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Abstract

Background: Risk adjusted mortality for intensive care units (ICU) is usually estimated via logistic regression. Random effects
(RE) or hierarchical models have been advocated to estimate provider risk-adjusted mortality on the basis that standard
estimators increase false outlier classification. The utility of fixed effects (FE) estimators (separate ICU-specific intercepts) has
not been fully explored.

Methods: Using a cohort from the Australian and New Zealand Intensive Care Society Adult Patient Database, 2009–2010,
the model fit of different logistic estimators (FE, random-intercept and random-coefficient) was characterised: Bayesian
Information Criterion (BIC; lower values better), receiver-operator characteristic curve area (AUC) and Hosmer-Lemeshow (H-
L) statistic. ICU standardised hospital mortality ratios (SMR) and 95%CI were compared between models. ICU site
performance (FE), relative to the grand observation-weighted mean (GO-WM) on odds ratio (OR), risk ratio (RR) and
probability scales were assessed using model-based average marginal effects (AME).

Results: The data set consisted of 145355 patients in 128 ICUs, years 2009 (47.5%) & 2010 (52.5%), with mean(SD) age
60.9(18.8) years, 56% male and ICU and hospital mortalities of 7.0% and 10.9% respectively. The FE model had a BIC = 64058,
AUC = 0.90 and an H-L statistic P-value = 0.22. The best-fitting random-intercept model had a BIC = 64457, AUC = 0.90 and H-
L statistic P-value = 0.32 and random-coefficient model, BIC = 64556, AUC = 0.90 and H-L statistic P-value = 0.28. Across ICUs
and over years no outliers (SMR 95% CI excluding null-value = 1) were identified and no model difference in SMR spread or
95%CI span was demonstrated. Using AME (OR and RR scale), ICU site-specific estimates diverged from the GO-WM, and the
effect spread decreased over calendar years. On the probability scale, a majority of ICUs demonstrated calendar year
decrease, but in the for-profit sector, this trend was reversed.

Conclusions: The FE estimator had model advantage compared with conventional RE models. Using AME, between and
over-year ICU site-effects were easily characterised.
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Introduction

Risk-adjusted mortality has been used to characterise the

performance of health care providers for a number of years [1]

and has generated a substantial [2] if not controversial [3]

literature. Inference regarding risk-adjusted mortality is dependent

on both the illness severity measure [4,5] and the estimation

method [6,7]. Mortality probability estimation usually proceeds

via conventional logistic regression [8] but a call for ‘‘Improving

the statistical approach to health care provider profiling’’, in

particular the use of Bayesian methods, was made some 15 years

ago [9]. Advances in standard statistical software packages have

made such approaches feasible and a random effects or

hierarchical approach to estimation, both Bayesian and frequen-

tist, has recently been advocated [10,11] and implemented [12].

However, such recommendation must also address certain

cautions recently advanced regarding the latter methods [13,14],

in particular the reduction of variation of hospital performance by

the shrinkage effect of conventional random effects models. In a

wide-ranging discussion Ash and co-workers (The COPSS

[Committee of Presidents of Statistical Societies]-CMS [Centers

for Medicare and Medicaid Services] White Paper Committee,

[15]) noted that in the presence of sufficient stand-alone hospital

data and an appropriately specified model, a fixed effects

approach (in this case, separate hospital-specific intercepts) would

ensure ‘‘…successful adjustment for potential confounding [15].’’
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Such endorsement has been reiterated by the empirical demon-

stration of the efficacy of such a fixed effects approach [6,16–20].

This being said, the interpretation of b coefficients (log-odds ratios

or odds ratios) from such a fixed effects model as ‘‘substantive

effects’’ may be problematic due to unobserved heterogeneity and

confounding of effects [21]. Furthermore, as argued by Angrist,

structural parameters (that is, the b coefficients) may be of

theoretical interest, but must be ‘‘…converted into causal effects if

they are to be of use for policy evaluation or determining whether

a trend association is causal’’ [22].

