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Abstract: Leaf-cutting ants are pests of great economic importance due to the damage they cause
to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control
of these insects. In order to develop safer technology, the objective of this work was to evaluate
the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their
major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa
Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major
compounds were performed. The major compounds identified in the essential oils of H. pectinata were
[3-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic
to the ants in both exposure pathways. Essential oils were more toxic than their major compounds
alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways.
A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype (3-caryophyllene
in both exposure pathways. In general, the binary mixtures of the major compounds resulted in
additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the
development of new insecticides.

Keywords: Lamiaceae; pests; secondary metabolites; essential oils profile; major constituents;
bio-insecticide

1. Introduction

Cutting-ants of the genera Atta and Acromyrmex are responsible for high losses in agricultural and
forest crops. They are distributed all over the neotropical region [1], and attack plantations throughout
the year [2]. The damage is related to the cutting of plant fragments used as substrate for the cultivation
of the symbiotic fungus that makes part of cutting-ants’ diet [3].

These insects are able to choose the plant material to be cut, and they may discriminate species of
the same genus, and even plants of the same species [4]. This preference for certain plant species is
related to the different chemical compositions of the plants [5,6]. Thus, secondary plant metabolites
are linked to their susceptibility or tolerance to the attack of leaf-cutting ants. This knowledge allows
the use of these compounds in the management of these pests, to the detriment of conventional
insecticides [7].
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In addition to the economic, social and environmental problems caused by organosynthetic
insecticides, the reduced number of recommended active principles, and the requirements of forest
certifiers have hindered the management of leaf-cutting ants [8].

The non-governmental organization Forest Stewardship Council (FSC) has set standards in order
to implement forest management based on criteria that not only ensure economic viability, but also
aggregate social benefits. For this, the certifier has prohibited the use of organosynthetic insecticides in
pest control in planted forests [9]. Therefore, efficient and environmentally friendly control methods
are essential for the management of leaf-cutting ants.

Studies have been carried out in the search for bioactive substances as an alternative to
organosynthetic insecticides [10-17]. In this context, essential oils of plants appear as an option
to control these pests for being efficient and environmentally safer [18,19]. Since essential oils are
a mixture of substances of very complex composition, the emergence of populations of resistant insects
should slow down, which would consequently increase the time of use of this technology [20]. Usually,
the major compound present in the essential oil is responsible for the biological activity. However,
in some cases, the combination of these substances may increase the activity of the essential oil,
since the compounds may interact with synergistic effect [21-23].

Changes in the chemical composition of plants of the same species are due to different
environmental pressures (e.g., herbivory and edaphoclimatic conditions) to which they are subjected,
and may lead to genetic modification that can result in the formation of chemotypes [24].
The chemotypes, in turn, can provide essential oils with different biological activities [15].

The medicinal and aromatic plant Hyptis pectinata (L.) Poit. (Lamiaceae), popularly known in
the Brazilian northeast as “sambacaitd”, or “canudinho”, has antidematogenic, antinociceptive [25],
antimicrobial [26], insecticide [27], anti-inflammatory [28], and leishmanicidal [29] activities. However,
the formicidal activity of the essential oils of this plant has not been studied yet. Thus, results reported
in this work enabled the deposit of a patent for the formicidal activity of the essential oils of H. pectinata [30].

The objective of this work was to identify and quantify the chemical compounds; to evaluate
the toxicity of the essential oils of two H. pectinata genotypes (chemotypes) and their major
compounds to A. balzani and A. sexdens rubropilosa; and to determine whether or not synergistic,
additism, and/or antagonistic effects occur by testing the binary mixture of the major compounds.
Based on the results of the present study, the essential oil of H. pectinate and its major compounds
-caryophyllene, caryophyllene oxide and calamusenone showed formicidal activity against A. balzani
and A. sexdens rubropilosa, affecting the survival of these species.

