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a b s t r a c t

Thymosin alpha 1 (T�1), a 28-amino acid peptide, was first described and characterized from calf
thymuses in 1977. This peptide can enhance T-cell, dendritic cell (DC) and antibody responses,
modulate cytokines and chemokines production and block steroid-induced apoptosis of thymo-
cytes. Due to its pleiotropic biological activities, T�1 has gained increasing interest in recent
years and has been used for the treatment of various diseases in clinic. Accordingly, there is
eywords:
hymosin alpha 1
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pplications
enetic engineering production

an increasing need for the production of this peptide. So far, T�1 used in clinic is synthe-
sized using solid phase peptide synthesis. Here, we summarize the genetic engineering methods
to produce T�1 using prokaryotic or eukaryotic expression systems. The effectiveness of these
biological products in increasing the secretion of cytokines and in promoting lymphocyte prolifer-
ation were investigated in vitro studies. This opens the possibility for biotechnological production

of T�1 for the research and clinical applications.

© 2010 Elsevier Inc. All rights reserved.

ontents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2152
2. Biological activities of T�1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2152

2.1. Immunoregulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2152
2.2. Antitumor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153
2.3. Protection against oxidative damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153
2.4. Other functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153

3. Clinical application of T�1 in treating cancers and infectious diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153
3.1. Applications of T�1 in cancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153
3.2. Hepatitis B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154
3.3. Hepatitis C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154
3.4. AIDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154

4. Gene expression of T�1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154
4.1. Prokaryotic expression of T�1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155

4.1.1. Expression of T�1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155
4.1.2. Expression of T�1-BRMs fusion proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155
4.1.3. Expression of T�1 concatemer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155

4.1.4. Co-expression of T�1 and RimJ . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2. Eukaryotic expression of T�1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∗ Corresponding author at: Institute of Biochemical and Biotechnological Drug, Nationa
hina. Tel.: +86 531 88382589; fax: +86 531 88382548.

E-mail addresses: fswang@sdu.edu.cn, fswang2009@163.com (F.S. Wang).

196-9781/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.peptides.2010.07.026
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2156
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2156
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2156
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2156

l Glycoengineering Research Center, Shandong University, Jinan, Shandong,

dx.doi.org/10.1016/j.peptides.2010.07.026
http://www.sciencedirect.com/science/journal/01969781
http://www.elsevier.com/locate/peptides
mailto:fswang@sdu.edu.cn
mailto:fswang2009@163.com
dx.doi.org/10.1016/j.peptides.2010.07.026


2 s 31 (2010) 2151–2158

1

o
G
s
o
G
e
m
n
F
a
w
f
[
r
r
w
1

t
a
u
n
b
e
b
r
t
S
a
i
p
i
h
c
t
d
s
[
s

i
g
t
e
p
t
T
p
p

a
d
i
f
o

2

2

u
T

152 J. Li et al. / Peptide

. Introduction

Thymosin alpha 1 (T�1), a biologically active peptide consisting
f 28 amino acid residues, was first described and characterized by
oldstein et al. [34]. The research process of T�1 began with the
tudy on the thymus, which is an important vital organ for home-
static maintenance of peripheral immune system [48]. In 1966,
oldstein et al. [35] first isolated and described a lymphocytopoi-
tic factor from calf thymus, which was termed “thymosin”. The
ultiple action of thymosin on the immune, endocrine and central

ervous systems was revised by Goldstein and Badamchian [32].
urther purification of this factor led to the isolation of a heat-stable
cetone-insoluble preparation, termed thymosin fraction 5 (TF5),
hich could induce T cell differentiation, enhance immunological

unction [36] and induce apoptosis of neuroendocrine tumor cells
72]. The promising results seen with TF5 provided the scientific
ationale to further isolate and characterize the molecules in TF5
esponsible for the reconstitution of T-cell immunity. Hence, T�1
as first purified from TF5 in 1977 [34] and has been found to be

