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Force control of manipulators could enhance compliance and execution capabilities, and

has become a key issue in the field of robotic control. However, it is challenging for

redundant manipulators, especially when there exist risks of collisions. In this paper, we

propose a collision-free compliance control strategy based on recurrent neural networks.

Inspired by impedance control, the position-force control task is rebuilt as a reference

command of task-space velocities, by combing kinematic properties, the compliance

controller is then described as an equality constraint in joint velocity level. As to collision

avoidance strategy, both robot and obstacles are approximately described as two sets

of key points, and the distances between those points are used to scale the feasible

workspace. In order to save unnecessary energy consumption while reducing impact of

possible collisions, the secondary task is chosen to minimize joint velocities. Then a RNN

with provable convergence is established to solve the constraint-optimization problem in

realtime. Numerical results validate the effectiveness of the proposed controller.

Keywords: recurrent neural network, compliance control, redundant manipulator, obstacle avoidance, zeroing

neural network

1. INTRODUCTION

Industry 4.0 is becoming a label of modern industry combining traditional manufacturing and
increasingly technological world. As an important executor, robot manipulator must be more
flexible and intelligent, to satisfy production requirements which is more personalized and
customized (Gonzalez et al., 2018). Among various kinds of robot manipulators, redundant
manipulators have become an important branch of robotics due to its flexibility (Zhang, 2015).
This enables robots to fulfill more complicated tasks and has been a hot topic in the field of
robotic control.

With the increasing popularity of robot manipulators, traditional position control based
applications (such as welding, painting and so on) can hardly meet complex production tasks
(He et al., 2015), for instance, in pure position control based structures, the interaction between
robot and workpieces is usually ignored, which could probably lead to high security risk, since
excessive system stiffness would lead to the unpredictable responses (Cai and Xiang, 2018).
Therefore, aiming at enhancing the execution ability of the system, precise control of contact force
is required to ensure compliance to external environment. Accordingly a series of control methods
are proposed, depending on different robotic structure and control signals. By imitating flexible
joints andmuscles of animals, compliance units are introduced into the robots, such as series elastic
actuators (SEA), variable stiffness actuators, etc. In Pan et al. (2018b), a compliance controller is

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00050
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00050&domain=pdf&date_stamp=2019-07-11
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zh.xu@giim.ac.cn
https://doi.org/10.3389/fnbot.2019.00050
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00050/full
http://loop.frontiersin.org/people/721438/overview


Zhou et al. RNN Based Collision-Free Compliance Control

designed for SEA based systems, and a modified command-
filtered back-stepping control strategy (CFBC) based on adaptive
mechanism is then proposed to overcome the discontinuous
friction and complexity problem of traditional back-stepping
based methods. By adjusting the compliance of joint angles,
precise control of torque output is realized. As to the interaction
between the robot and workpieces, Hogan proposes a basic idea
of impedance control, in which the robot and environment
usually bear as an impedance and admittance, respectively
(Hogan, 1985). Generally speaking, the contact force and relative
movement of the robot and workpieces can be described as
a combination of mass-spring-damper systems. Therefore, the
contact force can be controlled by designing motion commands
indirectly. Another representative approach is hybrid position-
force control, the controller is usually designed in the torque loop
of the joint space, in which both contact forces and movement
of the robot are modeled based on dynamic analysis. Then the
controller can be described as a combination of control efforts
which achieve position and force control, respectively (Raibert
and Craig, 1981). Similar research can be found in literature such
as (Khatib, 1987; Pan et al., 2018a, 2019; Zhao et al., 2018a,b).

During the operating process, since the manipulators are
usually required to keep in touch with the workpieces, it is
possible that the robot would collide with the environment.
Besides, the workspace of a robot as also limited (Khatib, 1986).
For example, in a production line with multiple manipulators,
each robot is located at a fixed position, in order to avoid
interference, the robot’s workspace is limited by hardware
(fences, barriers, etc.) or software constraints(pre-planned
space). In situations such as human-machine collaboration, the
robot must not collide with human. Therefore, it is crucial
to avoid obstacles during the operating process. In present
reports, the desired trajectory is generally obtained by off-line
programming, which is limited by programming efficiency. To
realize obstacle avoidance control in realtime, artificial potential
field based methods are widely used. The basic idea of is that
the target bears as an attractive pole while the obstacle creates
repulsion on the robot, then the robot will be controlled to
converge to the target without colliding with obstacles (Wang
et al., 2018). In Csiszar et al. (2011), a modified method is
proposed, which describes the obstacles by different geometrical
forms, both theoretical conduction and experimental tests
validate the proposed method. Considering the local minimum
problem that may caused by multi-link structures, in Badawy
(2016), a two minima is introduced to construct potential field,
such that a dual attraction between links enables fastermaneuvers
comparing with traditional methods. Other improvements to
artificial potential field method can be found in Tsai et al.
(2001), Tsuji et al. (2002). A series of pseudo-inverse methods
are constructed for redundant manipulators in Sciavicco and
Siciliano (1988), in which the control efforts consists of a
minimum-norm particular solution and homogeneous solutions,
and the collision can be avoided by calculating a escape
velocity as homogeneous solutions. By understanding the limited
workspace, the obstacle avoidance can be described in forms
of inequalities, which opens a new way in realtime collision
avoidance. In Zhang and Wang (2004), the robot is regarded as

the sum of several links, and the distances between the robot
and obstacle is obtained by calculating distances between points
and links. Then Guo and Zhang (2012) improves the method
by modifying obstacle avoidance MVN scheme, and simulation
results show that the modified control strategy can suppress the
discontinuity of angular velocities effectively.

