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 Abstract: Aims and Objectives: QSPR models establish relationships between different types of structural 

information to their observed properties. In the present study the relationship between the molecular de-

scriptors and quantum properties of cycloalkanes is represented.  

Materials and Methods: Genetic Algorithm (GA) and Multiple Linear Regressions (MLR) were success-

fully developed to predict quantum properties of cycloalkanes. A large number of molecular descriptors were 

calculated with Dragon software and a subset of calculated descriptors was selected with a genetic algorithm 

as a feature selection technique. The quantum properties consist of the heat capacity (Cv)/ Jmol
-1

K
-1

  

entropy(S)/ Jmol
-1

K
-1

 and thermal energy(Eth)/ kJmol
-1

 were obtained from quantum-chemistry technique at 

the Hartree-Fock (HF) level using the ab initio 6-31G
*
 basis sets.  

Results: The Genetic Algorithm (GA) method was used to select important molecular descriptors and then 

they were used as inputs for SPSS software package. The predictive powers of the MLR models were dis-

cussed using Leave-One-Out (LOO) cross-validation, leave-group (5-fold)-out (LGO) and external predic-

tion series. The statistical parameters of the training and test sets for GA–MLR models were calculated.  

Conclusion: The resulting quantitative GA-MLR models of Cv, S, and E
th
 were obtained:[r

2
=0.950, Q

2
=0.989, 

r
2
ext=0.969, MAE(overall,5-flod)=0.6825 Jmol

-1
K

-1
], [r

2
=0.980, Q

2
=0.947, r

2
ext=0.943, MAE(overall,5-flod)=0.5891Jmol

-1
K

-1
], 

and [r
2
=0.980, Q

2
=0.809, r

2
ext=0.985, MAE(overall,5-flod)=2.0284 kJmol

-1
]. The results showed that the predic-

tive ability of the models was satisfactory, and the constitutional, topological indices and ring descriptor 

could be used to predict the mentioned properties of 103 cycloalkanes.  
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1. INTRODUCTION  

Cycloalkanes are types of alkanes that have one or more 
rings of carbon atoms in their structure. The physical proper-
ties of cycloalkanes are similar to those of alkanes, but they 
have higher boiling points, melting points and higher densi-
ties. Cycloalkanes are non-polar, and they interact only by 
weak London forces. They can also be used for many differ-
ent purposes such as motor fuel, natural gas, petroleum gas, 
kerosene, diesel, and many other heavy oils. Generally, the 
melting point, the boiling point and the density of cycloal-
kanes increase as the number of carbons increases. This trend 
occurs because of the greater number of bonds that are in higher 
membered ring, thus making the bonds harder to break. They 
have higher London Dispersion forces because the ring shape 
allows for a greater area of contact. Ring strain also causes cer-
tain cycloalkanes to be more reactive [1, 2]. 

An important task is to predict biological activities, as 
well as toxicological or physicochemical properties of chem-
ical compounds from chemical structure data. This domain is  
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Arak Branch, Islamic Azad University, P.O. Box 38135-567, Arak, Iran,  
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usually named quantitative structure activity /property rela-
tionship (QSAR/QSPR) and is highly related for example in 

drug design [3-5].
 

QSAR and QSPR studies are unquestionably of great im-

portance in Physical, Analytical, Biochemistry, Organic and 
Inorganic chemistry. The aim of these studies is to convert 

searches for compounds with the required properties based on 
chemical intuition and experience into a mathematically quanti-
fied and computerized form [6, 7]. QSPR models are obtained 

through analyzing and calculating the correlation between the 
property and a variety of structure information of compounds. 

The graph theoretical and topological aspects have been 
used to predict activity coefficients of molecular interaction 

in binary liquid mixtures of non-electrolytes [8]. 

Some thermodynamic properties such as molar excess 

volumes and molar excess enthalpies of butyl acetate with 

cyclohexane, benzene and toluene in terms of graph theoreti-
cal approach have been analyzed [9,10]. 