2. Results

Table 1 shows the chemical composition of the essential oils of the two chemotypes. Twenty-seven
compounds were identified in the essential oils, and 90% of their composition consisted of
sesquiterpenes. The genotypes SAM-016 and SAM-019 presented [3-caryophyllene (17.66%) and
calamusenone (36.08%) as major compounds, respectively. In both chemotypes, the second major
compound was caryophyllene oxide (11.52% and 22.89%). Essential oil contents of 0.67% and 0.62%
were obtained for the genotypes SAM-016 and SAM-019, respectively.
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Table 1. Chemical composition of the essential oils of two Hyptis pectinata chemotypes.

Concentration (%) ? of the Compounds in H. pectinate Chemotypes

Compound RRI?

Plant SAM-016 Plant SAM-019
f-pinene 974 2.26 -
p-cymene 1020 1.32 -
Limonene 1024 1.65 -
5-elemene 1335 3.92 -

«-cubenene 1345 1.56 0.31
x-copaene 1374 4.85 1.12
B-bourbonene 1387 1.02 047
-elemene 1389 7.79 2.05
[3-caryophyllene 1417 17.66 9.42
v-elemene 1434 - 0.63
(Z)-muurola-3,5-diene 1448 - 0.56
o-humulene 1452 1.66 0.81
Y-muurolene 1478 5.66 -
Germacrene D 1484 - 1.87
(2)-B-guaiene 1492 - 477
Bicyclogermacrene 1500 4.57 -
Lepidozene 1502 - 0.68
y-cadinene 1513 - 2.72
(E)-calamenene 1521 5.76 1.81
Spathulenol 1577 10.09 -
Caryophyllene oxide 1582 11.52 22.89
Globulol 1590 1.82 -
«-acorenol 1632 - 0.15
Epi-a-cadinol 1638 4.88 -
Cubenol 1645 - 3.29
a~cadinol 1652 2.22 1.59
Calamusenone 1676 - 36.08
Essential oil content (%) 0.67 0.62

2 RRI = relative retention index. P The concentration (%) of each compound represents the mean of three replications,
and the traces indicate that the compound was not detected in these essential oils.

The essential oils of the two H. pectinata chemotypes presented efficient formicidal activity on the
species A. balzani and A. sexdens rubropilosa via contact and fumigation (Tables 2 and 3).

The doses and concentrations required to kill 50% of ant populations ranged from 3.48 to
8.18 ug/mg, and from 0.59 to 2.15 pug/mg, respectively. The essential oils were more toxic to the ants
than their isolated compounds (Tables 2 and 3). Essential oils of the chemotypes (3-caryophyllene and
calamusenone were about 1.9 and 3.8 times (A. balzani) and 1.3 and 1.3 times (A. sexdens rubropilosa)
more potent than their respective isolated compounds when applied via contact (Table 2). In the
exposure via fumigation, isolated compounds were not efficient in ants control (Table 3). The higher
steepness of the curves of lethal dose and concentration of the chemotype calamusenone resulted in
low LDsgg and LCsg, except for A. sexdens rubropilosa via contact (Tables 2 and 3).

Ants’ survival was differently affected when the insects were exposed to essential oils. A. balzani
was more susceptible to the chemotype calamusenone, and A. sexdens rubropilosa was more susceptible
to the chemotype 3-caryophyllene in both exposure pathways (Tables 2 and 3). Although the major
compounds showed lower toxicity, they maintained the same pattern of that of the essential oils when
applied by contact, i.e., calamusenone was more toxic to A. balzani, and f-caryophyllene was more
toxic to A. sexdens rubropilosa (Table 2).
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Table 2. Toxicity via contact of the essential oils of two Hyptis pectinata chemotypes and their major
compounds to two species of leaf-cutting ants.