The Australian and New Zealand Intensive Care Society

(ANZICS) adult patient data base (APD) [23], administered by the

Centre for Outcome and Resource Evaluation (ANZICS CORE)

[24], is a high-quality bi-national intensive care patient data-base,

and satisfying the above data requirements, would be entirely

suited to such a modelling approach. Using recent data from this

data-base (calendar years 2009–2010), the purpose of this paper

was to (i) develop a predictive fixed effects logistic model,

enumerate its properties and compare these with conventional

random effects models and (ii) characterise the relative perfor-

mance of ICUs (with respect to mortality outcomes), using the

fixed effects model, on the probability and other scales using

average marginal effects (AME) [21,25,26] or ‘‘marginal stan-

dardisation’’ [27], adjusting for the multiple comparisons so

undertaken [28].

Methods

Ethics statement
Access to the data was granted by the ANZICS Database

Management Committee in accordance with standing protocols;

local hospital (The Queen Elizabeth Hospital) Ethics of Research

Committee approval was waived. The data set analysed is the

property of the ANZICS Data base and contributing ICUs and is

not in the public domain. The data are available to personnel of

the ANZICS Data base and contributing ICUs under specific

conditions and upon written request.

Data management
As previously described [29,30] the ANZICS APD was

interrogated to define an appropriate patient set over the time

period 2009–2010. In brief, physiological variables collected in

accordance with the requirements of the APACHE III algorithm

[31] were the worst in the first 24 hours after ICU admission, and

all first ICU admissions to a particular hospital for the period

2009–2010 were selected. Records were used only when all three

Figure 1. Binned residual plots. Binned residual plots [46] for FE, random intercept and random coefficient models: y-axis, average residual
(expectation = 0); x-axis, average predicted mortality probability.
doi:10.1371/journal.pone.0102297.g001
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components of the Glasgow Coma Score (GCS) were provided;

records for which all physiologic variables were missing were

excluded, and for the remaining records, missing variables were

replaced with the normal range and weighted accordingly [32].

Ventilation status in the data base was recorded with respect to

invasive mechanical ventilation on or within the first 24 hours of

ICU-admission. Exclusions: unknown hospital outcome; patients

with an ICU length of stay = 4 hours, and patients aged ,16

years of age. Continuous variables (age, APACHE III score and

annual-volume) were centred for model stability considerations.

Categorical predictors were parameterized as indicator variables

with the reference level ( = 0) indicated in parentheses in the

following list: year (2009); gender (female); ventilation (non-

ventilated); ICU-level, as defined in the ANZICS data dictionary

[33], as Rural/Regional, Metropolitan, Tertiary and Private

(Tertiary); geographical-location, that is New Zealand and the

States of the Commonwealth of Australia (New South Wales

(NSW), the largest contributor); ICU source, that is, patient

transfer from another hospital (no transfer); patient surgical status

as post-elective surgery, post-emergency surgery and non-surgical

(non-surgical); descriptors of ICU admission primary organ system

dysfunction, these being a consolidation of the diagnostic

categories of the Acute Physiology and Chronic Health valuation

(APACHE) III algorithm: cardiovascular, gastrointestinal, meta-

bolic, neurologic, respiratory, trauma, renal/genitourinary (car-

diovascular); ICU site (first site of the sequential numeric ordering

of ICUs). Annual (‘‘annualised’’ [34]) volume, determined for each

ICU recorded in the database, was also considered as a (decile)

categorical variable (first decile) [30]; see below.

Statistical analysis
Analyses were performed using Stata (Version 13, 2013; College

Station, TX); continuous variables were reported as mean (SD),

except where otherwise indicated, and statistical significance was

ascribed at P#0.05.

Three separate models were estimated:

(i) logistic regression: for patient i in provider k the logit (log-

odds) of hospital mortality probability ( ln pik= 1{pikð Þ½ �ð Þ)
was given as: azbXikzlkQk, where Xf g was a set of

independent predictor variables and lk represented the

additional risk effect of the kth provider (Q); that is, provider

effects were fixed [6,35]. Appropriate accounting of patients’

within ICUs was obtained using the robust cluster variance

Figure 2. SMR and 95%CI by hospital level and calendar year for fixed effects model. Plots of point SMR (standardised mortality ratio) with
95%CI versus mean (ICU) site volume, by hospital level (rural, metropolitan, tertiary and private) over calendar year (2009, 2010) for the FE model. Null
line = 1.
doi:10.1371/journal.pone.0102297.g002
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option [36] of Stata; given as V̂Var~V̂V
PM

k~1

q
Gð Þ

k q
Gð Þ

k

� �
V̂V,

where V̂V~ {L2 ln L=Lb2
� �{1

is the conventional estimator

of variance, q
Gð Þ

k is the contribution of the kth provider to

L ln L=Lb: Assuming an additive likelihood function:

q
Gð Þ

k ~
P

j[Gk

qj ; qj being a row vector of observations [37,38].