Molecular descriptors, tightly connected to the concept of 
molecular structure, play a fundamental role in scientific 
research, being the theoretical core of a complex network of 
knowledge. Indeed, molecular descriptors are based on sev-
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eral different theories, such as graph theory, quantum-
chemistry, algebraic topology, information theory, organic 
chemistry, and so on, and are used to model several different 
properties of chemicals in scientific fields such as toxicolo-
gy, analytical chemistry, physical chemistry, and medicinal, 
pharmaceutical, and environmental chemistry [11, 12].

 

For the use of the molecular descriptors, knowledge of 
chemoinformatics, chemometrics, statistics and the princi-
ples of the QSPR approaches is necessary [13]. 

The new Neuraminidase inhibitors with the cyclohexene 
scaffold were investigated using molecular dynamics tech-
niques, and molecular docking. Molecular docking was used 
to confirm the built 3D- QSAR models of enzyme-inhibitor 
system [14]. 

For modeling and predicting the octane number of al-
kanes and cycloalkanes, Topological Equivalents (TEs) have 
been used [15].

 

The boiling points of 343 hydrocarbons (160 paraffins 
and 183 cycloalkanes) were correlated with three new topo-
logical indices, VDI (vertex degree-distance index), OEI 
(odd-even index), and RDI (ring degree-distance index) 
based on Vertex, distance, and ring using multiple regression 
models that were constructed [16].  

Excess Gibbs free energies, enthalpies, volumes and 
comprehensibility of binary mixtures of cycloalkanes have 
been investigated [17, 18]. 

QSAR models were applied by using quantum chemical 
descriptors to predict the toxicity -logEC50 and -logLC50 of 
28 alkyl cycloalkane-carboxylates [19, 20]. 

QSPR models to predict Boiling Point (Bp) of 106 cyclo-
alkanes based on total and local quadratic indices have been 
researched. The quality of the models was determined by 
examining the statistical parameters of external prediction 
series and cross-validation procedures (leave-one-out and 
leave-group (5-fold)-out) [21]. 

The relationship between the Monte Carlo method, as the 
molecular descriptor and vapor pressure at 298.15 K of 84 
hydrocarbons (63 alkanes and 21 cycloalkanes) using the van 
der Waals (vdW) surface area has been studied [22].

 

However, there has only been limited investigation of the 
quantitative structure-property relationship of cycloalkanes. 

In the present study, QSPR mathematical models have 
been developed to predict the thermal energy, kJ mol

-1
, heat 

capacity, Jmol
-1

K
-1

and entropy, Jmol
-1

K
-1

 of 103 cycloal-
kanes using GA-MLR method based on molecular de-
scriptors calculated from the molecular structure alone. 

2. MATERIALS AND METHODS 

The thermal energy, heat capacity and entropy of 103 cy-
cloalkanes were taken from the quantum mechanics method-
ology with the Hartree-Fock (HF) level, using the ab initio  
6-31G

*
 basis sets. Various cycloalkanes under study are 

listed in Table 1. These data were randomly divided into a 
training set and an extermal test set consisting of 83, 20 data 
point, respectively. In order to calculate the theoretical de-
scriptors, the molecular structures were constructed with the 
aid of Gauss View 5 and Gaussian 98 programs and then the 

molecular geometries of compounds were better optimized 
by dragon package 2.1. A total of 1502 theoretical descriptor 
were calculated for each compound in the data set using 
Dragon software. The most relevant descriptors are needed 
to be selected from the remained descriptors. This is the 
prominent problem in QSPR studies to choose the minimum 
number of descriptors with high prediction ability of the 
model. Conventional variable selection methods like step-
wise regression are based upon a single solution or a few 
solutions. To overcome this problem, a Genetic Algorithm 
(GA) designed for the selection of variables was used. GA is 
a stochastic method used to solve optimization problems 
defined by fitness criteria, applying the evolution hypothesis 
of Darwin and different genetic functions, i.e. crossover and 
mutation. In this work, the number of molecular descriptors 
was reduced by genetic algorithm analysis and the backward 
stepwise regression method. 