In terms with compliance control problem of a robot, the
controller efforts should be designed according to the desired
commands and system characteristics. That is so say, the robot

must follow a constraint that achieves compliance control, and
at the same time, the inequality constraints are ensured to

avoid obstacles. It is obvious that the control problem involves

several constraints, including equality constraints and inequality
ones. Using the thought of constraint-optimization, the control

problem with multiple constraints can be well handled. Recently,
the applications of recurrent neural networks for robotic control

have been studied extensively, and have shown great efficient for
real-time processing (Wang et al., 2015; Jin et al., 2017; Xu et al.,
2019a). In those literatures, analysis in dual space and a convex
projection are introduced to handle inequality constraints.

Recently, taking advantage of parallel computing, neural
networks are used to solve the constraint-optimization, and
have shown great efficiency in real-time processing. In Zhang
et al. (2004), Li et al. (2017), Yang et al. (2018b), controllers
are established in joint velocity/acceleration level, to fulfill
kinematic tracking problem for robot manipulators. In Xu
et al. (2019b), tracking problem with model uncertainties
is considered, and an adaptive RNN based controller is
proposed for a 6DOF robot Jaco2. Discussions on multiple
robot systems, parallel manipulators, time-delay systems using
RNN can be found in Zhang et al. (2018), Li et al. (2019),
Xu et al. (2019b).

From the previous observations, we propose a RNN

based collision-free compliance control strategy for redundant
manipulators. The remainder of this paper is organized as

follows. In section 2, the control objective including the position-
force control as well as collision avoidance is pointed out,

and then rewritten as a QP problem. In section 3, the RNN

based controller is proposed, and the stability of the system
is also analyzed. A number of numerical experiments on a 4-

DOF redundant manipulator including model uncertainties and
narrow workspace are carried out to further verify the proposed
control strategy. section 5 concludes the paper. The contributions
of this paper are summarized as below

• To the best of the author’s knowledge, there is few research on
compliance control using recurrent neural networks, the study
in this paper is of great significance in enriching the theoretical
frame of RNN.
• The proposed controller is capable of handling compliance

control, as well as avoiding obstacles in realtime, which
does make sense in industrial applications, besides, physical
constraints are also guaranteed.
• Comparing to traditional neural-network-based controllers

used in robotics, not only control errors but model
information is considered, therefore, the proposed RNN has
a simple structure, and the global convergence can be ensured.
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2. PROBLEM FORMULATION

2.1. Robot Kinematics and Impedance
Control
Without loss of generality, we consider series robot manipulators
with redundant DOFs, and the joints are assumed as rotational
joints. Let θ ∈ R

n be the vector of joint angles, the description of
the end-effector in the cartesian space is:

x = f (θ), (1)

where x ∈ R
m is the coordination of the end-effector. In the

velocity level, the forward kinematic model can be formulated as:

ẋ = J(θ)θ̇ , (2)

in which J(θ) = ∂x/∂θ is Jacobian matrix. As to redundant
manipulators, J ∈ R

m×n, rank(J) < n.
In industrial applications, position control based operation

mode has many limitations: due to the lack of compliance, pure
kinematic control methods may cause unexpected consequences,
especially when the robot is in contact with the environment.
To enhance the compliance and achieve precise control of
contact force, according to impedance control technology, the
interaction between robot and environment can be described as a
damper-spring system, as shown in Figure 1 (Senoo et al., 2017).

F = Kp1x+ Kdd(1x)/dt, (3)

where, Kp and Kd are interaction coefficients, and 1x = x −
xd is the difference between the actual response x and desired
trajectory xd. The basic idea of impedance control methods is
shown in Equation (2.1). By referring to Equations (2) and (3),
we have:

ẋ = K−1
d

F − KpK
−1
d

1x+ ẋd. (4)

When the real values of Kp and Kd are known, F can be obtained
by adjusting the velocity ẋ of the end-effector according to
Equation (4).

FIGURE 1 | Damper-spring model of interaction between robot

and workpiece.