(ii) random effects (or empirical Bayes) models, random intercept

and random coefficient, as Pr yik~1DQkð Þ~H bXikzzikukð Þ
for k = 1,…,Q providers (provider k consisting of i = 1,…,n

observations). The 1|p row vector Xik were the covariates

for fixed effects and 1|rvector zik the covariates corre-

sponding to the random effects (uk) and were used to

represent both random intercepts and random coefficients.

yik was the binary (0/1) outcome variable (hospital mortality)

and H the logistic cumulative distribution function.

a. In the random intercept model, zik was a scalar 1.

b. In the random coefficient (‘‘slope’’) model, the centred

APACHE III score (as a dominant predictor of hospital

mortality [29]) was used; an unstructured covariance

matrix was implemented (that is, the usual (symmetric)

variance-covariance matrix which includes components

of covariance between the random effects).

c. Model estimation used (7-point) adaptive quadrature, a

computational method used to approximate the marginal

likelihood by numerical integration [39]; the modelling

perspective was frequentist.

Seasonality of mortality was addressed using trigonometric (sine

and cosine) terms for yearly, 6 monthly and weekly effects after

Stolwijk [40].

For fixed model variables, detailed above in ‘‘Methods’’, sets of

parameter coefficients were tested using a global Wald test [41]

and model development and comparison was guided by the

Akaike Information Criterion (AIC), with the Bayesian Informa-

tion Criterion (BIC) for non-nested models (28). In the presence of

specific (fixed) ICU effects (parameterised as a multilevel

(indicator) categorical variable), in the FE model only, particular

attention was directed to the identification of variable collinearity

with other model fixed effects variables, using the Stata module

‘‘_rmcoll’’ [42]. Model adequacy was gauged by the traditional

Figure 3. SMR and 95%CI by hospital level and calendar year for random intercept model. Plots of point SMR (standardised mortality
ratio) with 95%CI versus mean (ICU) site volume, by hospital level (rural, metropolitan, tertiary and private) over calendar year (2009, 2010) for the
random intercept model. Null line = 1.
doi:10.1371/journal.pone.0102297.g003
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criteria of discrimination (receiver operator characteristic curve

area, AUC) and calibration (Hosmer-Lemeshow (H-L) statistic);

albeit the H-L statistic will invariably be significant (P,0.1 and H-

L statistic .15.99) in the presence of a large N [43] and

increments to the grouping number (default = 10) of the H-L test

were appropriately made [44]. Model residual analysis was

undertaken using (i) distributional diagnostic plots, specifically

the comparison of the empirical distribution of the residuals

against the normal distribution; Q-Q and P-P plots [45]) and (ii)

the ‘‘binned residual’’ approach (initially presented for small

samples) as recommended by Gelman and Hill [46]: the data were

divided into categories (bins) based upon the fitted values and the

average residual (observed minus expected value) versus the

average fitted value was plotted for each bin; the boundary lines,

computed as 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ=n

p
where n was the number of points per

bin, indicated 6 2SE bounds, within which one would expect

about 95% of the binned residuals to fall.

Confidence intervals (CI) of the ICU standardised mortality

ratio (SMR) were calculated by back-transformation from the

variance of the (log) observed / predicted mortality using the

Taylor series approximation [47]. The multivariate relationships

(joint distribution) between various estimates were displayed using

biplots [48]. Biplots consist of lines, reflecting the dataset variables,

and ‘‘dots’’ to show the observations. The length of the lines

approximates the variances of the variables (the longer the line, the

higher is the variance) and the cosine of the angle between the

lines approximates the correlation; the closer the angle is to 90, or

270 degrees, the smaller the correlation (orthogonality or un-

correlated); an angle of 0 or 180 degrees reflecting a correlation of

1 or 21, respectively [49].

Exploration of comparative ICU site performance, by ICU level

and calendar year, relative to the grand observation-weighted mean

[15,19] on both the predictive probability (the default), (log) odds

ratio (OR) and risk ratio (RR) scales was undertaken using the

‘‘margins’’ and ‘‘contrast’’ operators of Stata, with the FE logistic

model. For a non-linear model the marginal effect is not the same as

the b model coefficient and is dependent upon the covariate of

interest (X) and the values of (all) other model covariates [50,51].