LDsp ? (95%CI) LDy (95%CI)

Treatment N. Insects (ug mg—1) (ug mg—1) Slope? X% p-Value
Acromyrmex balzani
Chemotype 3-caryophyllene 391 7. 089._1;3.9 6) (sz;_1562 47) 2.20 259 053
Chemotype calamusenone 406 . 0?5%;91) @, 329_?; ) 2.84 297 022
-caryophyllene 224 (13. ;;_“?7 68) (37.:17:215.98) 2.66 192 0.62
Calamusenone 811 (12.;63;21;82) (17;?;92%.40) 8.19 190 0.61
Caryophyllene oxide 252 ar. 35;92?.08) ( 40:79;236.70) 3.05 297 022
Atta sexdens rubropilosa
Chemotype [3-caryophyllene 310 (3.12'6_4}.20) (9.2%)1_'16 67 09) 2.51 2.01 0.36
Chemotype calamusenone 406 (3.71;'_655. 52) as. 555_6;(; 17) 1.72 3.60 0.16
{-caryophyllene 392 ( 41%1_756 16) (1. (};ljggg) 2.60 024 0.88
Calamusenone 335 (5.2%—966.61) (10;;;11211) 4.12 518 0.07
Caryophyllene oxide 644 35.34 158.92 1.96 0.05 0.97

(29.47-40.99) (107.62-355.32)
a LDsy—Lethal Dose; P Slope of the curve.

Table 3. Toxicity via fumigation of the essential oils of two Hyptis pectinata chemotypes and its major
compounds to two species of leaf-cutting ants.

LCsp ? (95%CI)  LCop (95%CI)

b 2 _
Treatment N. Insects (UL L~1) (uL LY Slope X* p-Value
Acromyrmex balzani
1.82 6.34
Chemotype [3-caryophyllene 294 (1.57-2.08) (5.14-8.37) 2.36 1.86 0.60
0.59 1.35
Chemotype calamusenone 173 (0.53-0.65) (1.17-1.63) 3.58 450 0.10
f-caryophyllene 497 >100.00 * - - - -
Calamusenone 441 >100.00 * - - - -
Caryophyllene oxide 495 >100.00 * - - - -
Atta sexdens rubropilosa
1.18 6.15
Chemotype [3-caryophyllene 203 (0.95-1.41) (4.47-10.40) 1.79 530 0.06
2.15 3.52
Chemotype calamusenone 171 (2.04-2.29) (3.18-4.05) 6.01 152 0.52
{3-caryophyllene 422 >100.00 * - - - -
Calamusenone 392 >100.00 * - - - -
Caryophyllene oxide 392 >100.00 * - - - -

2 1Cso- Lethal Concentration; ? Slope of the curve. * Lethal Concentration curves could not be traced due to the low
toxicity of the compound.
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Most of the time, the binary mixtures of the major compounds of the essential oil of H. pectinata
showed additive effect, resulting, in some cases, in antagonism between the molecules (Figure 1).

Acromyrmex balzani Atta sexdens rubropilosa
100 - Additism Antagonism
%2=0.86 %2=13.13 [ Expected
[ Observed
Additism
¥2=2.57
~ ’75 -
§ Antagonism
2 %2=9.32
E
o Additism
50 A I
S 12=0.55 Additism
%2=0.14
25 A
0
Calamusenone + Calamusenone + B-caryophyllene + Calamusenone + Calamusenone + B-caryophyllene +
B-caryophyllene Caryophyllene oxide ~ Caryophyllene oxide B-caryophyllene Caryophyllene oxide  Caryophyllene oxide

Binary mixtures

Figure 1. Effect of binary mixtures of the major compounds of the essential oils of two Hyptis pectinata
chemotypes on the mortality of Acromyrmex balzani and Atta sexdens rubropilosa at 48 h after exposure
via contact.

3. Discussion

Several studies have reported the chemical diversity among plant genotypes of the same species.
The difference in the chemical composition may be related to environmental, genetic and phenological
factors [31-33].

The identification of the compounds present in the essential oils of the genotypes of H. pectinata
allowed the distinction of these compounds into chemotypes. Studies on the essential oils of
this plant have reported variations among their chemical compounds. Different authors have
identified 3-caryophyllene (12.9%-28.3%), caryophyllene oxide (18.0%—-28.0%), calamusenone (24.7%),
a-muurolol (25.5%), cubenol (11.4%) and germacrene-D (8.2%) as major compounds in plants collected
in the state of Sergipe. In contrast, H. pectinata plants from Africa presented p-cymene (33.8%) and
y-terpinene (8.9%) as major compounds [34]. The present results corroborate with the diverse chemical
composition of essential oils of H. pectinata plants, in which 3-caryophyllene, caryophyllene oxide and
calamusenone have been identified as major compounds [25,26,28].

