatitis 
by Poly(I:C) has been shown to be attenuated in Bruton’ s 
tyrosine kinase (Btk) knockout mice, implicating a role 
for this kinase in TLR3 dependent liver injury and NK 
cells activation in the liver.[71] The Poly(I:C) treatment 
induced production of IL-17A from hepatic γδT cells 
which aggravated the liver injury in mice suggesting 
a detrimental or pathological role of IL-17 in Poly(I:
C)-induced hepatitis.[72] Our data demonstrated up-
regulated expression of IL-33 during Poly(I:C) fulminant 
hepatitis[73] and the hepatocyte-specific IL-33 expression 
was down-regulated by treatment of PJ34.[11] Moreover, 
a protective role of regulatory T cells (Treg) was found 
in Poly(I:C)-induced hepatitis that was dependent upon 
production of inhibitory cytokines (TGF-β and IL-10) in 
the liver.[74] 

Bacterial toxin (or LPS) induced acute hepatitis

The lipopolysaccharides (LPS) are major pathogenic 
factors of Gram-negative bacteria that induce systemic 
pro-inflammatory responses culminating in multiple or-
gan failure and death. The LPS/D-GalN-induced hepati-
tis in mice is a well known animal model of acute hepatic 
failure. In this model, the liver injury critically depends 
on macrophage (KCs) derived pro-inflammatory cyto-
kines, including IL-1, IL-6, and TNF-α.[75] The soluble 
TNF-α (but not membrane TNF-α) mediates LPS-
induced hepatitis in mice.[76] The D-GalN/LPS induced 
liver injury was dependent on neutrophil activation 
and TNF-α production which caused hepatocyte necro-
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sis and organ failure.[77] Other studies had shown that 
TNF-α mediated caspase-dependent hepatocyte apopto-
sis as a predominant mechanism of LPS associated liver 
injury.[75, 78] The hepatocyte apoptosis in D-GalN/LPS 
induced hepatitis is mediated not only by TNF-α and 
Fas/FasL cytotoxicity but also involves a perforin/gran-
zyme cell death pathway.[79] Interestingly, the activation 
of TLR3 ligand by Poly(I:C) attenuated the LPS/D-GalN-
induced fulminant hepatitis by down-regulation of TLR4 
expression in liver macrophages (KCs).[75] The bacterial 
toxin such as Pseudomonas aeruginosa exotoxin A (PEA) 
induces liver injury via activation of NK cells, T cells and 
KCs in association with increased expression of IFN-γ, 
TNF-α, IL-18 and perforin.[80, 81] Recent studies showed 
that the LPS/D-GalN-induced liver injury employed the 
hepatocyte intrinsic TNFR1 pathway in mice following 
secretion of TNF-α by activated KCs in liver.[82, 83] The cy-
tokine IL-17A played a regulatory role in neutrophil in-
duced liver injury following LPS/D-GalN injection as the 
inflammatory response was decreased and the survival 
rate was increased in IL-17A deficient mice compared 
to wild-type mice.[84] The pharmacological inhibition of 
phosphoinositide 3-kinase (PI3K) led to hepato-protec-
tion in LPS-injected mice by suppressing the phosphory-
lation of IκB.[85] 

Mouse hepatitis virus type 3 (MHV3) induced acute 
hepatitis

The coronaviruses, including MHV are large, envel-
oped, positive-strand RNA viruses, with genome ranging 
in size from 27-32 kb. The hepatotropic MHV3 serotype 
induced severe fulminant hepatitis in mice with lethality 
depending upon virus strain, route of infection, age, ge-
netic background and immune status of the mice.[86] Sev-
eral strains of MHV induce acute encephalitis and acute 
and chronic demyelinating disease in mice.[86, 87] The 
MHV-induced hepatitis is an excellent model for study-
ing the immunological disorders associated with viral 
hepatitis and it has mimicry with human HBV infection.