The marginal effects so calculated were understood as being (i)

statistics calculated from predictions of a previously fit model (in this

case, logistic) at fixed values of some covariates and averaging or

otherwise integrating over the remaining covariates [21,28] (ii) the

average of discrete or partial changes over all observations [52]; that

is, the average of predictions (AME; the default specification in

Stata) rather than the predictions at the average of covariates [26],

although the latter may also be calculated (as marginal effects at the

Figure 4. SMR and 95%CI by hospital level and calendar year for random coefficient model. Plots of point SMR (standardised mortality
ratio) with 95%CI versus mean (ICU) site volume, by hospital level (rural, metropolitan, tertiary and private) over calendar year (2009, 2010) for the
random coefficient model. Null line = 1.
doi:10.1371/journal.pone.0102297.g004
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mean, MEM). Thus, the AME is given by
1

n

Xn

i~1

bx1f bxið Þ where

bx1 is the estimated log(OR) for variable x1, bxi is the logit for the i-
th observation and f bxið Þ is the probability density function (PDF)

of the logistic distribution with regard to bxi [21]. As noted by

Vittinghoff et al [53], the Stata ‘‘margins’’ command estimates

potential outcomes (; ‘‘causal effects’’) and provides valid

confidence intervals for the parameters of a (in this case, logistic)

marginal structural model [54] by averaging over the expected

outcome values of the actual and potential values of, say, a binary

treatment variable, holding all other covariates fixed at observed

values (under the assumption of no residual confounding). We shall

refer to these margins of responses (or predictions) as predictive

margins after Graubard & Korn [55]. In particular, for a binary

covariate x, coded (0/1), the marginal mean for x = 1 is obtained by

considering all the observations of x wherever ‘‘x’’ appears in the

model (for both direct and indirect effects; and similarly for x = 0);

that is [55]:
1

n

XR

k~1

Xni

i~1

exp âarzb̂bxik

� �
= 1zexp âarzb̂bxik

� �n o
for

k~1:::,R, i~1:::,ni, xik being the covariate effect for the ith

individual in the kth group and n~
PR
i~1

ni [56,57]. A point of note

with respect to the models estimated in the current paper; predictive

margins require that the prediction is a function only of b, the 1|p

model coefficient vector (matrix) and the independent (fixed)

variables, not of stochastic functions (the random effects, uk).

The following effect computations with 95% CI were under-

taken: (i) OR contrasts; using linear predictions via the ‘‘pre-

dict(xb)’’ option of the ‘‘margins’’ command and (ii) RR; as the

ratio of the provider predictive margins divided by the grand

weighted mean of the predictive margins, via nonlinear combina-

tion of estimates (the Stata ‘‘nlcom’’ command [58]) and (iii)

probability contrasts; the grand weighted mean of the predictive

margins was subtracted from the predictive margin for each (ICU)

provider. Adjustment of the comparison-wise error rate (individual

ICU relative to the grand observation-weighted mean) was based

upon the upper limit of the Bonferroni inequality, aeƒmac, where

m is the comparison number; the adjusted error rate being

ac~ae=m [28,59], where ac is the comparison-wise error rate and

ae is the experiment-wise error rate.

Results

The data set consisted of 145355 patient records in 128 ICUs,

calendar years 2009 (47.5%) & 2010 (52.5%), with mean(SD) age

Figure 5. Boxplots of SMR and 95%CI span for different models. Boxplots of: Upper panel, point estimate of SMR (standardised mortality
ratio) by model (SMR_FE, SMR for fixed effects model; SMR_Rint, SMR for random intercept model; SMR_Rcoef, SMR for random coefficient model)
over year (2009, 2010). Lower panel, 95%CI span by model (CIspan_FE, 95%CI span for fixed effects model; CIspan_Rint, 95%CI span for random
intercept model; CIspan_Rcoef, 95%CI span for random coefficient model) over year (2009, 2010).
doi:10.1371/journal.pone.0102297.g005
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60.9(18.8) years, APACHE III score 51.4(28.0) and ICU and

hospital mortalities of 7.0% and 10.9% respectively. Fifty six

percent were male and 38% were ventilated in the first 24 hours.