We used Multiple Linear Regression (MLR) technique 
for a linear relationship between descriptors and quantum 
properties (heat capacity, entropy and thermal energy) of 103 
cycloalkanes. The Genetic Algorithms (GA)-MLR regres-
sion are written in MATLAB (version 2010a) environment. 
In the following, MLR models were performed by the statis-
tical package for social (SPSS) software (version 20). 

3. RESULTS AND DISCUSSION 

3.1. Statistical Analysis 

Structural-property models were generated using the 
MLR procedure of SPSS version 20. The entropy, thermal 
energy, and heat capacity as the dependent variable and drag-
on molecular descriptors as the independent variable were 
used. The models were assessed with a correlation coefficient 
(r), coefficient of determination (r

2
), adjusted correlation coef-

ficient (r
2
adj), Fisher ratio (F), Root Mean Square Error 

(RMSE), Durbin-Watson statistic (D) and Significance (Sig). 

Several linear QSPR models have been created that con-
tain 3-7 descriptors. The suitable descriptors for predicting 
the above mentioned properties have been selected by using 
genetic algorithm and Dragon software. 

 The selection of significant descriptors, which relate the 
property data to the molecular structure, is an important step 
in QSPR modelling. Selection of the significant structural 
descriptors among the 1502 ones was performed as follows: 
all descriptors with same values for all molecules were omit-
ted, and one of the two descriptors having a pairwise correla-
tion coefficient above 0.9 (R > 0.9) was removed. Finally, 
233 molecular descriptors remained. 

The best molecular descriptors were chosen using the SPSS 
software which is based on the multivariate backward stepwise. 

3.2. QSPR Models for the Entropy 

Table 2, shows the regression coefficient and statistical 
parameters of models for the entropy of 83 cycloalkanes.  It 
can be seen from Table 2, that five descriptors are used in the 
MLR model. These descriptors are: REIG, VE2_A, Mor15u, 
Vu, and H4u. The regression parameters of the best model of 
five dragon molecular descriptors are collected in Equation 
(1). 
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Table 1. The name of compounds of cycloalkanes used in this study. 

S. No. Compound S. No. Compound S. No. Compound 

1 1,1,2,2- tetramethylcyclopentane 36   1,3-diethylcyclohexane 71 1-methyl-3- ethylcyclohexane 

2 1,1,2,2-tetramethylcycopropane 37 1,3-diethylcyclopentane 72 1-methyl-3- propylcyclohexane 

3 1,1,2,3-tetramethylcyclopentane 38 1,3-dimethyl-2- ethylcyclopentane 73 1-methyl-3- propylcyclohexane 

4 1,1,2,3-tetramethylcyclopropane 39 1,3-dimethyl-4- ethylcyclopentane 74 1-methyl-4- ethylcyclohexane 

5 1,1,2,4-tetramethylcyclopentane 40 1,3-dimethylcyclohexane 75 1-methyl-4- propylcyclohexane 

6 1,1,2-trimethyl-4-ethylcyclopentane 41 1,3-dimethylcyclopentane 76 1-propylcyclohexane 

7 1,1,2-trimethylcyclobutane 42 1,4-diethylcyclohexane 77 1-propylcyclopentane 

8 1,1,2-trimethylcyclohexane 43 1,4-dimethylcyclohexane 78 2-cyclopropylbutane 

9 1,1,2-trimethylcyclopentane 44 1-cyclopentyl-1-methylbutane 79 2-methyl-1- propylcyclopropane 

10 1,1,3,4-tetramethylcyclopentane 45 1-cyclopentyl-2-methylbutane 80 buthylcyclopentane 

11 1,1,3-trimethylcyclohexane 46 1-cyclopentyl-3-methylbutane 81 cyclobutane 

12 1,1-diethylcyclohexane 47 1-cyclopropyl-2-methylbutane 82 cyclodecane 

13 1,1- diethylcyclopentane 48 1-cyclopropylbutane 83 cycloheptane 

14 1,1-diethylcyclopropane 49 1-ethyl-1,2- dimethylcyclopropane 84 cyclohexane 

15 1,1-dimethyl-2-ethylcyclopentane 50 1-ethyl-1-methylcyclobutane 85 cyclononane 