The MHV interacts with a specific receptor called 
carcino embryonic cell adhesion antigen 1 (CEACAM1) 
which is expressed by the hepatocytes, LSEC, NK cells, 
and KCs.[88] The MHV3 (pathogenic strain L2-MHV3) 
can replicate in the hepatocytes, LSEC and KCs, leading 
to virus induced necrotic cell death.[88] The pathogenic 
L2-MHV3 virus is a cloned sub-strain isolated from 
the liver of infected DBA2 mice and propagated in L2 
cells (continuous mouse fibroblast L2 cell line). The 
pathogenic L2-MHV3 virus induces fulminant hepatitis 
via activation of NK cells in susceptible C57BL/6 mice 
and their death within 3-5 days post-infection with ex-
tensive necrosis in the liver and immunodeficiency in 

several lymphoid organs.[88-90] Another pathogenic strain, 
MHV-A59 (derived from normal mouse liver cell line-
NCTC-1469 or from L2 cells) induced fulminant hepati-
tis as well as autoimmunity in susceptible C57BL/6 mice 
with formation of autoantibodies (autoAb) to fumaryl-
acetoacetate hydrolase (FAH), a soluble cytosolic enzyme 
present in the liver and kidneys.[91] The acute liver injury 
(after 3-5 days infection) induced by MHV-A59 is associ-
ated with an increase level of IL-6, TNF-α and IL-17 in 
mice.[89] In contrast, the non-pathogenic strain isolated 
from persistently infected YAC lymphoid cell line (YAC-
MHV3) does not induce an acute lethal disease but only 
subclinical infection in mice.[92] Recent data evidenced 
the invasion of MHV in the brain microvasculature 
by impairment of IFN-β production[93] or by sustained 
CXCL1 expression.[94] The pathogenic infection by 
MHV3 in mice up-regulated expression of IL-33 in the 
liver along with other pro-inflammatory cytokines such 
as IL-6, TNF-α, IL-1β, and IFN-γ.[73]

In summary, the hepatotoxic agents such as CCl4, 
acetaminophen, alcohol or their metabolites, the viral 
infectious agent (MHV3) or TLR-mimetic LPS or Poly(I:
C), the death ligands (Fas, TRAIL or TNF-α) and the 
immune-cells activating hepato-tropic agents like ConA/
α-GalCer interact with specific resident immune cells in 
the liver. The interplay of invading hepato-tropic anti-
gens with NK cells, NKT cells, ILCs, KCs, LSECs, vascular 
endothelial cells (VECs), and DCs results in release of cy-
tokine or inflammatory mediators that lead to liver inju-
ry via apoptosis, necrosis or necroptosis (Fig. 1) depend-
ing upon the agent involved (Table). The liver cell death 
following receptor-mediated recognition of hepato-
tropic agents is initiated by the engagement of cell death 
ligands such as Fas, TRAIL, and TNF-α with their cog-
nate receptors FasR, TRAIL-R, and TNF-R, respectively. 
The cell death signaling is represented by the formation 
of cell death platforms called as complex-I and complex-
II importantly comprising of adaptor molecules such as 
FADD, RIPK1, RIPK3 caspase-8, and TRAD. The down-
stream signaling is the execution of mode of cell death by 
the action of caspases (apoptosis), RIPK1-FADD-TRAD 
pathway (necrosis) or RIPK1-RIPK3-FADD pathway 
(necroptosis) with subsequent activation of transcription 
factors (Fig. 2). 

