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Abstract
Enthesitis is a key manifestation of PsA and current knowledge supports the concept that it may be among the pri-

mary events in the development of this disease, as well as other forms of SpA. Patients with PsA seem to have a

different threshold to mechanical stress, which may be genetically determined. Hence patients with psoriatic dis-

ease respond pathologically with inflammation after being exposed to physiological mechanical stress. Activation of

pro-inflammatory mediators such as IL-17 and TNF-a as well as the influx of innate immune cells are key events in

the development of enthesitis in PsA. Chronic entheseal inflammation is accompanied by new bone formation,

leading to bony spurs in peripheral (entheseophytes) and axial (syndesmophytes) structures. This article reviews the

current knowledge on the mechanisms involved in the development of enthesitis in patients with PsA.

Key words: psoriatic arthritis, enthesitis, interleukin 23, interleukin 17, entheseophyte

Introduction

Reviewed in this article are the current concepts of cellu-

lar and molecular pathways that lead to enthesitis in light

of a better understanding of the clinical features of PsA

and the response to targeted anti-inflammatory treatment.

The article will discuss the nature and function of tendon

and ligament insertion sites (‘entheses’) and the pathways

that lead to inflammation of entheses (‘enthesitis’). Thus it

will highlight the role of mechanical factors as initiators of

enthesitis, the key non-immune and immune cells

involved in the process and the currently identified clinic-

ally relevant mediators of enthesitis, including IL-17, IL23,

TNF-a and prostaglandin E2 (PGE2). The article will also

address the structural consequences of enthesitis, focus-

sing on local new bone formation and the mechanisms

translating inflammation into structural responses.

Nature of entheses

Entheses are essential for locomotion, as these struc-

tures connect tendons and ligaments to the bone. They

have two main functions: to transduce mechanical

forces to the skeletal system and to confer stability [1].

Inflammation of these tendon and ligament insertion

sites (enthesitis) is a hallmark manifestation of PsA and

other forms of SpA, including axial SpA (axSpA). The im-

portance of enthesitis in PsA is acknowledged by the in-

corporation of this clinical manifestation in the core

requirements of the Classification Criteria for Psoriatic

Arthritis (CASPAR) [2]. Also, current knowledge supports

the idea that enthesitis may be the primary event in PsA

[3] and axSpA [4]. Biomechanics, PGE2-mediated vaso-

dilatation, innate immune responses and several cyto-

kines are implicated in the development of enthesitis [1].

A better understanding of its pathophysiology in recent

years has allowed for a more targeted approach when

treating patients suffering from PsA.

Entheses are typically located outside the joint, which

means that the insertion is outside the joint capsule, tack-

ling the periosteal surface. However, there are some spe-

cific joints, such as the sacroiliac, sternoclavicular and

distal interphalangeal joints, in which fibrocartilaginous

tissue—a typical feature of entheses—is a dominant
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Universitätsklinikum Erlangen, Erlangen, Germany

Submitted 23 October 2019; accepted 3 December 2019

Correspondence to: Georg Schett, Department of Internal Medicine 3
and Institute for Clinical Immunology, University of Erlangen-
Nuremberg, Ulmenweg 18, Erlangen 91054, Germany.
E-mail: georg.schett@uk-erlangen.de

R
E

V
IE

W

VC The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Rheumatology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Rheumatology
Rheumatology 2020;59:i10–i14

doi:10.1093/rheumatology/keaa039



feature of the joint itself. Such structures are often

involved in PsA and other forms of SpA. A fibre-rich por-

tion, with scattered fibroblasts, as well as areas with

chondrocytes and cartilaginous matrix, composes the

entheses [5, 6]. This unique structure allows for the

smooth transduction of mechanical forces to the bone as

well as stable anchorage of tendons and muscles to the

bone. Entheses are sometimes referred to be an ‘organ’,

as they possess a unique microenvironment [7]. Hence

resident mesenchymal cells with the potential to differen-

tiate into chondrocytes or osteoblasts are part of enthe-

seal structures [8, 9] in the same way as ‘resident’

immune cells, such as cd T cells and type 3 innate

lymphoid cells can be found enriched in entheseal struc-

tures [10, 11]. In disease, these cells have been impli-

cated in triggering inflammation.