16 1,1-dimethylcyclohexane 51 1-ethyl-2,2- dimethylcyclopropane 86 cyclooctane 

17 1,1-dimethylcyclopentane 52 1-ethyl-2,3- dimethylcyclopropane 87 cyclopentane 

18 1,1-dimethylcyclopropane 53 1-ethyl-3-methylcyclobutane 88 cyclopropane 

19 1,2,2,3-tetramethylcyclopentane 54 1-isobutyl-4-methylcyclohexane 89 cycloundecane 

20 1,2,3,4-tetramethylcyclopentane 55 1-isopropyl-1- methylcyclohexane 90 ethylcyclohexane 

21 1,2,3-trimethyl-4- ethylcyclopentane 56 1-isopropyl-1- methylcyclopentane 91 ethylcyclopentane 

22 1,2,3-trimethylcyclobutane 57 1-isopropyl-1- methylcyclopropane 92 ethylcyclopropane 

23 1,2,3-trimethylcyclohexane 58 1-isopropyl-2- methylcyclohexane 93 isobuthylcyclohexane 

24 1,2,3-trimethylcyclopentane 59 1-isopropyl-2- methylcyclopentane 94 isobuthylcyclopentane 

25 1,2,4-trimethyl-3- ethylcyclopentane 60 1-isopropyl-2- methylcyclopropane 95 isopropylcyclobutane 

26 1,2,4-trimethylcyclohexane 61 1-isopropyl-3-methylcyclohexane 96 isopropylcyclohexane 

27 1,2-diethylcyclohexane 62 1-isopropyl-3- methylcyclopentane 97 isopropylcyclopentane 

28 1,2diethylcyclopentane 63 1-isopropyl-4- methylcyclohexane 98 methylcyclobutane 

29 1,2-diethylcyclopropane 64 1-methyl-1-ethylcyclohexane 99 methylcyclohexane 

30 1,2-dimethyl-1- ethylcyclopentane 65 1-methyl-1-propylcyclohexane 100 methylcyclopentane 

31 1,2-dimethy-3-ethylcyclopentane 66 1-methyl-1-propylcyclopentane 101 methylcyclopropane 

32 1,2-dimethylcyclohexane 67 1-methyl-1-propylcyclopropane 102 pentylcyclopentane 

33 1,2-dimethylcyclopentane 68 1-methyl-2-ethylcyclohexane 103 propylcyclobutane 

34 1,2-dimethylcyclopropane 69 1-methyl-2-ethylcyclopentane - - 

35 1,3,5-trimethylcyclohexane 70 1-methyl-2-propylcyclopentane - - 
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Table 2. Statistical parameters of the models calculated with the SPSS software for entropy, J mol
-1

 K
-1

. 

Model Independent Variable r r
2
 r

2
adj RMSE F 

1 

REIG (first eigenvalue of the R matrix) 

Vi(V total size index / weighted by  

ionization potential) 

Mor15u(Signal 15 / unweighted), H4u(H 

autocorrelation of lag 4/unweighted), Vu 

(V total size index/unweighted),  VE2_A  

(Average eigenvector coefficient sum from 

adjacency matrix), RARS( R matrix  

average row sum) 

0.995 0.991 0.990 0.4105 923.223 

2 REIG, Mor15u, H4u, Vu, VE2_A, RARS 0.995 0.991 0.990 0.4108 1.075×103 

3 REIG, Mor15u, H4u, Vu, VE2_A 0.995 0.991 0.990 0.4133 1.275×103 

r= Correction coefficient. 
r2= Coefficient of determination. 

r2
adj= Adjusted correlation coefficient. 

F= Fisher Ration. 

RMSE= Root mean sequare error. 

S/J mol
-1

 K
-1

 =620.649-226.340(VE2_A)+14.917(Mor15u)+ 
2.487(Vu)-10.023(H4u)-215.786(REIG)                            (1) 

n =83, r=0.995,  r
2
=0.991, r

2
adj =0.990,  F=1.275×10

3
, D= 

1.947,  Sig =0.000,  RMSE=0.4133 

3.3. QSPR Models for the Thermal Energy 

Table 3 shows the regression coefficients and statistical 
factors of models for the thermal energy of 83 cycloalkanes. 
The best linear model for the thermal energy includes three 
molecular-descriptors SRW06, Mor01m, and MLOGP2. The 
regression parameters of the best model of the three molecu-
lar descriptors are collected in Equation (2). 