0–1000 times as active as TF5 evaluated in vivo and in vitro [47].
T�1 is the asparaginyl endopeptidase cleavage product of pro-

hymosin � (ProT�), an acidic nuclear protein consisting of 109
mino acid residues [10]. T�1 is a highly conserved acid peptide,
biquitously existing in lymphoid tissues such as spleen and lymph
odes, non-lymphoid tissues such as lungs, kidneys, and brain,
ut mainly existing in thymus gland [33], especially in the thymic
pithelial cells. Interestingly, the secretion of T�1 is not modulated
y other hormones or releasing factors [54]. As a potent biological
esponse modifier (BRM), T�1 has intensive clinical applications. In
he first randomized double-blind Phase II trial of T�1 carried out by
chulof et al. [68], administration of synthetic T�1 to postradiother-
py patients with non-small cell lung cancer exhibited significant
mprovements in relapse-free and overall survival, which was most
ronounced in patients with nonbulky tumors. Now T�1 is in clin-

cal trials worldwide for the treatment of several types of cancer,
epatitis B virus (HBV) and hepatitis C virus (HCV) infections, which
onnect closely with hepatocellular carcinoma (HCC) [77]. Addi-
ionally, T�1 shows remarkable effects in the treatment of other
iseases such as severe sepsis [87,43], acute respiratory distress
yndrome (ARDS) [38], severe acute respiratory syndrome (SARS)
23], gastrointestinal and systemic infectious disorders [39], and
pontaneous peritonitis in individuals with cirrhosis [49].

Because of the extensive applications of T�1, there is an increas-
ng need to produce T�1 in larger quantities to keep up with the
rowing clinical demand. Besides isolated from calf thymus, bioac-
ive T�1 can be obtained by solid-phase synthesis [78] or genetic
ngineering [80], but T�1 currently used in clinic is entirely solid-
hase synthesized polypeptide, with chemical features identical to
he human T�1 [40]. Recently, genetic engineering expression of
�1 in different hosts including Escherichia coli, Pichia pastries and
lants [55,14] has attracted more attention due to its potential for
roducing low cost and bioactive T�1.

In this review, we briefly describe the biological activities of T�1
nd discuss the current applications of T�1 in cancer and infectious
iseases. Furthermore, we summarize ways of genetic engineer-

ng production of this peptide, which maybe provide a conceptual
ramework for future studies to improve the quality and the yield
f T�1 for different fields of research and clinical applications.

. Biological activities of T�1
.1. Immunoregulation

Many studies have been performed to identify the immunoreg-
latory activity of T�1 in vitro and in vivo. Evidence has shown that
�1 increased the efficiency of T cell maturation [1], stimulated
Fig. 1. Immunoregulation of T�1 and action mechanisms. TRAF: TNF-receptor-
associated factor; TLR9: toll-like receptor 9; Mac: macrophage; p38MAPK: p38
mitogen-activated protein kinase; IKK: I-kappa B kinase; MyD88: myeloid differ-
entiation factor 88.

precursor stem cell differentiation into the CD4+/CD8+ T cells [57]
and balanced CD3/CD4+/CD8+ T cells of peripheral blood mononu-
clear cells (PBMCs) [84]. By stimulating natural killer (NK) cells
and cytotoxic lymphocytes (CD8+ T cell), T�1 could directly kill
virally infected cells [67]. By activating dendritic cells (DCs), T�1
was able to protect immunocompromised mice from death caused
by aspergillosis [62]. T�1 stimulated a significant increase of IL-2
and led to a decrease in the Th2 cytokines such as IL-4 and IL-10 in
patients with chronic HCV [67]. Besides, T�1 remarkably decreased
the severity of severe acute pancreatitis by having a negative effect
on serum levels of IL-1� and tumor necrosis factor-alpha (TNF-
�) [84]. T�1 also upregulated specific cytokine receptors such as
high-affinity IL-2 cytokine receptors [42].

Not only activating immuno-effector cells or modulating
cytokines expression, T�1 also directly exerted its effects on tar-
get cells. It could increase the expression of MHC I [30] and tumor
antigens [25], directly depress viral replication [4], and increase
expression of viral antigens on the surface of target-infected cells
[24], making them more visible to the immune system and less
prone to escape from immunosurveillance.