2.2. Obstacle Avoidance Scheme
In the process of robot force control, there is a risk of collision
as the robot may contact with workpieces. Besides, robot
manipulators usually work in a limited workspace restricted by
fences, which are used to isolated robots from humans or other
robots. This problem could be even more acute in tasks which
requires collaboration of multiple robots. Therefore, obstacle
avoidance problem must be taken into consideration. When
collision does not happens, the distance between robot and
obstacles keep positive. By describing the robot and obstacles
as two separated sets, namely SA = {A1, · · · ,Aa}, SB =
{B1, · · · ,Bb}, where Ai, i = 1, · · · , a and Bj, j = 1, · · · , b
are points on the robot and obstacles, respectively. Then
the sufficient and necessary conditions of obstacle avoidance
problem is that the intersection of A and B is an empty set.
That is to say, for any point pair Ai on the robot and Bj on
the obstacle, the distance between Ai and Bj is always positive,
i.e., ||AiBj||

2
2 > 0, for all i = 1, · · · , a, j = 1, · · · , b, where

|| • ||22 is the Euclidean norm of vector AiBj. For sake of safety,
let d > 0 be a proper value describing the minimum distance
between robot and obstacles, the collision can be avoided b
ensuring ||AiBj||

2
2 ≥ d.

Remark 1. In fact, both SA and SB consist of infinite
points. However, by evenly selecting representative points
from the robot link and obstacles, SA and SB can be
simplified significantly. Besides, the safety distance d can be
appropriately increased. Despite that this treatment will sacrifice
some workspace of the robot (the inequality ||AiBj||

2
2 ≥

d would into account some areas that collisions do not
happen, due to a bigger d is considered), this sacrifice is
meaningful: the number of inequality constraints can be
reduced greatly, which is helpful for constraint description
and solution.

In real applications, the key points of the robot manipulator
is easy to select. Cylindrical envelopes are usually used
to describe the robotic links, then the key points can be
selected on the axes of the cylinders uniformly, and the
distance between those points can be defined the same
as the radius of the cylinder. As to the obstacles with
irregular shapes, the key points can be selected based
on image processing techniques, such as edge detection,
corrosion, etc.

2.3. Problem Reformulation in QP Type
From the above description, the purpose of this paper is to build
a collision-free force controller for redundant manipulators, to
achieve precise force control along a predefined trajectory, in the
sense that F→ Fd, x→ xd, and ||AiBj||

2
2 ≥ d for all i = 1, · · · , a,

j = 1, · · · , b.
As to a redundant manipulator, there exist redundant DOFs,

which can be used to enhance the flexibility of the robot. When
the robot gets close to the obstacles, the robot must avoid the
obstacle without affecting the contact force and tracking errors.
On the other hand, when there is no risk of collision, the robot
may work in an economic way, byminimizing the joint velocities,
energy consumption can be reduced effectively. Therefore, by
defining an objective function as ||θ̇ ||22, the control objective can
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be summarized as:

min ||θ̇ ||22, (5a)

s.t. x = xd, (5b)

F = Fd, (5c)

||AiBj||
2
2 ≥ d, (5d)

where ||θ̇ ||22 is the Euclidean norm of θ̇ . It is noteworthy
that in actual industrial applications, the robot is also limited
by its own physical structures. For instance, the joint angles
are limited in a fixed range, and the upper/lower bounds
of joint velocities are also constrained due to actuator
saturation. By combing (Equation 4), the control objective
rewrites to:

min ||θ̇ ||22, (6a)

s.t. Jθ̇ = K−1
d

F − KpK
−1
d

1x+ ẋd, (6b)

||AiBj||
2
2 ≥ d, (6c)

θ− ≤ θ ≤ θ+, (6d)

θ̇− ≤ θ̇ ≤ θ̇+, (6e)

with θ−, θ+, θ̇−, θ̇+ being the upper/lower bounds of joint
angles and velocities, respectively. However, the optimization
problem is described in different levels, i.e., joint speed level or
joint angle level, which remains challenging to solve (Equation
6) directly. Therefore, we will rewrite this formula in velocity
level. As to the key points Ai on the robot, let xAi be the
coordination of Ai in the cartesian space, both xAi and ẋAi
are available:

xAi = fAi(θ), (7a)

ẋAi = JAiθ̇ , (7b)

where fAi(•) is the forward kinematics of point Ai, and JAi is
the corresponding Jacobian matrix from Ai to joint space. Let us
consider the following equality:

d

dt
(||AiBj||

2
2) = k(||AiBj||

2
2 − d), (8)

in which k is a positive constant. It is obviously that the
equilibrium point of Equation (8) is ||AiBj||

2
2 = d. By letting

d

dt
(||AiBj||

2
2) ≥ 0, the inequality (5d) can be readily guaranteed.