Surgical models of mouse hepatitis and mode 
of liver cell death
The necrotic mode of cell death is implicated during sur-
gically induced liver injury such as ischemia-reperfusion 
(I/R), bile duct ligation (BDL) and partial hepatecto-
my.[5, 95] During these liver injury models, hypoxia leads 
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to depletion of ATP and loss of cell viability by necrotic 
cell death.[5] The liver injury is also associated with si-
multaneous activation of KCs, release of ROS, pro-in-
flammatory cytokines, and chemokines that participate 
in liver cell death.[95] Moreover, the hepatocytes undergo 
necroptotic cell death during partial hepatectomy[96] with 

induction of RIPK3 expression in hepatocytes. In partial 
hepatectomy, the regeneration of the liver is the main 
feature controlled by immune mediators with apoptosis 
and autophagy as dominant modes of cell death in this 
model.[97] The surgical mouse hepatic models may rep-
resent the mechanism of liver injury followed by liver 

Table. In vivo murine models of acute hepatitis and involvement of immune or cell death mediators

Acute hepatitis model Effector immune cells Effector molecules/mode of cell death References

Concanavalin A (ConA) (dose of 10-25 mg/kg, i.v., 10 h peak
  liver injury)

T cells, NKT cells, KCs,
  neutrophils, eosinophils

INF-γ, IL-4, TNF-α, FasL, TRAIL,
  superoxide anions, IL-5, chemokines

[3, 11, 35, 57]

LPS/D-GalN (dose of LPS 0.5 mg/kg, i.p., 12 h peak liver
  injury)

KCs TNF-α, chemokines, TLR4,
  perforin/granzyme

[75, 79, 83]

Poly(I:C)/D-GalN (dose of 30 μg/mouse, i.v., 8 h peak liver 
injury; D-GalN dose rate 15 mg/mouse, i.p.)

NK cells FasL, TRAIL, TLR3 [66, 67, 71]

α-GalCer (dose of 2 μg/mouse, i.v., 8 h peak liver injury) iNKT cells FasL, TNF-α, TRAIL [60, 61, 63]

Alcohol (dose of 1%-6% in diet for 7-14 days by oral route) NKT cells, neutrophils, KCs FasL, TNF-α, chemokines,
  adhesion molecules, ROS

[33-35]

Acetaminophen  (dose of 200-400 mg/kg, i.p., 4-8 h peak
  liver injury)

NK cells, neutrophils FasL, TRAIL (necrosis, necroptosis) [25, 28, 30]

MHV3 (mouse hepatitis virus) (dose of 103 TCID-50/mouse,
  i.p., 72 h peak liver injury)

NK cells FasL, TNF-α, TRAIL [73, 88, 90]

CCl4-induced (dose of 2.4 g/kg, oral, 48 h peak liver injury) KCs TNF-α, chemokines, CCl3 radicals,
  CYP2E1 

[13, 19, 20]

Anti-FasL/Jo2 (dose of 0.15 μg/g, i.p., 6 h peak liver injury) NK cells FasL/Fas mediated hepatitis (apoptosis) [38, 39, 41]

TNF-α/D-GalN (dose of TNF-α 10 μg/kg, i.v., 8 h peak
  liver injury, D-GalN dose rate 15 mg/mouse, i.p.)

KCs, NK cells TNF-α/TNFR1-TNF-R2 (apoptosis) [25, 42]

Fig. 1. Role of immune cells and cytokine mediators in the progression of acute hepatitis. The invading hepato-tropic antigens (toxic 
and infectious) are recognized by the immune cells of the liver through pattern recognition receptors which initiate the liver injury or 
hepatitis. The crosstalk of antigens with host cells, exacerbated immune response and mode of cell death lead to the development of 
liver injury.
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transplantation or liver surgery in human.