Although the observations of the T�1 potential immunoregula-
tory effects are clearly evident, what is not clear is the mechanisms
of action on the immune system. It was reported that T�1 could
directly modulate the expression of cytokine genes, MHC class
I, MHC class II related genes as well as a significant number of
new genes, acting as immune system regulators [26]. Naylor and
his colleagues demonstrated that genes of major histocompatabil-
ity proteins, costimulatory molecules, chemokines and cytokines,
and their receptors were upregulated in both T cells and mono-
cytes exposed to T�1 [54], indicating that there were multiple
targets for its immune-enhancing activity. As illustrated in Fig. 1,
T�1-mediated stimulation of intracellular signaling pathways
included mitogen-activated protein kinase (MAPK) transduction
pathways [71] and TNF-� receptor-associated factor 6 (TRAF6) sig-
nal pathway by activating I-kappa B kinase (IKK) [88]. T�1 has
also been found to induce IL-6, IL-10 and IL-12 expression via
IRAK4/1/TRAF6/PKC�/IKK/NF-�B and TRAF6/MAPK/AP-1 pathways
[56]. These pathways are shared by many cytokines, which pre-
dict potential synergy between T�1 and cytokines. T�1 was able
to prime DC for antifungal Th1 resistance through Toll-like recep-
tor 9 (TLR9)/myeloid differentiation factor 88 (MyD88)-dependent

signaling [62]. Besides, DCs could also be primed by T�1-induced
activation of p38 MAPK, NF-�B pathways [83]. Activated plasmacy-
toid DCs (pDC) led to the activation of interferon regulatory factor
7 and the promotion of the IFN-�/IFN-�-dependent effector path-
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Table 1
Summary of antitumor activities of T�1.

Author/reference Object Tumor model Treatment Dose/route/duration

Qin et al. [60] HepG2 cells and
SPC-A-1cells

Hepatocarcinoma lung
and adenocarcinoma

T�1 50 �g/mL

Beuth et al. [6] BALB/c-mice Liver and lung
metastases

T�1 0.01–10 �g/subcutaneous
injection/7 days

Moody et al. [52] Fisher rat Mammary
carcinogenesis

T�1 10 �g/subcutaneous
injection

Moody [53] Fisher rat and C3(1)SV40T
antigen mouse

Breast adenomas T�1 0.4 mg/kg/subcutaneous
injection

Moody [53] A/J mice Lung adenomas T�1 0.4 mg/kg/subcutaneous
injection/8 months

Chen et al. [12] ICR mice Hep-A-22 liver tumor Plasmid–liposome complex
containing T�1 gene and IFN�1

gene

40 �g plasmid DNA/tail
vein injection/7 days

Garaci et al. [26] BDIX rats DHD-K12 colorectal
cancer

5-Fluorouracil (FU) + IL-2 + T�1 Not detailed

Sungarian et al. [73] Long Evans rats Glioblastoma Carmustine (BCNU) + T�1 45–200 �g/kg
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ay, which resulted in vivo in protection against primary murine
ytomegalovirus infection [63]. Moreover, activated indoleamine
,3-dioxygenase (IDO) could induce transplantation tolerance and
educe inflammation allergy [64]. Recently, Qin et al. found that T�1
nhibited HepG2 cells proliferation might associated with protein
inase B (Akt) signaling pathway [60].

.2. Antitumor

T�1 has been shown to decrease tumor cell growth both in
itro and in vivo and has been demonstrated therapeutic usefulness
n several types of cancer (Table 1). T�1 was observed to exhibit
nti-proliferative effects on HepG2 human hepatoma cells and SPC-
-1 lung adenocarcinoma cells in vitro assays [60]. To explore the
nti-metastatic/antitumor activity of T�1, it was subcutaneously
njected into BALB/c-mice, which significantly reduced liver and
ung metastases and decreased local tumor growth [6]. Moody et
l. investigated the effects of T�1 on mammary carcinogenesis in
sher rats and found that T�1 could reduce mammary carcinoma

ncidence and prolong survival time [52]. In another breast ade-
oma model, T�1 increased the survival time in female C3(1)SV40T
ntigen transgenic mice and fisher rats, but it remained to be deter-
ined whether the immune response also increased or not [53].

he antitumor activity of T�1 was most effective when the lung
denomas were small, which was based on studies proformed by
oody who gave T�1 daily to A/J mice bearing lung adenoma

53]. T�1 may fight against tumors through either stimulating the
mmune system or directly inhibiting the proliferation of tumor
ells.