Taking the time-derivative of ||AiBj||
2
2 yields:

d

dt
(||BjAi||

2
2) =

d

dt
(
√

(Ai − Bj)T(Ai − Bj))

=
1

||BjAi||
2
2

(Ai − Bj)
T(Ȧi − Ḃj)

=
−−−→
|BjAi|

TJAi(θ)θ̇ −
−−−→
|BjAi|

TḂj, (9)

where,
−−−→
|BjAi| = (Ai−Bj)

T/||θ̇ ||22 is a unit vector from Bj toAi, and
Ḃj is the velocity of key point Bj on the obstacles. By Equations

(9) and (6c), the inequality description of obstacle avoidance
strategy is

−−−→
|BjAi|

TJAi(θ)θ̇ ≥ k(||AiBj||
2
2 − d)+

−−−→
|BjAi|

TḂj, (10)

Remark 2. In this part, we have shown the basic idea of
obstacle avoidance scheme in velocity level, whose equilibrium
point is described in Equation (8). It is notable that the right-
hand side of Equation (8) is only a common form to realize
obstacle avoidance. Generally speaking, the right-hand side of
Equation (8) may have different forms, such as k(||AiBj||

2
2 −

d), k(||AiBj||
2
2 − d)3, etc. From Equation (10), the value of

the response velocity to avoid obstacles is related to the two
parts, the first part is the difference between the actual and
safety distance, the other part depends on the movement of
the obstacles.

In terms of the physical constraints of joint angles, according
to escape velocity method, inequalities (6d) and (6e) can
be uniformly described as max(α(θ− − θ), θ̇−) ≤ θ̇ ≤

min(θ̇+,α(θ+ − θ)). So far, the position-force control problem
together with obstacle avoidance strategy in velocity level is
as below

min ||θ̇ ||22, (11a)

s.t. Jθ̇ = K−1
d

F − KpK
−1
d

1x+ ẋd, (11b)

max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+,α(θ+ − θ)), (11c)

Joθ̇ ≤ B. (11d)

where (11c) is a rewritten inequality considering (6d) and (6e)
based on escape velocity scheme (Zhang et al., 2004), Jo =

[
−−−→
|B1A1|

TJA1; · · · ;
−−−→
|BbA1|

TJAb
︸ ︷︷ ︸

b

, · · · ,
−−−→
|B1Aa|

TJTAa; · · · ;
−−−→
|BbAa|

TJAb
︸ ︷︷ ︸

b

]

∈ R
ab×n is the concatenated form of JAi considering all pairs

between Ai and Bj, B = [B11, · · · ,B1b, · · · ,Ba1, · · · ,Bab]
T ∈ R

ab

is the vector of upper-bounds, in which −k(||AiBj||
2
2 − d) −

−−−→
|BjAi|

TḂj. From the definition of Jo, B, inequality (11d) in

equivalent to
−−−→
|B1A1|

TJA1(θ)θ̇ ≥ k(||A1B1||
2
2 − d) +

−−−→
|B1A1|

TḂ1,...
−−−→
|BbAa|

TJAa(θ)θ̇ ≥ k(||AaBb||
2
2 − d) +

−−−→
|BbAa|

TḂb, which is the
cascading form of the inequality description (10) for all points
pairs AiBj, i.e., if (11d) hold, the obstacle avoidance can be
achieved. It is notable that a larger number of key points do help
to describe the information of the obstacle more clearly, but
it would lead to a computational burden, since the number of
inequality constraints also increases. Therefore, the distance of
the key points on the obstacle can be selected similar to those of
the manipulator.

3. RNN BASED CONTROLLER DESIGN

In section II, we have transform the compliance control as well as
obstacle avoidance problem into a constraint-optimization one.
However, because that the QP problem described in Equation
(11) contains equality and inequality constraints, moreover, both
(Equations 11b,d) are nonlinear, it is difficult to solve directly,
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especially in industrial applications in realtime. Based on the
parallel computation ability, a RNN is established to solve
(Equation 11) online, and the stability of the closed-loop system
is also discussed.

3.1. RNN Design
In terms with the QP problem (Equation 11), although the
analytical solution can be hardly obtained, by defining a Lagrange
function as:

L = ||θ̇ ||22 + λT1 (K
−1
d

F−KpK
−1
d

1x+ ẋd − J(θ)θ̇)+ λT2 (Joθ̇ − B),
(12)

where λ1 and λ2 are state variables, respectively. According to
Karush-Kuhn-Tucker (KKT) conditions, the inherent solution of
Equation (11) satisfies:

θ̇ = P�(θ̇ −
∂L

∂θ̇
), (13a)

Jθ̇ = K−1
d

F − KpK
−1
d

1x+ ẋd, (13b)

λ2 = (λ2 + Joθ̇ − B)+, (13c)

where, P�(x) = argminy∈�||y − x|| is a projection operator of

θ̇ to convex �, and � = {θ̇ ∈ R
n|max(α(θ− − θ), θ̇−) ≤ θ̇ ≤

min(θ̇+,α(θ+ − θ))}. In Equation (13c), the operation function
(•)+ is defined as a mapping to the non-negative space. Equation
(13c) can be rewritten as:

{

λ2 > 0 if Joθ̇ = B,

λ2 = 0 if Joθ̇ ≤ B,
(14)

When Joθ̇ ≤ B, the inequality (Equation 11d) holds, then λ2
stays zero. Instead, if the inequality reaches a critical state, λ2
becomes positive to ensure Joθ̇ = B. In order to obtain the
inherent solution in real time, a recurrent neural network is built
as follows:

ǫθ̈ = −θ̇ + P�(θ̇ − θ̇/||θ̇ ||22 + JTλ1 − JTo λ2), (15a)

ǫλ̇1 = K−1
d

F − KpK
−1
d

1x+ ẋd − J(θ)θ̇ , (15b)

ǫλ̇2 = −λ2 + (λ2 + Joθ̇ − B)+, (15c)

with ǫ being a positive constant scaling the convergence of
Equation (15).