The mean annual patient volume was 758(404); median 623,

range 168–1701. The largest percentage of patients (42.8%) were

in tertiary hospitals and resided in the Australian state of New

South Wales (31.4%). Patient demographics over calendar year by

hospital level and patient surgical status is seen in Table 1. More

patients were admitted in 2010 (n = 76346) versus 2009

(n = 69009), but the demographics over the 2 year period were

relatively stable.

The fixed effects model (190 parameters, including 127 separate

ICU site parameter estimates) had a BIC = 64057.9, an AUC

= 0.90 and an H-L statistic = 18.3 (P = 0.22; grouping number

= 40). The continuous variable ‘‘annual-volume’’ and the

categorical variables ‘‘ICU-level’’ and geographical-location’’ were

identified as collinear and removed from the dependent variable

list. When ‘‘annual-volume’’ was parameterised as a decile

categorical variable, there was a model AIC increment of 5 (all

parameter P-values (n = 9) were .0.1) and the variable was not

further considered. A global Wald test of the 6 trigonometric

seasonality parameters was significant at P = 0.004. A random

intercept model with the identical independent variable list

(excluding the ICU site variable as a categorical variable) had a

BIC = 64457, an AUC = 0.90 and an H-L statistic = 41.6

(p = 0.32; grouping number = 40). A random coefficient model

(random intercept as ICU site, random coefficient (slope) as

centred APACHE III score; unstructured covariance), including

the variables ‘‘annual-volume’’ (continuous) and ‘‘ICU-level’’ and

‘‘geographical-location’’ (categorical) had a BIC = 64555.8, an

AUC = 0.90 and an H-L statistic = 42.8 (p = 0.28; grouping

number = 40). Both RE models satisfied the assumption of

normality of random effects estimates (see File S1). Graphical

display of the binned residual plots of the three models is seen in

Figure 1; in terms of residual percentage outside boundary lines,

there was slight advantage for the FE model (3.33%) versus the

random intercept (3.84%) and random coefficient (3.85%) models.

Overall there was some statistical advantage of the fixed effects

model, none the least in terms of computational speed: FE model,

9 seconds; random intercept model, 1.8 hours; random coefficient

model, 11.8 hours (computed on a 64-bit PC using an 8-core Intel

i7-3960X CPU, clock speed 3.30 GHz). Details of parameter

estimates for all three models (fixed effects, random intercept and

random coefficient) have been included in File S1.

Using the FE model, plots of ICU SMRs and CI by hospital

level for the two calendar years, 2009 and 2010, are seen in

Figure 2. There was evidence for contraction of the CI spread

across the years, more so in the private ICUs. Of interest, no ICU

Figure 6. ICU site intercepts (95%CI) on OR and odds scale. FE ICU-site intercepts (95%CI) on OR scale (upper panel) and the ICU-site random
effects (95%CI) on odds scale (lower panel) from the random coefficient model. Horizontal axis, mean site volume.
doi:10.1371/journal.pone.0102297.g006
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was identified as an outlier with respect to the null ( = 1) in either

year. Similarly, for the random intercept and coefficient models,

no statistical outliers were identified (Figures 3 and 4, respectively).

Box plots of SMR point estimates (left panel) and 95% CI span

(right panel) by model and year are seen in Figure 5. Shrinkage of

point estimates for all three models is seen, 2010 versus 2009, but

no striking difference between models; the random coefficient

model having the greater spread of point estimates. Confidence

interval span width tended to increase, 2010 versus 2009, and all

models displayed ‘‘extreme’’ span widths. A comparison of the

(model-based) FE ICU-site intercepts and the ICU-site random

effects from the random coefficient model is seen in Figure 6,

demonstrating point-estimate shrinkage for the RE model.

Predictive margins analysis (OR scale with Bonferroni control of

multiple comparisons) of ICUs relative to the grand mean, by

hospital level for the calendar years 2009 and 2010 is seen in

Figure 7. The spread of the ICU OR estimates relative to the

grand mean (y-line = 1) was seen to decrease over years 2009 to

2010, more evident for tertiary and private ICUs. As an

illustration of the versatility of the margins command, we include

two further graphics. Figure 8 shows risk ratio estimates relative to

the grand mean, by hospital level for the calendar years 2009 and

2010, displaying similar characteristics with respect to the over-

year spread of estimates as in Figure 7; and Figure 9, which

demonstrates on the probability scale, by hospital level, formal

over-year contrasts (calendar year 2010 versus 2009) of the

predictive margins with respect to the grand mean, with

Bonferroni control of multiple comparisons. A majority of ICUs

in the rural / regional, metropolitan and tertiary levels demon-

strated a decrease in predicted probability over the 2 calendar

years, but in the private sector, this trend was reversed.