T�1 in combination with other BRMs or chemotherapy agents
lso displays good effects in reducing tumor burden and pro-
ression. The plasmid–liposome complex containing the cDNA
f human T�1 and IFN �1 was injected into ICR mice, and the
ual-gene plasmid–liposome complex showed stronger inhibitory
ffect on the growth of tumor than the single gene of T�1 or
FN �1, which might attribute to indirect and additive induc-
ion of apoptosis of tumor cells by the increased expression
f T�1 and IFN �1 [12]. In DHD-K12 colorectal cancer model,
ombination of 5-FU, IL-2 and T�1 could dramatically increase
urvival rates as well as control tumor metastasis [26]. Similarly,

ompared with Carmustine (BCNU) monotherapy, intraperitoneal
njection of T�1 and BCNU to adult Long Evans rats bearing
lioblastoma could significantly lower the tumor burdens and
ncrease the cure rates [73]. Since the cascades and feedback net-

orks of immune responses, the combination of immunoactive
intraperitoneal
injection/3 days

molecules that affected different immune effector cells resulted in
a stimulation of the immune response significantly stronger than
that evoked by single treatments. This could contribute in help-
ing explain the mechanisms of the significance of combination
therapy.

2.3. Protection against oxidative damage

Several reports showed that T�1 had protective effects against
oxidative damage. T�1 had a positive influence on liver superoxide
dismutase (SOD) and glutathione peroxidase (GSH-Px) activity and
thereby limited free radical damages to hepatic tissue [5]. Similarly,
it was reported that T�1 could ameliorate streptozotocin-induced
pancreatic lesions and diabetes by reducing malondialdehyde
(MDA), increasing GSH level and enhancing the activities of both
SOD and catalase (CAT), suggesting that T�1 treatment could
greatly enhance the overall antioxidative capability of pancreatic
tissues [61].

2.4. Other functions

T�1 possesses the ability of influencing the central nervous
system [68,70]. Its modulatory effect on the excitatory synaptic
transmission in cultured hippocampal neurons was documented
[81]. Similarly, when it was combined with chemotherapeutics in
treating cancers, T�1 could prevent patients from chemotherapy-
induced neurotoxicities [2]. Moreover, T�1 has potent effects
in promoting endothelial cell migration, angiogenesis as well as
wound healing [50].

3. Clinical application of T�1 in treating cancers and
infectious diseases

3.1. Applications of T˛1 in cancers

Patients with cancer are often accompanied with significant
deficiencies in cellular immunity. In addition, standard treatments
for cancer usually induce significant depression of the immune
response. T�1 has been demonstrated to decrease tumor cell
growth both in vitro and in vivo and has therapeutic effect in sev-

eral types of cancer. In advanced lung or advanced breast cancer,
T�1 combined with chemotherapy could prevent patients from
chemotherapy-induced neurotoxicities [2]. In a Phase II multi-
center, randomized open-label study, different dose levels of T�1
in combination with Dacarbazine (DTIC) chemotherapy were given
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Fig. 2. Ways to genetic engineering expression of T�1. Production of T�1 in
prokaryotic and eukaryotic expression systems is a cost-effective approach. T�1,
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o patients with stage IV melanoma. Reported results show that the
ombination therapy tripled the overall response rate and extended
verall survival by nearly 3 months compared with patients treated
ith DTIC, combined with IFN-� [8]. More recently, in patients with
nresectable HCC, transarterial chemoembolization (TACE) com-
ined with T�1 resulted in numerically higher rates of survival
nd tumor response, including transplant candidacy, with fewer
acterial infections, than TACE alone [29].

Obviously, significant tumor growth inhibition and survival rate
ncrease were achieved in different human tumor models when
�1 was combined with other treatment modalities. It can be
oncluded that combinatorial therapies, in which T�1 represents
ne important mediator, are effective therapeutic strategy against
umors and will be the key focus for the use of T�1 in treating
ancers in the future.

.2. Hepatitis B

Chronic HBV infection is a serious clinical problem because of its
orldwide distribution and potential adverse sequelae, such as cir-

hosis and hepatocellular carcinoma [44]. T�1 has been approved
or the treatment of hepatitis B in many countries worldwide with
significantly increasing virological response over time after ther-
py [58]. Most of the studies have evaluated the efficacy of T�1 in
he treatment of HBeAg-positive and HBeAg-negative chronic hep-
titis B. For instance, administering T�1 either 0.8 mg or 1.6 mg
o 316 Japanese patients with HBeAg-positive chronic hepatitis

showed HBeAg seroconversion in 18.8% and 21.5% at 48 weeks
fter the end of treatment, respectively [37]. Similarly, administer-
ng T�1 1.6 mg to Chinese patients with HBeAg-negative chronic
epatitis B twice weekly showed a complete response, defined
s normalization of alanine transaminase (ALT) and undetectable
BV DNA by PCR assay, in 11 of 26 patients (42.3%) at 6 months
fter the end of treatment [86]. Zhang et al. searched materi-
ls from different databases and analyzed eight trials using meta
nalysis. They found that lamivudine and T�1 combination treat-
ent was particularly prominent than lamivudine monotherapy

n terms of ALT normalization rate, virological response rate and
BeAg seroconversion rate [89]. Conversely, Lee et al. [41] revealed

hat combining T�1 and lamivudine did not display a better ben-
fit to virological and biochemical response than the lamivudine
onotherapy. Maybe the small trial scale led to the divergent

esults.