The proposed RNN based algorithm is shown in Algorithm 1.
Based on escape velocity method, the convex set of joint speed
can be obtained based on the positive constant α and physical
constraints θ−, θ+, θ̇−, θ̇−. After initializing state variables λ1
and λ2, the reference velocity can be obtained based on the
desired command and actual responses according to Equation
(4). then the output of RNN (which is also the control command)
can be calculated based on Equation (15a), at the same time,
both λ1 and λ2 can be updated according to Equations (15b)
and (15c).

In real applications, the nonlinear system can be hardly
approximated completely. Therefore, the approximate error
is inevitable, which would influence the performance of the
proposed controller. However, the approximate error is a small

Algorithm 1: Collision-Free position-force controller based on
RNN.

Input: Positive control gains α, ǫ, and interaction coefficients
Kp, Kd. Initial states q̇(0) = 0, q(0), desired path xd(t), ẋd(t) and
operation force Fd(t), task duration Te, feedback of end effector’s
coordination x(t) and contact force F, joint angles θ , Jacobian
matrix J(θ), information of the obstacles Bj and Ḃj = 1, · · · , b.
Location of key points Ai, i = 1, · · · , a on the robot, and the
corresponding Jacobian matrices JAi. Physical limitations θ−,
θ+, θ̇−, θ̇+. Safety distance d.
Output: To achieve position-force control without colliding
with obstacles
1. Initialize λ1 = 0, λ2 = 0.%Joint velocity command u.
2. x, q, F, θ̇← Sensor readings
3. Calculate xAi, ẋAi and JAi by Equation (7)
4. Calculate matrices Jo, B by Equation (11d)
5. Update upper and lower bounds of joint velocities by
Equation (11c)
6. Update output of RNN (joint velocity) by θ̈ using
Equation (15a)
7. Update λ1 by λ̇1 using Equation (15b)
8. Update λ2 by λ̇2 using Equation (15c)
Until(t > Te)

value of higher order, and the influence can be suppressed based
on the negative feedback scheme in the outer-loop, as shown in
Equation (4).

Remark 3. The output dynamics of the proposed RNN is given
in Equation (15a), in which the projection operator P�(•) plays
an important rule in handling physical constraints (Equation
11c), the updating of θ̇ depends on three parts: the first part
−θ̇/||θ̇ ||22 in used to optimize the objective function ||θ̇ ||22,
and the second item JTλ1 guarantees the equality constraint
(Equation 11b) by adjusting the dual state variable λ1 according
to Equation (15b), and the last item−JTo λ2 ensures the inequality
constraint (Equation 11d). The RNN consists of three kinds
of nodes, namely, θ̈ , λ1 and λ2, with the number of neurons
being n+ ab+m.

It is remarkable that the proposed controller is based on
the information of system models such as J, Jo, Kp, etc., which
is helpful to reduce computational cost. As to the constraint-
optimization problem (Equation 11), the main challenge is
to solve it in real-time, since the parameters in constraints
(Equations 11b, 11d) are time varying. From Equation (15), the
control effort is obtained by calculating its updating law, which
is based on the historical data and model information, i.e., it
is no longer necessary to solve the solution of Equation (11) as
every step, and the computational cost is thus reduced. In the
following section, we will also show the convergence of the RNN
based controller.

In this paper, we mainly concern the obstacle avoidance
problem in force control tasks. It is notable that force control
is mainly based on the idea of impedance control theory,
which is similar to existing methods in Huang et al. (2019),
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Zhang and Xia (2019). The main challenge of the proposed
control scheme lies in the limitation of sampling ability
of cameras, which are used to capture the obstacles. To
handle the measurement noise or disturbances, a larger safety
distance d can be introduced to ensure the performance of
obstacle avoidance.

3.2. Stability Analysis
Lemma 1: (Convergence for a class of neural networks) (Gao,
2003) A dynamic neural network is said to converge to its
equilibrium point if it satisfies:

κ ẋ = −ẋ+ PS(x− ̺F(x)), (16)

where κ > 0 and ̺ > 0 are constant parameters, and PS =
argminy∈S||y− x|| is a projection operator to closed set S.

Definition 1: For a given function F(•) which is
continuously differentiable, with its gradient defined as
∇F, if ∇F + ∇FT is positive semi-definite, F(•) is called a
monotone function.

About the stability of the closed-loop system, we offer the
following theorem.

Theorem 1: Given the collision-free position-force
controller based on a recurrent neural network, the RNN
will converge to the inherent solution (optimal solution) of
Equation (11), and the stability of the closed-loop system is
also ensured.