Eth / kJ mol
-1

=86.007-0.045(SRW06)-3.707(Mor01m) +50. 
304(MLOGP2)                                                                    (2) 

n =83,  r=1.000,  r
2
=1.000,  r

2
adj =1.000,  F=274×10

3
,  D 

= 1.786,  Sig =0.000,  RMSE=0.1409  

3.4. QSPR Models for the Heat Capacity  
Table 4 shows the regression coefficients and statistical 

parameters of models for the heat capacity of 83 cycloal-
kanes. It can be seen in Table 4 that six descriptors are used 
in the suitable MLR model. These descriptors are: R3p, 
MLOGP, RTp, ALOGP, ALOGP2, and R3e+. 

The regression parameters of the best model of the six 
molecular descriptors are collected in Equation (3). 

Cv/J mol 
-1

K
-1

 =-75.858+88.134(R3e+)-32.205(R3p)+ 
1.445(RTP)+86.583(MLOGP)- 46.681(ALOGP)+3.582(AL 
OGP2)                                               (3) 

n =83, r =0.999, r
2
 =0.999, r

2
adj =0.998,  F= 8160.158, D= 

1.339, Sig =0.000, RMSE= 0.1192 

The results of the entropy, thermal energy and heat ca-
pacity are very satisfactory. 

In this study to find the best model to predict the proper-
ties mentioned, we will use the following sections. 

3.5. Multicollinearity 
In statistics, multicollinearity (also collinearity) is a phe-

nomenon in which one-predictor variable in a multiple re-

gression model can be linearly predicted from the others with 
a substantial degree of accuracy. Also, multicollinearity is a 
state of very high inter-correlations or inter-associations 
among the independent variables. It is therefore a type of dis-
turbance in the data, and if present in the data the statistical 
inferences made about the data may not be reliable [23].

 

Multicollinearity can be detected with the help of toler-
ance and its reciprocal, called variance inflation factor (VIF). 
If the value of tolerance is less than 0.2 or 0.1 and, simulta-
neously, the value of VIF 10 and above, then the multicollin-
earity is problematic. 

In all our final models, the multicollinearity has existed, 
because the values of correlations between independent vari-
ables are near to one and VIFs value are not between 1 and 
10 (Tables 5-7).  

To study the correlation between the molecular de-
scriptors in the models 1 - 3, we used SPSS program to ob-
tain the Pearson coefficient correlation and collinearity sta-
tistics. The results of this study are recorded in Tables 5-7. 

For Equation (1), the Pearson correlation between REIG 
and VEA2 descriptors is close to unity, and VIF for VEA2 
and Vu are bigger than 10 (Table 5), therefore there is a line-
arity between these descriptors. After removing REIG from 
this model, we corrected Equation (1) as follows: 

 S/J mol
-1

 K
-1

 = 438.668 - 364.129 VEA2 + 14.262Mor15u + 

3.389 Vu -8.312 H4u                                                           (4) 

n =83,  r =0.990,  r
2
 =0.980,  r

2
adj =0.979,  F = 652.102,  

D = 1.757, Sig =0.001, RMSE=0.5639 

For the thermal energy (Eq. (2)), the Pearson correlation 
between MLOGP2 and Mor01m descriptors is close to unity, 
and VIF for these descriptors are bigger than 10 (Table 6), 
therefore there is a linearity between them. After removing 
MLOGP2 from this model, we corrected Equation (2) as 

follows: 

Eth / kJ mol
-1

 = 288.706 + 0.116 SRW06 + 8.170 Mor01m (5) 

n =83, r =0.990, r 
2
 =0.980,  r

2
adj =0.980,  F =1974.355,  

D = 1.684, Sig=0.000, RMSE=2.0137 
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Table 3. Statistical parameters of the models calculated with the SPSS software for thermal energy, kJ mol
-1

. 