.3. Hepatitis C

As a monotherapy, T�1 does not seem useful in treating HCV
nfection, which is confirmed by a randomized, double-blind,
lacebo-controlled trial [3]. However, combination therapy of T�1
nd pegylated interferon �2a (peg-IFN-�2a) could effectively sup-
ress viral replication in difficult-to-treat hepatitis C patients. In
ddition, T�1 was well tolerated with no significant adverse effects
bserved [66]. Approximately 50% of treatment-naive HCV patients
ailed to achieve a sustained virologic response (SVP) with stan-
ard peg-IFN and ribavirin therapy [21], so a triple combination
herapy with peg-IFN-�2a, ribavirin and T�1 has been developed
nd proved to be a safe [7] and effective [59] treatment option for
ifficult-to-treat HCV patients who are refractory to prior conven-
ional treatment.

.4. AIDS
Human immunodeficiency virus (HIV) specially targets cells
hat express CD4, such as macrophages, DCs and CD4+ T cells.

hen the virus becomes lymphotropic, it begins to infect CD4+

cells efficiently followed by significantly declined antibody
T�1-related fusion proteins and T�1 concatemer can be expressed in E. coli. T�1
as well as several T�1-related fusion proteins are expressed in P. pastoris. Besides,
plants are also used for the production of T�1 in the form of monomer or concatemer.

class switching. Furthermore, CD8+ T cells are not stimulated as
effectively, facilitating the escape of the virus from immune con-
trol and the collapse of the whole immune system [51]. Since
significant immune responses play an important role in the pre-
vention of infection with human HIV, it is thought that the
induction of strong immune responses especially CTL responses
against HIV-1 could be important to prevent the onset of acquired
immune deficiency syndrome (AIDS) [74]. One study has sug-
gested that combination of T�1, zidovudine (AZT) and IFN-�
resulted in a significant increase in the number and function of
CD4+ T cells and a reduction in HIV titers [27]. Another inter-
esting finding was provided by Chadwick et al. [9], who studied
the safety and efficacy of T�1 in combination with highly active
antiretroviral therapy (HAART) in stimulating immune reconsti-
tution. The results demonstrated that T�1 appeared to be very
well tolerated and could dramatically increase the levels of sig-
nal joint T cell receptor excision circles (sjTREC) in patients
with advanced HIV disease. However, longer treatment duration
of T�1 in augmenting the immune reconstitution needs further
investigation.

4. Gene expression of T�1

From the natural source, T�1 can only be obtained in tiny
quantities. To obtain larger amounts of this peptide, literally
tons of fresh frozen calf thymus tissue and acetone are required
[31]. Furthermore, heterogeneous allergens introduced by man-
ufacturing process limit its availability for research and medical
applications. Solid phase synthesis has permitted scientists to
synthesize and purify T�1 to allow human clinical trials [78,79]
with the advantages of simplicity, ease of operation, general
efficiency and lack of endotoxins and DNA contaminations. How-
ever, difficult sequences T�1 bears and the high number of
protecting groups required to assemble the peptide may give
final low yields, insufficient purity and high expenses. A recent
report revealed that combination of the side-chain anchor-
ing approach with the hydrophilicity of the totally PEG-based
resin facilitated the synthesis of T�1 in high purity and high
yields [28].