Proof: Define a vector ξ as ξ = [θ̇; λ1; λ2] ∈ R
n+m+ab,

according to Equation (15), the time derivative of ξ satisfies:

ǫξ̇ = −ξ + P�̄[ξ − F(ξ )], (17)

in which ǫ > 0, and F(ξ ) = [F1(ξ ), F2(ξ ), F3(ξ )]
T, where

F1 = θ̇/||θ̇ ||22 − JTλ1 + JTo λ2, F2 = Jθ̇ − K−1
d

F + KpK
−1
d

1x −

ẋd, F3 = −Joθ̇ + B. By calculating the gradient of F(ξ ),
we have:

∇F(ξ ) =





I/||θ̇ ||22 −J
T JTo

J 0 0

−JTo 0 0



 . (18)

It is obviously that ∇F(ξ ) is positive definite. According to
Definition 1, F(ξ ) is a monotone function. From the description
of (17), the projection operator PS can be formulated as PS =
[P�;PR;P3], in which P� is defined in (13a), PR can be regarded
as a projection operator of λ1 to R, with the upper and lower
bounds being ±∞, and P3 = (•)+ is a special projection
operator to closed set R

ab
+ . Therefore, PS is a projection operator

to closed set [�;Rm;Rab
+ ]. Based on Lemma 1, the proposed

neural network (15) is stable and will globally converge to the
optimal solution of (11).

Notable that the equality constraint 11(b) describes the
impedance controller, and the convergence can be found in Na
et al. (2015). Similarly, the establishment of inequality constraint
enables obstacle avoidance during the whole process. The proof
is completed.

Remark 4. It is remarkable that the original impedance
controller described in 11(b) bears similar with traditional

methods in Yang et al. (2018a) the main contribution of the
proposed controller is that the controller can not only realize
the force control, but also realize the obstacle avoidance, besides,
the control strategy is capable of handling inequality constraints,
including joint angles, and velocities.

4. NUMERICAL RESULTS

In this part, we carry out a series of numerical simulations
on a planar 4-DOF robot, aiming at verifying the validity of
the proposed control scheme. Firstly, a pure force control
experiment is done to show the effectiveness of the force
controller, and then the control scheme is further verified
by examining the system response after introduction of
obstacles. Then we check the control performance in
more general situations, including model uncertainties and
multiple obstacles.

4.1. Simulation Settings
First of all, the planar robot used in the simulation is show
in Figure 2. The D-H parameters are also listed in Figure 2B.
It is remarkable that in force control tasks, the end-effector
is required to keep in touch with workpieces, which makes it
necessary to distinguish between the necessary contact and the
unnecessary collisions. In this paper, the proposed controller is
capable of handling this problem by selecting the key points
properly. Therefore, the end-effector is not considered as a key
point, to make it possible to contact with the obstacles (or
external environment). In order to avoid obstacles, the set of key
points of the robot is defined as A1, · · · ,A7, in which A1, A3,
A5, and A7 locate at the center of the links, and A2, A4, and
A6 are defined to be at J2, J3, and J4, as shown in Figure 2A.
The lower and upper bounds of joint angles and joint velocities
are defined as θ−i = −3rad, θ+i = 3rad, θ̇−i = −1rad/s,
θ̇+i = 1rad/s for i = 1 . . . 4, respectively. The safety margin
is selected as 0.01 m. The coefficients describing the contact
force are selected as Kd = 50, Kp = 5000. For simplicity,

let b0 = K−1
d

F − KpK
−1
d

1x+ ẋd.

4.2. Force Control Without Obstacles
First of all, an ideal case where there is no obstacles in the
workspace is considered, and the parameters Kd and Kp are
assumed to be known. The robot is wished to offer a constant
contact force on a given plane. The contact force is set to be
20N, while the direction of contact force is aligned with the
y-axis of the tool coordination system. In this example, the y-
axis of is [1,−1]T in the base coordination. The pre-defined
path on the contact plane is xd = [0.4 + 0.1cos(0.5t), 0.5 +
0.1cos(0.5t)]. The initial state of the robot system is set as θ0 =

[1.57,−0.628,−0.524,−0.524]Trad, θ̇0 = [0, 0, 0, 0]Trad/s. The
control gains of the proposed RNN controller are α = 8,ǫ =
0.02, respectively. Numerical results are shown in Figure 3. The
tracking error along the contact plane is given in Figure 3B,
the transient is about 1s. At the beginning stage, since the
end-effector is not in contact with the surface, the contact
force stays zero before 0.5s. As the end-effector approaches
the surface, the contact force converges to 20N, showing the
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FIGURE 2 | The robot to be simulated in this paper. (A) Is the physical structure and the location of key-points. (B) Is D-H parameters.