The essential oils of the two H. pectinata chemotypes were toxic to A. balzani and
A. sexdens rubropilosa via contact and fumigation. The comparison with other works allows evaluating
the efficacy of these oils. In experiments of toxicity via contact and fumigation with the essential oil of
Aristolochia trilobata to Acromyrmex balzani ants, fumigation presented LCsg of 9.33 uL/L. Conversely,
the essential oil presented low toxicity via contact [35]. In Pogostemon cablin, the concentration required
to cause 50% of the mortality of ants of the species Atta sexdens rubropilosa by fumigation was of
1.30 uL L1 [36].

The insecticidal activity reported in the present work is a result of bioactive substances synthesized
by the secondary metabolism of plants, which can act in the natural defense against the attack of
pathogens. Thus, these substances have increasingly been used as sources of raw material in the
development of new bio-insecticides, since they have many advantages when compared with synthetic
insecticides. The process of insect resistance to these substances is slower and essential oils are
biodegradable [37].
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The insecticidal activity of the essential oil of this plant has already been demonstrated for larvae
of Aedes aegypti [27]. Essential oils need to penetrate the body of the insect and reach the site of action,
so that they can exhibit their insecticide activity. The present work showed that essential oils can
penetrate the ants’ cuticle (contact) or their spiracles (fumigation). The ability of cuticle penetration of
the insects can be restricted by the chemical composition of the essential oils, and the physico-chemical
properties and thickness of the cuticle [38]. Possibly, the essential oil applied via contact could not
penetrate the ants’ cuticle as efficiently as fumigation.

The species H. pectinata is popularly and successfully used in the treatment of pain and
inflammation. The chemical composition of its essential oils is mainly composed of sesquiterpenes,
which are hydrocarbons that have a chemical formula very similar to anti-inflammatory drugs and
analgesics, such as fenoprofen and ibuprofen [39]. Anti-inflammatory and nociceptive substances
act on the regulation and release of neurotransmitters responsible for inflammatory and pain
sensitivity [40,41].

Similarly, once inside the body of the insects, the essential oils possibly act in the nervous
system, regulating the neurotransmitters [42,43]. In fact, in the present work, ants presented signs of
neurological intoxication, such as spasms, followed by paralysis, and consequent death [44]. Thus,
the toxicity of the essential oils or of their major compounds may be due to different mechanisms,
such as: (i) octopaminergic sites of action, decreasing or increasing octopamine, a neurotransmitter and
neuromodulator found exclusively in invertebrates, may result in the rupture of the nervous system
activity, when alterations in the functioning of this neurotransmitter occur [45]; (ii) interference in the
chlorine channels modulated by gamma-aminobutyric acid (GABA), a substance that controls the flow
of chlorine ions by the nerve cell membrane and restores their resting state, causing hyperexcitation
of the nervous system [46]; (iii) inhibition of the acetylcholinesterase enzyme, which catalyzes the
hydrolysis of acetylcholine and is a neurotransmitter, causing nervous hyperactivity, and consequent
death of the insect [47].

The sesquiterpenes tested in the experiment were less toxic when compared with the essential
oils, suggesting the combined participation of the compounds. The biological activity of essential oils
is also influenced by interactions between their compounds [48]. The contribution of each compound
to the biological activity may depend on the other compounds, as a result of the interaction between
the compounds [49]. Thus, the analysis of the chemical composition of the essential oil alone cannot
confirm that the major compound is responsible for the biological activity in question, and its effect
can be attributed to a compound in a lesser proportion, or to synergism between the compounds [50].
The synergistic effect of the compounds of the essential oils of geranium (Geranium maculatum L.)
was demonstrated by the insecticidal activity against the domestic fly (Musca domestica L.) [51].
Higher insecticidal activity of the essential oil of Thyme (Thymus vulgaris L.) and lemon grass (Cymbopogon
citratus (DC.) Stapf) was confirmed in relation to the major compounds when individually tested [17].