Model Independent Variable r r
2
 r

2
adj RMSE F 

1 

MLOGP2(squared Moriguchi oc-

tanol-water partition coeff. (logP^2)), 

Vi (V total size index / weighted by 

ionization potential), SRW08 (Self-

returning walk of order 08), 

Mor02m( signal 02 / weighted by 

mass), Mor01m ( Signal 

01/Weighted by mass), SRW06 

(Self-returning walk of order 06) 

1.000 1.000 1.000 0.1414 136×103 

2 
MLOGP2, SRW08, Mor02m, 

Mor01m, SRW06 
1.000 1.000 1.000 0.1407 165×10

3 

3 
MLOGP2, Mor02m, Mor01m, 

SRW06 
1.000 1.000 1.000 01405 207×10

3 

4 MLOGP2, Mor01m, SRW06 1.000 1.000 1.000 0.1409 274×103 

r= Correction coefficient. 
r2= Coefficient of determination. 

r2
adj= Adjusted correlation coefficient. 

F= Fisher Ration. 

RMSE= Root mean sequare error. 

Table 4. Statistical parameters of the models calculated with the SPSS software for heat capacity, J mol 
-1

K
-1

. 

Model Independent Variable r r
2
 r

2
adj RMSE F 

1 

F02[C-C]( Frequency of C - C at 

topological distance 2), R3p( R 

autocorrelation of lag 3/weighted 

by atomic polarizabilites), RTp (R 

total index/Weighted by 

polanizability) 

R3e+(R maximal autocorrelation of 

lag 3/Weighted by Sanderson elec-

tronegativity), ALOGP2(squared 

Ghose-Crippen octanol-water parti-

tion coeff. (logP^2), 

MLOGP(Moriguchi octanol-water 

partition coeff. (logP), ALOGP 

(Ghose-Crippen octanol-water 

partition coeff. (logP) 

0.999 0.999 0.998 0.1194 6980.252 

2 
ALOGP2, R3p, R3e+, RTp, 

MLOGP, ALOGP 
0.999 0.999 0.998 0.1192 8160.158 

r= Correction coefficient. 
r2= Coefficient of determination. 

r2
adj= Adjusted correlation coefficient. 

F= Fisher Ration. 

RMSE= Root mean sequare error. 

Table 5. Correlation between the molecular descriptors (Eq. (1)). 

Pearson Correlation Collinearity Statistical 
Corrected 

Model 

- VEA2 Mor15u Vu H4u REIG Tolerance VIF VIF 

VEA2 1 0.446 -0.883 -0.735 0.942 0.108 9.265 4.751 

Mor15u - 1 -0.508 -0.425 0.475 0.734 1.362 1.355 

Vu - - 1 0.763 -0.957 0.078 12.862 5.518 

H4u - - - 1 0.789 0.374 2.671 2.504 

REIG - - - - 1 0.039 25.735 - 
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Table 6. Correlation between the molecular descriptors (Eq. (2)). 

Pearson Correlation - Collinearity Statistical 

- SRW06 Mor01m MLOGP2 Tolerance VIF VIF 

SRW06 1.000 0.599 0.630 0.539 1.856 1.560 

Mor01m - 1.000 0.994 0.010 99.312 1.560 

MLOGP2 - - 1.000 0.009 105.491 - 

Table 7. Correlation between the molecular descriptors (Eq. (3)). 

Pearson Correlation Collinearity Statistical Corrected Model 

- R3e+ R3p RTp MLOGP ALOGP ALOGP2 Tolerance VIF VIF VIF 

R3e+ 1 -0.83 -0.89 -0.916 -0.786 -0.713 0.076 13.109 12.847 5.275 

R3p - 1 0.883 0.795 0.736 0.678 0.109 9.139 7.327 4.720 

RTp - - 1 0.964 0.914 0.880 0.025 39.716 32.411 7.411 

MLOGP - - - 1 0.941 0.900 0.018 54.956 41.225 - 

ALOGP - - - - 1 0.989 0.006 154.124 - - 

ALOGP2 - - - - - 1 0.009 110.155 9.369 - 

 