FIGURE 3 | Numerical results of compliance control without obstacles. (A) Is the robot’s tracking path and the corresponding joint configurations. (B) Is the profile of

position error along the free-motion direction. (C) Is the profile of contact force. (D) Is the profile of ||θ̇ ||22.

convergence of both positional and force errors. The Euclidean
norm of joint velocities (which is also output of the established
RNN) is shown in Figure 3D, ||θ̇ || changes periodically, with
the same cycle as the expected trajectory. The time history
of the end-effector’s motion trajectory and the corresponding
joint configurations are shown in Figure 3A, in which the red
arrow indicates the direction of the contact force, and the blue
arrow shows the direction of the end-effector’s free-motion. All
in all, the proposed controller can achieve the position-force
control precisely.

4.3. Force Control With Single Obstacles
In this section, a stick obstacle is introduced into the workspace,
which is defined as x = −0.05 m. The initial states and expected
values of xd, Fd are the same as section 4.2.

Remark 5. In Equation (10), we have shown the basic idea
of calculating the distance between the robot and obstacles,
i.e., by abstracting key points form the robot and obstacles,
the distances can be the robot and obstacle can be described
approximately at a set of point-to-point distances. In this
example, the distance can be obtained in a simpler way.
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However, the obstacle avoidance strategy is essentially consistent
with (Equation 10).

Simulation results are given in Figures 4, 5. The output of
RNN is shown in Figure 4E, when simulation begins, θ̇ reaches

its maximum value, driving the end-effector to move toward
the desired path. And then the robot slows down quickly (after

t ≈ 0.5s), the robot move smoothly, as a result, the position error

successfully converges to 0, and simultaneously, the contact force
converges to 20N. It is notable that at t = 1.2 s, the key point

A2 of the robot gets close to the obstacle, as shown in Figure 4F.

Based on the obstacle avoidance strategy (Equation 15c), the
state variable λ2(2) becomes positive, and then the output of
the RNN varies with λ2 (Figure 5B). Correspondingly, an error
(about 1 × 10−3 m) occurs in the positional tracking, and so as

the contact force (force error is about 2N). However, the RNN
converges to the new equilibrium point(since the equilibrium

point would change when the inequality constraint works), and

both ex and ef converges to 0. By comparing Figures 3A, 4A,
after introducing the obstacle, the robot is capable of adjusting
its joint configuration to avoid the obstacle. The distances
between the key points A1 − A7 to the obstacle are shown in
Figure 4D, a minimum value of about 0.01 m is ensured during
the whole process. Using impedance model, the force control
problem is transferred into a kinematic control one by modifying
the reference speed (Equation 4). Consequently, the resulting

trajectory xr together with xd are as shown in Figures 5D,E. As
an important index in the proposed control scheme, the norm
of joint speed ||θ̇ ||22 is wished as small as possible. Therefore,
we introduce a comparative simulation, in which the solution
is obtained based on pseudo-inverse of Jacobian matrix and
physical limitations are not considered. Comparative curves
of the objective functions are as shown in Figure 5F. The
RNN based controller can optimize the objective function, it is
remarkable that a difference appears at about t = 1.2−5 s, which
is mainly caused by obstacle avoidance (which is not considered
in JMPI based method). Since the output of RNN θ̇ is used
to approximate the reference speed b0, the approximate error
||Jθ̇ − b0||

2
2 is shown in 4.35(C), demonstrating the effectiveness

of the established RNN.

4.4. Force Control With Uncertain
Parameters
In this example, we check the control performance of the
proposed control scheme in presence of model uncertainties.
Similar with previous simulations, the initial states of the
robot are also θ0 = [1.57,−0.628,−0.524,−0.524]Trad, θ̇0 =

[0, 0, 0, 0]Trad/s. In real implementations, the interaction model
is usually unknown, and the nominal values of Kd and Kp are
not accurate. Without loss of generality, we select the nominal
values of Kd and Kp as K̂d = 80, K̂p = 4000, respectively.In order

FIGURE 4 | Control performance of the proposed controller while avoiding a wall obstacle. (A) Is the robot’s tracking path and the corresponding joint configurations.

(B) Is the profile of position error along the free-motion direction. (C) Is the profile of contact force. (D) Is the profile of joint angles. (E) Is the profile of joint velocities.

(F) Is the profile of the closest distance to the obstacle of each key points Ai , i = 1, · · · , 7.
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FIGURE 5 | Simulation results of the established RNN while avoiding a wall obstacle. (A) Is the profile of λ1. (B) Is the profile of λ2. (C) Is the profile of ||Jθ̇ − b0||
2
2. (D)

Is the profiles of the desired and reference trajectory along x-axis. (E) Is the profiles of the desired and reference trajectory along y-axis. (F) Is the profiles of the

objective function of the proposed controller and JPMI based method.

FIGURE 6 | Control performance of the proposed controller while avoiding a wall obstacle with uncertain Kp and Kd . (A) Is the robot’s tracking path and the

corresponding joint configurations. (B) Is the profile of position error along the free-motion direction. (C) Is the profile of contact force. (D) Is the profile of joint angles.