Only exposure via contact allowed determining the curve of the lethal dose when the isolated
major compounds were tested. Some compounds of the essential oils may have important participation
in the penetration of the cuticle, determining the lipophilic attraction and the cellular distribution [21].
Low toxicity of the major compounds was observed when using the fumigation method. The higher the
molecular weight and the boiling point were, the lower the volatility of the chemical compounds [52,53].
-caryophyllene, caryophyllene oxide and calamusenone are sesquiterpenes, and present high boiling
points [54-56]. Conversely, the higher the vapor pressure of the compounds, the greater the volatility.
Compounds with higher molecular weights have lower vapor pressure [57,58], requiring a longer
period for complete volatilization. These characteristics are possibly responsible for the low efficiency
obtained via fumigation.

Regardless of the exposure pathway, the essential oils of the chemotypes calamusenone
and B-caryophyllene were more efficient in A. balzani and A. sexdens rubropilosa, respectively.
The biological activity of the essential oils is directly related to their chemical compounds and to
the physiological /biochemical responses of the insects when exposed to these compounds [48].
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These results are due to the differentiated chemical composition of the essential oils studied, as well
as to the susceptibility of each ant species to the different compounds present in the essential oil.
This susceptibility to different compounds may be related to the enzymatic complex inherent in each
ant species, and the consequent capacity to metabolize them, besides the insensitivity of the target site
of action [59].

Binary mixtures of major compounds of the essential oil of H. pectinata did not result in synergistic
effects. Compounds present in smaller proportions in the essential oils can regulate the activity of
the major compounds [60]. Toxicity of the essential oil of H. pectinata may be related to the synergism
between its minor and major compounds, which increases their effectiveness.

Currently, natural plant substances are used as bio-insecticides in family farms, based on
traditional knowledge transmitted through generations, and in commercial production. The essential
oils of Azadirachta indica, Chenopodium ambrosioides and Mentha piperita are some examples of the raw
materials of bio-insecticidal products available in the market [61].

Although plant essential oils have been increasingly tested against a wide range of insects with
promising results, the amount of commercial bioinseticides consisting of essential oils is still small.
This may be due to insufficient government support, which makes the process of bio-insecticide
authorization highly complex and costly. Another factor is the rapid volatilization and oxidation of
the chemical compounds of the essential oils, which impairs the chemical stability of the compounds
and significantly reduces the persistence of the efficacy in its direct use, requiring the development
of efficient stabilization processes, such as formulations [62]. The efficacy of the essential oils of
H. pectinata used in this work via formicidal formulations has already been proved in patent [30].

The present results demonstrate that the essential oils of H. pectinata are a promising alternative
to be used in the management of leaf-cutting ants. Thus, the confirmation of the formicidal potential of
the essential oils of H. pectinata qualifies this species as a source of raw material for formulation and
commercialization of bioproducts to control leaf-cutting ants. Additional behavioral studies should
be carried out in order to elucidate the behavior of the ants against bioactive substances, since they
can reduce the action of these compounds by mechanisms such as chemical communication, olfactory
sensitivity and learning ability [63]. At the same time, tests should be carried out to evaluate the
activity of these essential oils under environmental conditions.

4. Materials and Methods

4.1. Plant Material, Extraction and Chemical Analysis of Essential Oils

To obtain the essential oils, leaves of SAM-016 (3-caryophyllene chemotype) and SAM-019
(calamusenone chemotype) of Hyptis pectinata (L.) Poit. were collected from the Active Germplasm
Bank of Medicinal and Aromatic Plants of the Federal University of Sergipe. The collected leaves were
dried in an oven at 40 °C for five days, and subjected to hydrodistillation in a modified Clevenger-type
apparatus, for 150 min [64]. The content of the essential oil in the dry leaves (%—expressed in dry leaf
mass) was calculated. Voucher specimens were deposited in the herbarium of the Federal University
of Sergipe, registration no. 18986 and 18999.