Discussion

Using a fixed-effects logistic model to generate provider

mortality probabilities in a large data-base over a two year period

we were unable to demonstrate (i) substantive advantage for a

conventional random effects approach and (ii) outlier status for any

of the ICUs. These findings deserve further comment.

Multiple studies have compared fixed and random effects

estimators in assessing provider performance, the key performance

indicator usually being the (log)-SMR [5,17,18,60–62], although

standardisation [63] has not been undertaken in some studies and

the user-specific (log)-OR has been advocated [64] and utilised in

provider comparison [10,20,65]. The calculation of the SMR in

the current context is equivalent to indirect standardisation, direct

standardisation being ‘‘practically impossible when multiple

predictors are included in the case-mix adjustment model’’ [66],

Figure 7. Fixed effects ICU mortality OR (95%CI) by hospital level and calendar year. Plots of predictive ICU mortality OR (95%CI) versus
mean (ICU) site volume, by hospital level (rural, metropolitan, tertiary and private) over calendar year (2009, 2010) for the FE model. Grand mean null
line = 1.
doi:10.1371/journal.pone.0102297.g007
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and the former method may not sufficiently adjust for case-mix

difference / confounding [15,67]. This being said, formal model

development, in terms of appropriate covariates [12]and model

assessment has been quite variable in the literature: in particular,

the lack of adjustment for mechanical ventilation status, patient

transfer, diagnostic categories and seasonality; and little extension

beyond reporting of conventional AUC and H-L statistic [68] in

terms of model performance. Under the FE model and in the

presence of large numbers of providers, for instance .4000 as

reported by Ash and co-workers [15], there may be concerns

regarding estimator consistency, but such concerns would appear

to be more apparent than real [69,70]. Unlike other studies using a

FE approach, we accounted for within-ICU patient correlation

using the cluster-variance option of Stata to obtain unbiased

variance estimators ([71], see Statistical analysis, above).

A number of papers have suggested that ‘‘non-hierarchical’’

estimators increase the possibility of false outlier classification

[10,11,67], and the shrinkage of RE estimators has been accepted

as a virtue in that it would result in a ‘‘…more accurate estimate of

a provider’s unobserved true performance…’’ [11], although there

has been disquiet at the very consequences of this feature [13,14].

In the current study, as shown in Figure 3, we were unable to

demonstrate this reported characteristic of RE models compared

with FE, although shrinkage of the point estimates of the RE

intercepts compared with the FE ICU-site intercepts was quite

evident (Figure 6), albeit with wide 95%CI (on the odds scale).

Apropos this point of contention, a recent combined simulation

and empirical study has reported the FE estimator to provide

‘‘…high power to identify providers with exceptional outcomes or

to estimate the magnitude of the difference from expected for such

exceptional providers…’’ [16]. One aspect of the current study

that may inform the lack of demonstration of mortality outliers on

the SMR scale was the database that we utilized; a binational

Intensive Care data base which was different from that of, say, the

COPSS-CMS authors [15] and other papers where specific

medical diagnoses in a variety of general hospitals with quite

variable (and small) cluster size were addressed. Minimum

annualised ICU volume was modest at 168 patients (equivalent

to 3 ICU admissions per week); that is, there were no extreme

outliers with respect to ICU ‘‘cluster’’ size, although the number of

clusters was adequate [72]. We have previously drawn attention to

the implications of these particular (Australia and New-Zealand)

intra-hospital ICU characteristics when addressing the volume-

outcome question [30]. The recent findings of Madigan et al, that

‘‘clinical studies that use observational databases can be sensitive

to the choice of database’’ gives credence to such cautions [73].