For the heat capacity (Eq.(3)), the Pearson correlation be-
tween ALOGP2 and ALOGP descriptors  are close to unity, 
and VIF for some descriptors such as ALOGP, ALOGP2 and 
MLOGP are bigger than 10 (Table 7), therefore there is a 
linearity between them. After removing ALOGP from this 
model, we corrected Equation (3) as follows: 

Cv/J mol -1K-1 = 107.001 -690.541 R3e+ -135.596 R3p + 
25.536 RTp                                                                          (6) 

n=83,  r =0.975,  r 
2
 =0.950,  r

2
adj =0.948,  F = 652.102,  

D = 1.447,  Sig =0.000,  RMSE=0.6876 

3.6. Validation 

Validation is the process of evaluating software at the 
end of the development process to determine whether soft-
ware meets the customer expectations and requirements. It is 
a statistical methodology used to ensure whether the model 
created is a good model or a poor model.  

Validation is needed to assess the predictive ability and 
statistical significance of the models [24-27].

 

In purpose to create and test models, data set of com-
pounds randomly separated into a training set of compounds 
(80%), that was applied to made model (an internal method) 
and a prediction set of compounds (20%), that was applied to 
test the made model (an external method). Statistical factors 
such as r, r

2
, r

2
adj, F and RMSE, of these models for training 

and test sets of the heat capacity, Cv/J mol
-1

K
-1

 entropy, S/J 
mol

-1
K

-1
 and thermal energy, Eth/kJ mol

-1
are listed in Table 8. 

3.6.1. Cross-Validation 

Cross-validation (CV) is a common method for internally 
validating a QSPR model [28]. CV process repeats the re-
gression many times on subsets of one molecule (leave one 

out, LOO) or more than one molecule (leave many out, LMO 
and leave group out, LGO).  

Many authors consider high Q
2
 CV values as indicator or 

even as the ultimate proof of the high predictive power of a 
QSAR/QSPR model [29]. In recent years, some authors 
demonstrated that a high value of Q

2
 LOO appears to be nec-

essary but not a sufficient condition for the model to have a 

high predictive power [21, 30, 31]. 

In the present paper for the predictive power of the mod-
el, squared cross-validation coefficient for leave -one- out 
(Q

2
LOO), leave-group (5-fold)-out (LGO), and external vali-

dation through test set were used. The data set of 103 cyclo-
alkanes was randomly separated into a training set of 83 
compounds, and test set of 20 compounds. 

The Q
2

LOO values of the entropy, thermal energy, and 
heat capacity models (Eqs. (4-6)) calculated 0.947, 0.809, 
and 0.989 respectively. 

Also, the predictive ability and stability of the developed 
models were assessed using the five-fold cross-validation 
technique. First, the training set was randomly splitted into 
five groups of approximately equal size (20%). Each time, 
one of the five subsets was used as the validation set, and the 
model was trained with the remaining four subsets (80% of 
the data). This procedure was repeated five times until each 
observation has been left out at least once [32-34]. Then, the 
average error across all five trials was computed. The predic-
tive performance of the models was measured through the 
Mean Absolute Error (MAE). The MAE for Equations (4-6) 
had an overall MAE of 0.5891J/molK(0.7256, 0.5023, 
0.5526, 0.5275 and 0.6375), 2.0284 kJ/mol (2.1201, 2.2565, 
1.7523, 1.9512 and 2.0241), and 0.6825 J/molK(0.7254, 
0.6323, 0.6757, 0.7768 and 0.6025) respectively.  
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Table 8. Statistical parameters obtained by the GA- MLR model for the entropy, thermal energy and heat capacity for training 

and test sets (Eqs. 4-6). 

Data Set Property n r r
2
 r

2
adj RMSE D F Sig 

Training S 83 0.990 0.980 0.979 0.5639 1.757 652.102 0.001 

Test S 20 0.971 0.943 0.928 0.8086 1.877 62.387 0.000 

Training Eth 83 0.990 0.980 0.980 2.0137 1.684 1974.355 0.000 

Test Eth 20 0.993 0.985 0.984 0.9568 1.737 573.343 0.000 

Training Cv 83 0.975 0.950 0.948 0.6876 1.447 652.102 0.000 

Test Cv 20 0.984 0.969 0.962 0.4112 1.776 133.471 0.000 

r= Correction coefficient. 
r2= Coefficient of determination. 

r2
adj= Adjusted correlation coefficient. 