Analyses of the essential oil compounds were carried out using a GC-MS/FID (QP2010 Ultra,
Shimadzu Corporation, Kyoto, Japan), equipped with an autosampler AOC-20i (Shimadzu).
Separations were accomplished using an Rtx®-5MS Restek fused silica capillary column
(5%-diphenyl-95%-dimethyl polysiloxane) of 30 m x 0.25 mm i.d., 0.25um film thickness, at a constant
helium (99.999%) flow rate of 1.2 mL/min. Injection volume of 0.5 puL (5 mg/mL) was employed,
with a split ratio of 1:10. The oven temperature was programmed from 50 °C (isothermal for 1.5 min),
with an increase of 4 °C/min, to 200 °C, then 10 °C/min to 250 °C, ending with a 5 min isothermal at
250 °C.

The MS and FID data were simultaneously acquired by employing a Detector Splitting System;
the split flow ratio was 4:1 (MS:FID). A 0.62 m x 0.15 mm i.d. restrictor tube (capillary column) was
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used to connect the splitter to the MS detector; a 0.74 m x 0.22 mm i.d. restrictor tube was used to
connect the splitter to the FID detector. The MS data (total ion chromatogram, TIC) were obtained in
the full scan mode (m/z of 40-350) at a scan rate of 0.3 scan/s, by using the electron ionization (EI),
with electron energy of 70 eV. The injector temperature was 250 °C, and the ion-source temperature
was 250 °C. The FID temperature was set to 250 °C, and the gas supplies for the FID were hydrogen,
air, and helium at flow rates of 30, 300, and 30 mL/min, respectively. Quantification of each constituent
was estimated by FID peak-area normalization (%). Compound concentrations were calculated from
the GC peak areas, and they were arranged in order of GC elution.

Retention indices were determined by the equation of Van den Dool and Kratz (1963) [65],
in relation to a homologous series of n-alkanes (nC9-nC18), and compared with retention indices of
the literature [66] for the identification of the compounds. Simultaneously, three libraries (WILEYS,
NIST107 and NIST21) of the equipment were used, which allowed the comparison of the spectra data
with the data of the libraries, using an 80% similarity index.

4.2. Obtainment of Major Compounds

The compounds of the essential oil of H. pectinata found in proportions above 11% were considered
to be major compounds: (-caryophyllene, caryophyllene oxide and calamusenone. Standards of
B-caryophyllene and caryophyllene oxide were purchased from Sigma-Aldrich® (Steinheim, Germany).
Calamusenone was isolated and characterized as described by [67] (Figure 2).
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Figure 2. Three major compounds found in the essential oils of two H. pectinate chemotypes.

p-carvophyvllene carvophvllene oxide calamusenone.

4.3. Insects

Workers of A. balzani and A. sexdens rubropilosa were directly obtained from nests from the campus
of the Federal University of Sergipe, Sao Cristovao-SE, Brazil (10°54’ S, 37°04’ W). The ants were kept
in the nest fragments in round plastic containers (50 cm x 20 cm) at ambient conditions (temperature
25-27 °C and relative humidity 60% =+ 5%), for 24 h prior to the test, and only distilled water was
supplied during this period. Workers of the same size were used in the bioassays.

4.4. Bioassays

The bioassays were carried out at the Laboratory of Agricultural Entomology of the Federal
University of Sergipe, Sao Cristovao-SE, Brazil.

All treatments were diluted in acetone solvent (Panreac-UV-IR-HPLC-GPC PAI-ACS, 99.9%
purity). Previous tests have shown that this solvent did not interfere with the survival of workers.
The treatments consisted of the essential oil of the chemotypes (3-caryophyllene and calamusenone
of H. pectinata and its major compounds: 3-caryophyllene, caryophyllene oxide and calamusenone.
Acetone solvent alone was used as control.
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4.4.1. Exposure Pathways

The toxicity of essential oils and of their major compounds was evaluated by two exposure
pathways: contact and fumigation. The experiment consisted of completely randomized design with
four replications.