With the advancement in genetic engineering, bioactive T�1
can be expressed in prokaryotic and eukaryotic expression sys-

tems, which are cost-effective alternative approaches to produce
biotechnical drugs. These products including T�1, fusion proteins
and concatemers produced in E. coli, P. pastoris and plants were all
soluble expressed, which could escape from refolding from inclu-
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Fig. 3. Construction of the concatemer gene. A T-vector containing the T�1 gene (in red) was digested with BamHI/XhoI and BglII/XhoI respectively. When digested with BglII
and BamHI, the two fragments had identical termini and could be ligated with T4 DNA ligase subsequently forming a new sequence GGATCT, which could not be digested
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y neither BamHI nor BglII. Therefore, a plasmid containing double T�1 genes was
onstructed. Thus, the plasmid containing concatemer T˛1 gene of 4 repeats and 6
his figure legend, the reader is referred to the web version of the article.)

ion bodies (see Fig. 2). But isolation and purification of them with
high purity is difficult and applying them to clinical treatment has
ot come true. A number of studies of using genetic engineering to
ain bioactive T�1 are summarized as follows.

.1. Prokaryotic expression of T˛1

E. coli is one of the earliest and most widely used hosts for
he production of heterologous proteins [75]. It has the advan-
ages of rapid growth and expression, easy culture and high yields.
owever, E. coli is not the system of choice for expressing disul-
de rich proteins and proteins that require post-translational
odifications [17]. With the characteristics of small molecu-

ar weight and needless post-translational modifications, T�1 is
uitable to be expressed by E. coli system. Several strategies
or the expression of T�1, T�1-BRMs fusion proteins, T�1 con-
atemer and so on using E. coli expression system have been
eported.

.1.1. Expression of T˛1
Generally, small peptides are difficult to be overexpressed

irectly in E. coli since they can be quickly degraded by cellular
roteases. The use of protease-deficient host strains and fusion
ags, such as his-tag and thioredoxin can help to avoid non-specific
roteolytic degradation and facilitate purification. Following this
pproach, the synthesized human T�1 gene was inserted into pET-
8a (+) plasmid and then inductively expressed as a soluble form

n E. coli BL21, which is a protease-deficient host strain. Com-

ared with other expression systems, the BL21/pET-28a system
rovided the highest expression level of fusion protein, which
mounted to 70% of total expressed proteins [13]. Furthermore, T�1
ene was inserted into pET32b (+) and expressed with thioredoxin
n E. coli strain ER2566. After proteolytic cleavage and chemical
ucted and could not be destroyed when the concatemer T˛1 gene of 4 repeats was
ats could also be constructed [90]. (For interpretation of the references to color in

acetylation, the resultant T�1 was purified by reversed-phase high-
performance liquid chromatography (RP-HPLC) with the yield of
29 mg per litre of bacterial culture. This method is simple, cost-
effective and suitable for large-scale production of T�1 [18].

4.1.2. Expression of T˛1-BRMs fusion proteins
Since improved control of tumor growth can be observed when

tumor-bearing mice were treated with T�1 and high doses of IL-2
[46], combination therapies have performed and have been proved
to be effective in inhibiting tumor growth and in controlling infec-
tious diseases especially in the immunocompromised host. Thus,
the expression of fused molecules of T�1 and other BRMs which
have synergistic effect with T�1 was investigated. T�1 and cBLyS,
a soluble B-cell lymphocyte stimulator amplifying the humoral
response, were fused with a flexible linker sequence and expressed
in E. coli. This bifunctional lymphokine was useful in the treat-
ment of various immunodeficiency syndromes and served as an
immunomodulator to enhance the host’s response to vaccination
[69]. The fusion protein of T�1 and consensus IFN� (IFN�-con),
which was soluble and amounted to more than 20% of total proteins
of E. coli, showed higher antiviral effect than IFN� and the activity
in promoting lymphocyte proliferation was similar to commercial
T�1 [45].

4.1.3. Expression of T˛1 concatemer
It is difficult to extract and purify T�1 from the fermentation

broth since its molecular weight is small. The concatemer strategy
maybe partially solve the problem of low expression and the diffi-

culty of purification by increasing the size of the target molecule. A
concatemer T˛1 gene of 6 repeats was constructed according to
the E. coli codon usage preference, ligated with expression vec-
tor pET-22b (+) and transformed into E. coli BL21 (DE3) [90]. The
T�1 monomer was successfully released by hydroxylamine inci-
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ion after concatemer purification, and its activity in promoting
ice splenic lymphocyte proliferation was approximatively iden-

ical to the natural T�1. The intimate process of construction of the
oncatemer T˛1 gene is described in Fig. 3.

In addition, a concatemer T˛1 gene of 4 repeats was synthesized
nd successfully expressed in E. coli in a soluble form. Prelimi-
ary results demonstrated that the concatemer protein also had
he activity in stimulating mouse spleen lymphocyte proliferation
15].