F= Fisher Ration. 

RMSE= Root mean sequare error. 
D= Durbin-Watson Statistic 

Sig= Significance 
N= number 

 

Fig. (1). Residuals (ei) plotted against the observed entropy of cycloalkanes. 

 

Fig. (2). Residuals (ei) plotted against the observed thermal energy of cycloalkanes. 
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Fig. (3). Residuals (ei) plotted against the observed heat capacity of cycloalkanes. 

Fig. (4). A plot of observed (experimental) versus predicted (calculated) the entropy of cycloalkanes. 

Fig. (5). A plot of observed versus predicted (calculated) the thermal energy of cycloalkanes. 
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Fig. (6). A plot of observed versus predicted (calculated) the heat capacity of cycloalkanes. 

3.7. Durbin-Watson Statistic

The Durbin-Watson (D) Statistic is a number which de-

termines whether there is autocorrelation in the residuals of a 

time series regression. The value of D always lies between 0 

and 4. If the Durbin-Watson statistic is substantially less than 

2, there is an evidence of a positive serial correlation. If D>2, 

it indicates that the successive error terms are, on average, 

much different in value from one another, i.e., they are nega-

tively correlated [28]. In our all models, the value of Durbin-

Watson statistic is close to 2 (Eqs. (4-6)) and the bench error 

is uncorrelated.  

3.8. Regular Residuals 

The residual is the difference between the observed and pre-
dicted values. The residual values of the thermal energy, heat 
capacity and entropy expressed by Equations (4-6) are shown in 
Tables (S1a-S1c) of the Supplementary material to this paper. A 
residual plot is a graph that shows the residual values on the 
vertical axis and independent variables on the horizontal axis. If 
the points in a residual plot are randomly dispersed around the 
horizontal axis, a linear regression model is appropriate for the 
data; otherwise, a non-linear model is more appropriate.  The 
residual of the MLR calculated values of the entropy, thermal 
energy, and heat capacity were propagated in both sides of zero 
line that indicates no systematic error exists in the model devel-
opment (Figs. 1-3).  

The calculated (predicted) S, Cv and Eth values from 
Equations (4-6) for the training and test set are listed in Ta-
bles (S1a-S1c). Figs. (4-6) show the linear correlation be-
tween the observed and the predicted properties as men-
tioned above.  

CONCLUSION 

The results of this study demonstrate that the QSPR 
method using the GA-MLR technique based on molecular 
descriptors calculated from molecular structure can generate 

suitable models for the prediction of entropy, thermal ener-
gy, and heat capacity of cycloalkanes and their derivatives. 
These QSPR models showed high values of multiple correla-
tion coefficient (R>0.97) and Fisher - ratio statistics. 

MLR models are proved to be a useful tool in the predic-

tion of S, Eth, and Cv. Leave one out cross - validation, 

leave-group (5-fold)-out (LGO), and external validation 

through test set as the evaluation techniques have been de-

signed to evaluate the quality and predictive ability of the 

MLR models. The validation results suggest that the models 

possess good predictive ability and robustness. The obtained 

results and discussion lead us to conclude that combining the 

two descriptors SRW06 and Mor01m can be used for model-

ing and predicting the thermal energy of 103 cycloalkanes. 

These descriptors are classified in walk and path counts, and 

3D-MoRSE descriptors, respectively. 

The three GETAWAY descriptors, R3p, RTp, and R3e+ 

can be used for satisfactory prediction of the heat capacity. 

The entropy of cycloalkanes derivatives can be better 

modeled using a combination of the four descriptors, 

VE2_A, M0r15u, Vu, and H4u. These descriptors are 

classified in 2D matrix- based, 3D-MoRSE, WHIM and 

GETAWAY descriptors respectively. 
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