The current study would appear to be one of the first to assess

provider performance exploiting predictive margins, the use of the

Figure 8. Fixed effects ICU mortality RR (95%CI) by hospital level and calendar year. Plots of predictive ICU mortality risk ratio (RR, 95%CI)
versus mean (ICU) site volume, by hospital level (rural, metropolitan, tertiary and private) over calendar year (2009, 2010) for the FE model. Grand
mean null line = 1.
doi:10.1371/journal.pone.0102297.g008
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which has distinct advantages: the ability to resolve problems

inherent in prediction across categorical predictors (for example,

the prediction of the ‘‘average’’ gender effect [74]), that is the

average effect versus the effect at the average covariate value, or

AME versus MEM (see the discussion of the AME in Statistical

analysis, above); seamless computation of ICU-effects with respect

to the grand mean on both the OR and RR scale; the ability to

formally estimate year-to-year changes in (predicted) mortality as

precisely displayed in Figure 9 where over-year changes are seen in

tertiary (decrease) and private (increase) ICUs; the ability to define

general risk levels in ICU strata, this being evident in the general

increase in RR for tertiary ICUs (Figure 8), a finding consistent

with our previous observations for ventilated patients in this

database [30]; and the computationally simple use of adjustment

for multiple comparisons within a modelling framework. An

extension of the latter (not presented in the current study) would

be the vexed problem of specific between-provider comparisons in

so-called caterpillar plots [75–77]; within the margins framework

this may be easily accomplished using pairwise comparisons (the

Stata ‘‘pwcompare’’ module, with say, Bonferroni adjustment

[78]). Inference from these model based estimates is thus of some

value in assessing provider performance and may be contrasted

with, and are orthogonal to (see Figure 10), that provided by the

SMR, the statistical properties of which (for example, variance

estimation), being non-model based, are somewhat problematic

[12,79]. The SMR is a dimensionless measure of provider

outcome and is therefore valid for direct comparisons across

providers. Indeed, the SMR may be regarded as the ‘canonical

residual provider effect’ and should be uncorrelated with the

model-based estimates.

The statistical advantages of the FE approach compared with

the RE were quite modest, although computational speed and

simplicity recommended the former. As noted in Results, above,

ICU level (and geographical region) were unable to be explicitly

fitted in the FE model due to confounding / collinearity, but were

‘‘recovered’’ within the model based predictive margins analysis.

Such confounding does not arise with RE modelling and FE and

RE modelling approaches might be best characterised as

complementary, rather than comparative.

Conventional one-stage RE (and FE) estimation considers both

‘‘usually’’ and ‘‘unusually’’ performing providers, leading to

inflated random effect variance estimates and the inability to

properly account for the latter provider-type (‘‘unusual’’) in

estimation. A staged approach to estimation which includes a

Figure 9. ICU mortality probability contrasts by hospital level and calendar year. Plots of predictive ICU mortality probability contrasts
(calendar year 2010 versus 2009) by hospital level (rural, metropolitan, tertiary and private). Bonferroni control of multiple comparisons (see
‘‘Statistical analysis’’, above).
doi:10.1371/journal.pone.0102297.g009
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"null" model describing the behaviour of "usual" providers would

appear to be apposite [12]; such an approach may also

accommodate over-time analysis [80]. Similarly, the simplistic

claim that the shrinkage process of RE estimators mitigate against

multiple comparisons [67], elides the real problems of false

discovery rate and regression to the mean, both of which must be

formally handled within a RE scenario [12]. As with the FE

estimator, specific requirements of the RE estimator are rarely

tested; the distribution of the RE, as reflected in the gradient

function [81], and (for the intercept only RE model) lack of

correlation between random intercepts and patient case-mix

[15,82]. In the presence of such a correlation, which it is plausible

to think may commonly occur, the performance of the RE

estimator is ‘‘…adversely affected…’’ [16].

The developed FE model had advantage compared with the

conventional RE models and disclosed no ICU performance

outliers in calendar years 2009–2010. Current developments in

RE estimation, which embrace a ‘‘null’’ model and adjust for the

false discovery rate and regression to the mean, are superior to a

single application of a RE (or FE) model, but are considerably

more complex statistically and computationally. Analysis using

predictive margins allows substantial inferential insight into

provider performance.
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including Table S1-Table S3, Figure S1, and Figure S2.
Table S1, Model estimates: fixed effects. Table S2, Model

estimates: random intercept. Table S3, Model estimates: random

coefficient. Figure S1, Standardized normal probability plots (P–P

plot) of the random effects; random intercept model. Figure S2,

Standardized normal probability plots (P–P plot) of the random

effects; random coefficient model. a) Random effects for ICU site:

APACHE III score. b) Random effects for ICU site: constant.
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