.1.4. Co-expression of T˛1 and RimJ
It is a common knowledge that E. coli lacks efficient post-

ranslational modification systems for modifying exogenous
roteins. However, Fang et al. [20] found that the fusion protein
f T�1 and ribosomal protein L12 was partly N�-acetylated when
xpressed in E. coli and this modification was performed by RimJ,
hich is the N terminal acetyltransferase that modifies the riboso-
al protein S5 [85] and acts as an ribosome assembly factor [65].

his enlightens us that fully acetylated T�1 can be obtained by co-
xpressing with RimJ. However, little is known about the pathway
y which this fusion protein is N�-acetylated. The previous reports
hat the activity of none or partly N�-acetylated T�1 is similar to
he natural one [80] illustrated that N�-acetylation of T�1 could
nfluence the stability of the peptide instead of the bioactivity in
ivo.

Based on the above research findings, it can be concluded that
�1 is suitable to be expressed by E. coli expression system. To
mprove the expression efficacy, the following measures may be

eaningful: (i) choosing E. coli usage preference codons; (ii) using
ifferent promoters to regulate expression; (iii) using protease-
eficient host strains.

.2. Eukaryotic expression of T˛1

Yeasts are attractive hosts for the production of heterologous
roteins for providing post-translational modifications and gener-
ting stable cell lines via homologous recombination [16]. Some
xamples of expressing T�1 in yeast expression system are pre-
ented as follows.

Chen et al. [11] successfully constructed an effective yeast
xpression system for T�1 in which pYES2-T�1 plasmid was trans-
ormed into INVSc1 yeast host strain, and T�1 expressed by this
ystem could improve the level of CD8+ cells in BALB/c mice treated
ith cyclophosphamide in advance.

Fusion expression of T�1 and other BMRs in P. pastoris are also
eported. IFN�2b exhibits synergic effects with T�1 in the treat-
ent of hepatitis B and hepatitis C. The fusion protein of IFN�2b

nd T�1 linked by different lengths of (Gly–Gly–Gly–Gly–Ser)n
n = 1–3) were expressed in P. pastoris and exhibited both antivi-
al activity of IFN�2b and immunomodulatory activity of T�1
stimated in vitro [82]. Thymopentin (TP5) not only acts as an
mmunomodulatory factor in cancer chemotherapy, but is also a
otential chemotherapeutic agent in the human leukemia therapy
19]. However, extremely short half-life in vivo (30 s) [76] greatly
estricts its clinical applications. In this sense, a T�1–TP5 fusion
ene was synthesized, inserted into vector pGAPZ�A and expressed
n P. pastries by our research team [22]. The T�1–TP5 fusion peptide
isplayed higher activity than T�1 and TP5 in promoting the phago-
ytosis of macrophages and the proliferation of Kunming mouse
plenocytes.

Plants are also used for the production of T�1 in the form of

onomer or concatemer [55,14]. Recently, the concatemer T˛1

ene of 4 repeats was introduced and successfully expressed in
ransgenic tomatoes. The bioactivity of concatemer protein for
timulating proliferation of mice splenic lymphocytes in vitro was
tronger than that synthesized artificially or T�1 concatemer pro-
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tein expressed in the E. coli system, but the underlying reasons were
unclear and required further investigation [14].

These examples demonstrate that bioactive T�1 can be obtained
by genetic engineering. With great efforts are being made, such as
improving the quality, functionality, purity and yield of T�1 prod-
ucts, it can be expected that over the next few years they will find
their way into the clinic.

5. Conclusions

In addition to immunomodulatory activity, T�1 owns the ability
of influencing the central nervous system and regulating endocrine
system. It is very likely that due to its pleiotropic biological activi-
ties, T�1, either alone or combined with other treatment strategies,
will have a broader spectrum of applications for successful treat-
ment of various diseases in clinic. Up to now, chemical synthesis is
the only effective way to produce T�1 for clinical therapy. Genetic
engineering is an attractive alternative route of expressing bioac-
tive T�1, but at present, it offers no higher purity of T�1 compared
with chemical synthesis. Recently, gene expression of T�1 con-
catemer and fusion proteins have become a major research focus,
which are effective strategies for facilitating purification, increas-
ing production and reducing production costs. It is believed that the
rapid development of biotechnology may allow application of T�1
products obtained by genetic engineering in clinic in the future.
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