Mechanical stress as a trigger for
enthesitis

Mechanical stress is often the triggering event in the de-

velopment of enthesitis [12]. In healthy individuals,

enthesitis may develop after repetitive trauma, such as

in the case of work or sports activities. A typical ex-

ample is lateral epicondylitis, the so-called tennis elbow.

This condition usually resolves spontaneously after

avoidance of the repetitive movement. For reasons not

completely understood and potentially involving genetic

factors, patients with PsA and other forms of SpA have

a lower threshold for the development of enthesitis. In

such patients, long-standing inflammation may be trig-

gered by mechanical stress or trauma [13]. Seminal

studies from Cambre et al. [14], for instance, showed

that mechanical stress can trigger the local expression

of chemokines such as CXCL1 and CCL2, which allow

the influx of innate immune cells to the sites of stress.

Hence anatomical localization of the disease in patients

with PsA and other forms of SpA could be determined,

at least in part, by entheseal sites in conjunction with in-

dividual mechanical stress to such sites. Innate immune

activation upon the recognition danger signals (disease-

associated molecular patterns) by the immune system

appears to be a central feature for understanding the

rapidity of onset of enthesitis as well as its chronicity

when such danger signals are not adequately controlled

or removed [15]. Disease-associated molecular patterns

may be built by mechanical, infectious or other triggers

in the context of PsA and SpA and are likely to repre-

sent the early events that lead to the activation of a cas-

cade of inflammatory mediators that ultimately results in

the full-blown picture of enthesitis.

Key mediators of inflammation in
enthesitis

PGE2 is an early mediator of enthesitis. The main proof

that PGE2 plays a crucial role in enthesitis is the fact

that NSAIDs are effective in treating this condition.

Paulissen et al. [16] showed a critical role for the

cyclooxygenase-2/PGE2 pathway in stimulating produc-

tion of IL-17 by T cells, which may occur independently

from IL-23. PGE2 appears to be important for mounting

inflammation in the entheses, as it promotes vasodila-

tion, which helps recruit neutrophils and other innate im-

mune cells from the bone marrow to the entheseal sites,

most likely through using the highly abundant transcor-

tical blood vessels as shortcuts [17, 18].

IL-23, which is produced by macrophages and den-

dritic cells, has been implicated in the pathogenesis of

PsA. Its role in enthesitis was elucidated in an elegant

study published by Sherlock et al. [19]. In their study,

the authors identified entheseal resident cells, which are

CD4�CD8� T cells that express the IL-23 receptor. In

the presence of IL-23, these activated cells promote the

development of entheseal inflammation and local bone

remodelling in a mouse model through the production of

several effector mediators, including IL-22, IL-17 and

TNF [20]. Interestingly, in these animals, inflammation

can also be detected at other exposed mechanical

spots in the body, such as the aortic root as well as the

ciliary body in eye sites, which are sometimes involved

in patients with SpA [19]. While this study showed that

IL-23 can lead to the development of enthesitis, the role

of T cells in this process remains to be defined, as

enthesitis can also develop in models devoid of T cells

[14]. Hence IL-23-responsive cells other than T cells

may also play a role in the development of enthesitis.

Group 3 innate lymphoid cells (ILC3s) play a central role

in barrier tissues such as the skin and gut, which are

often involved in PsA and other forms of SpA. These

cells also produce IL-17A and were found in interspin-

ous ligament of healthy donors [11]. Furthermore, ILC3

may be important in linking skin and joint disease, as a

higher number of circulating ILC3s have been found in

patients with active PsA and are linked to a higher bur-

den of joint disease in patients with PsA [21].