Preliminary bioassays were carried out with three doses (0.1; 1.0; and 10 pg essential oil/mg
insect) for contact, and three concentrations (0.1; 1.0; and 10 uL essential oil/L air) for fumigation.
From these tests, doses and concentrations for the subsequent bioassays were determined in order to
obtain the curves of lethal dose and concentration. For the calculation of the doses, the mean weight of
30 ants was obtained, using a 0.01 mg analytical precision scale (Shimadzu AUW220D, Kyoto, Japan)

In the contact bioassays, tests were carried out on Petri dishes (9 cm in diameter x 2 cm in height),
with filter paper at the bottom (Unifil, code 501.009), moistened with 0.5 mL distilled water, with seven
ants per dish. Preliminary tests indicated that this combination of moisture and ant density does not
affect ants’ survival. Petri dishes were kept in a freezer at —4 °C for 1 min to reduce ant activity and
allow topical application of the treatments to the individuals. Each ant received 1 puL of the essential
oils of H. pectinata or of the major compounds in the pronotum region, applied using a 10 uL Hamilton®
microsyringe. The dishes containing the ants were sealed with PVC plastic film and kept in B.O.D.
chamber at 25 £ 1 °C and relative humidity > 70%.

In the fumigation bioassays, glass vials (250 mL) with filter paper at the bottom were moistened
with 0.5 mL distilled water containing seven ants per vial. Preliminary tests indicated that this
combination of moisture and ant density does not affect ants survival. Treatments containing the
essential oils or major compounds were applied with the aid of a 10 uL. Hamilton® microspheres on
1 cm? filter paper (volatile compound dispersant), fixed by a cotton line at the bottom of the bottle cap.

The filter paper was kept in the center of the bottle, out of reach of the ants, and avoiding direct
contact with the insect. The vials were hermetically sealed with PVC plastic film and plastic cap,
and kept in B.O.D. chamber at 25 & 1 °C, and relative humidity >70%.

Mortality was evaluated 48 h after the start of the bioassay. Individuals that failed to move after
prodding with a brush were considered dead.

4.4.2. Binary Mixtures

The effects of the binary mixtures of the major compounds (3-caryophyllene, caryophyllene oxide
and calamusenone) were determined by a methodology similar to that used in the contact bioassay
(2.4.1). The ants were not exposed to binary mixtures via fumigation due to the low toxicity of these
compounds in this exposure pathway.

The LDs values of the most effective major compounds determined in the contact bioassay were
used in the bioassays. The compounds were grouped in pairs using doses at 1:1 ratio. The major
compounds were tested separately and in mixtures at these doses for each ant species. Actual mortality
(observed) was compared with expected mortality, and the effects of binary mixtures were classified as
additism (or no effect), synergism or antagonism.

4.5. Statistical Analyses

Results of mortality from the bioessays of the exposure pathways and the effects of binary mixtures
were corrected for the mortality that occurred in the control using the Abbott’s formula [68].

Probit analyses were carried out to determine the curves of lethal dose and concentration
of the essential oils of the two H. pectinata chemotypes and the major compounds for each ant
species. Curves with probability (p < 0.05) of acceptance of the null hypothesis were accepted by the
%2 test. Lethal doses (LDsg and LDgg) and lethal concentrations (LCsy and LCy), and their respective
confidence intervals at 95% probability (Clgs) were obtained in the SAS software (version 9.1, Cary,
NC, USA), by using these curves [69].
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In the bioassays of the binary mixtures, the expected mortalities were calculated according to the
formula described by [70]: E = Oa + Ob (1 — Oa), where E is the expected mortality and Oa and Ob are
the observed mortalities caused by the major compounds separately.

The effects of the binary mixtures were classified by comparing the calculated x? and the table x>
(Otap = 3.84; df = 1; « = 0.05). x> was calculated using the following formula:

2 (Om—E)z
XTTTE

where Om is the observed mortality of the binary mixture.

The value of the analyzed pair with x?,; < 3.84 indicates that the effect is additism (no effect).
Values of the analyzed pair with x?, > 3.84 indicate that the effect is either synergism or antagonism.
In this last case, the expected and observed mortalities of the binary mixtures should be observed.
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