Relevance of liver cell death mechanisms with 
human pathology
Cell death in the liver is essentially a result of chronic 
derangement of liver homeostasis[98] which accounts 
for a large number of chronic diseases of the liver. Pro-
grammed cell death is a key homeostatic component 
as it gets rid of chronically ill cells before they become 
malignant.[98] The KCs secrete TNF-α, NKT cells express 
FasL and NK cells express TRAIL; these immune cells 
are principal mediators of cell death in human liver 
pathology.[99] Briefly, in viral hepatitis, there is a direct 
relationship between apoptosis and inflammation such 
as in HCV infection[100] with enhanced activation of cas-
pases in ongoing viral inflammation.[101] In HCV infec-
tion, NK cells are activated by type I IFN and DCs[102] to 
produce TNF-α and liver damage. Apoptosis stimulated 
by FasL provides an efficient mean to remove unwanted 
HBV/HCV-infected hepatocytes and liver cancer cells 
by T lymphocytes.[5] Viral hepatitis by HBV and HCV 
increases Fas expression on hepatocytes and TRAIL ex-
pression on NK cells for the elimination of viruses.[103] 
In response to chronic liver disease, NK cells express 

apoptosis-inducing mediators such as TRAIL-R2 and Fas 
that drive apoptosis in HBV infection in human.[104] The 
TNF-α and TNFR1 have also been implicated in driving 
apoptosis in HCV via cytotoxic T lymphocytes.[5, 101] 

In drug-induced liver injury which is idiosyncratic 
drug-induced liver injury with certain haplotype human 
leukocyte antigen (HLA) genetic predisposition has been 
linked to immune-mediated apoptosis. Hapten presenta-
tion leads to activation of cytotoxic CD8 T-cells with the 
expression of FasL, TNF-α and to a smaller extent perfo-
rins that mediate cell death.[105]

In non-alcoholic fatty liver disease (NAFLD), the 
immune cells like monocytes and macrophages play an 
important role in liver injury. These cells secrete inflam-
matory cytokines IL-6 and TNF-α to aggravate the liver 
damage.[106] In severe form of NAFLD, namely non-
alcoholic steatohepatitis (NASH), in a milieu of exac-
erbated inflammation and fibrosis, expression of death 
receptors such as Fas, TRAILR-2, and TNF receptor is 
increased.[107] The Fas expression and infiltration of FasL-
expressing cytotoxic T lymphocytes led to an apoptotic 
liver injury. Recent data correlated the human and mu-
rine models of NASH and demonstrated the over-expres-
sion of RIPK3 in human NASH and in a dietary mouse 
model of steatohepatitis.[108] The underlying mechanism 
was shown to be mediated by RIPK3 and JNK necrop-

Fig. 2. Mode of liver cell death and signaling pathway. Mechanism of liver injury induced by CCl4, acetaminophen, alcohol, ConA, 
α-Galcer, Poly(I:C) and LPS (endotoxins), TNF-α, TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). Pro-inflam-
matory cytokines are produced by many liver cell types including KCs, NK cells, NKT cells and lymphocytes in response to inflamma-
tion, infection and other environmental stresses, which in turn cause liver injury via different modes of cell death importantly apopto-
sis, necrosis and necroptosis.
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tosis signaling, the release of inflammatory mediators, 
liver infiltration of macrophages culminating in liver cell 
death and fibrosis.[108] Studies in the past have reported 
the role of polymorphonuclear cells in cell death during 
alcoholic liver disease in human[109, 110] with increased 
expression of Fas and TNFR1.[106] However, more recent 
literature implicates a greater role of KCs and TNF-α as 
the main inflammatory mediator that activates the apop-
totic pathway.[107] The above data suggested that the cell 
death pathways and immune cells play a vital role in the 
human liver pathology and there is mimicry of mecha-
nisms of liver disease with murine models of hepatitis. 

Conclusions
The mechanisms of liver cell death and the crucial role of 
immune mediators in liver pathology in different animal 
models of hepatitis will provide the basis for the under-
standing of human liver disease or its relevance to clini-
cal pathology. Modulation of immune cells-mediated 
liver injury and targeting of liver cell death pathways by 
chemical inhibitors could be promising strategies for the 
treatment of liver diseases. In the future, studies focusing 
on novel therapeutic targets or interventions in mouse 
hepatic models will be needed to translate the findings 
into clinical practice. 
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