A distinct group of inflammatory cytokines is consid-

ered to enhance inflammation in the entheses. Notably,

mesenchymal cells express receptors for IL-17, TNF-a
and IL-22 [22–24]. IL-17 is considered to represent a

key amplifier of the inflammatory response in the enthe-

ses, as it initiates the synthesis of several other inflam-

matory mediators such as granulocyte-macrophage

colony stimulating factor, PGE2 and IL-8, which en-

hance the recruitment of, for example, neutrophils to the

site of inflammation, which in turn increase the inflam-

matory cascade through the release of proteases and

reactive oxygen species [25, 26]. As several immune cell

lineages described to be a major source of IL-17, such

as cd T cells [10, 27] and ILC3 [11, 28], reside in enthe-

seal structures, it is conceivable that IL-17 is locally pro-

duced in the entheses and allows site-specific attraction

of effector cells of inflammation. While most studies to

date have focussed on IL-17A as the main mediator trig-

gering enthesitis within the IL-17 family of cytokines, it

may well be that other forms, in particular IL-17F, exert

similar actions and augment inflammation as well.
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Furthermore, clinical observations suggest that TNF-a
represents an important effector cytokine in enthesitis.

Apart from that, mechanistic studies with transgenic

mice overexpressing TNF-a showed that TNF-a can in-

duce an SpA-like phenotype in mice, which showed fea-

tures of enthesitis and did depend on TNF receptor 1 in

mesenchymal cells [29]. These data suggest that TNF-a,

like IL-17, may stimulate local mesenchymal cells to

produce inflammatory mediators, which are required for

initiating and maintaining enthesitis.

Structural consequences of enthesitis

Next to pain and impaired function, new bone formation

is the key feature of chronic enthesitis [30]. Depending

on which structures are involved, local bony overgrowth

can lead to peripheral entheseophytes (e.g. calcaneal

spur) or the formation of syndesmophytes in the spine.

New bone formation in the context of enthesitis is

thought to be initiated by resident mesenchymal cells,

which proliferate and then differentiate into chondro-

blasts and osteoblasts, leading to periosteal bone ap-

position [8, 9, 31]. Several factors involved in the

process of enthesitis have been shown to mediate bone

remodelling in the context of response to stress. Hence

PGE2 is a strong inducer for osteoblast differentiation

[32], but IL-17 has also been shown to augment mesen-

chymal responses associated with bone repair [33, 34].

Finally, IL-22, which is a cytokine produced in conjunc-

tion with IL-23 activation, has been shown to play a role

in new bone formation [24]. Bone responses in the con-

text of enthesitis are specific local processes that are

different from overall bone remodelling. In this context, it

needs to be mentioned that cytokines like IL-17 and IL-

23 also have profound osteoclastogenic properties [35,

36], which explains systemic bone loss in the context of

PsA and SpA [37, 38]. As such, they also appear to re-

visit molecular expression programs that are initiated

during the process of fracture repair, in which new bone

has to be formed rather rapidly [39]. For instance, robust

activation of Wnt and BMPs has been shown to occur

during bony spur formation, factors that are essentially

required to form new bone during fracture repair [40,

41]. While such repair processes can be considered as

the body’s response to entheseal inflammation and a

potential attempt to stabilize such structures during in-

flammation, the formation of new bone can also repre-

sent a pathology in itself, as it can lead to loss of

function of ‘flexible’ interosseous connections such as

joints or intervertebral discs, which are then fixed by

bony ankylosis.

Future directions

While some initial interesting concepts about the patho-

physiology of enthesitis have been established in recent

years, there is still a substantial lack of knowledge about

this important disease process. For instance, it is still

unclear why entheses are highly prone to inflammation

in patients with PsA and in patients with other forms of

SpA. As enthesitis often develops in subjects without

systemic diseases, additional potential genetically based

enhancers must exist to explain the high disease burden

of enthesitis in this patient group. Also, it is unclear

whether the link between inflammation and structural

responses requires a specific molecular pattern of in-

flammation or is mostly dependent on the degree and

duration of enthesitis, independent of its molecular fea-

tures. Notably, little is known about the molecular and

cellular process going on in human enthesitis, as tissue

access is limited and therefore most of the knowledge

to date stems from either cadaveric material or from ani-

mal models of enthesitis. Hence more in-depth molecu-

lar studies on this interesting feature of PsA are needed.
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