(E) Is the profile of joint velocities. (F) Is the profile of the closest distance to the obstacle of each key points Ai , i = 1, · · · , 7.
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to handle model uncertainties in the interaction coefficients, an
extra node is introduced into (15). Then the modified RNN can
be formulated as:

ǫθ̈ = −θ̇ + P�(θ̇ − θ̇/||θ̇ ||22 + JTλ1 − JTo λ2),

ǫλ̇1 = K−1
d

F − KpK
−1
d

1x+ ẋd − J(θ)θ̇ ,

ǫλ̇2 = −λ2 + (λ2 + Joθ̇ − B)+,

˙̂W = −Kinη(Fd − F)T,

in which W = [Kp;Kd], η = [x − xd; ẋ − ẋd], and the
positive coefficient Kin scaling the updating rate is defined as
Kin = diag(500, 20). Simulation results are shown in Figures 6, 7.
Although the exact values of Kd and Kp are unknown, the
closed-loop system is still stable, which can be shown from
the convergence of tracking error ex and contact force F in
Figures 6A,B. The change curves of joint angles and joint
velocities with respect to time are shown in Figures 6C,D,
in which the bounded-ness of joint angles and velocities are
guaranteed. The observed interaction coefficients K̂d and K̂p are

shown in Figure 6E, indicating that both K̂d and K̂p converge
to their real values. Figure 7A shows the distances between
the key points and the obstacle, it is obvious that all key
points keep at a safe distance from the obstacle (the closest
key point is A2). Euclidean norm of b0 − Jθ̇ is illustrated

in Figure 7C, despite fluctuation occurs at about t = 1.5 s,
the proposed controller could handle model uncertainties. The
impedance model based reference trajectory and the original
desired trajectory are shown in Figures 7D,E. Although xr and
xd are different, the tracking error ex along the direction of
free motion and force error eF converges to zero, as shown in
Figures 6A,B. The objective function ||θ̇ ||22 to be optimized is
given in Figure 7F. the convergence of the established RNN is
shown in Figure 7C, despite the uncertain parameters, using the
adaptive updating law, the established RNN is capable of learning
the optimal solution. The spikes is mainly because of the change
of λ2 when obstacle avoidance scheme is activated.

4.5. Manipulation in Narrow Space
In this part, we discuss a more general case of motion-force
control task, in which the workspace is defined in a limited
narrow space. The robot is limited by two parallel lines, namely,
y1 = 0.15 and y2 = −0.15 m. Considering the safety distance,
all key points except A8 must satisfy the workspace description
−0.14 ≤ y ≤ 0.14 m. The initial joint angles are set to be θ0 =

[0.393,−1.05, 1.57,−0.785]Trad, and θ̇0 = [0, 0, 0, 0]Trad/s. The
desired path is selected as xd = [0.8 + 0.1cos(0.5t),−0.15]T m,
and the expected contact force is Fd = 20N, with the direction
vector being [0,−1]T. Simulation results are given in Figures 8, 9.
When simulation begins, the initial position error is about 0.1

FIGURE 7 | Simulation results of the established RNN while avoiding a wall obstacle with uncertain Kp and Kd . (A) Is the profile of λ1. (B) Is the profile of λ2. (C) Is the

profile of ||Jθ̇ − b0||
2
2. (D) Is the profiles of the desired and reference trajectory along x-axis. (E) Is the profiles of the desired and reference trajectory along y-axis. (F) Is

the profiles of the objective function of the proposed controller and JPMI based method.
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FIGURE 8 | Control performance of the proposed controller in a narrow workspace. (A) Is the robot’s tracking path and the corresponding joint configurations. (B) Is

the profile of position error along the free-motion direction. (C) Is the profile of contact force. (D) Is the profile of joint angles. (E) Is the profile of joint velocities. (F) Is

the profile of the closest distance to the obstacle of each key points Ai , i = 1, · · · , 7.

m, and the converges to zero, with the transient being about
0.5s. Simultaneously, the contact force also converges to 20N.
In Figure 9A, minimum distances between the key points to y1
and y2 are represented by blue and red curves, respectively. The
tracking trajectory and the corresponding joint configurations
are shown in Figure 8A. During t = 1 − 1.5 s and t = 6 − 13
s, point A2 gets close to y1, during t = 4 − 7 s, A4 is close
to y2. Remarkable that there exist fluctuations in positional and
force errors at t = 1 s and t = 4 s (i.e., when A2 and A4

get close to the bounds), respectively. Similar to the previous
simulations, the reference trajectories are given in Figures 7C,D,
and the objective functions are shown in Figure 7E. Using the
proposed RNN controller, the robot can realize both position and
force control in limited narrow space.

4.6. Comparisons
In this part, comparisons among the proposed control scheme
and existing methods are given to show the superiority of
the RNN based strategy. The comparisons are shown in
Table 1. In Guo and Zhang (2012), a RNN based controller is
designed for redundant manipulators, both obstacle avoidance
and physical constraints are considered. However, the controller
only focus on kinematic control problem. In Nanayakkara et al.
(2001) and Csiszar et al. (2011), force control together with
obstacle avoidance are taken into account, but the physical
constraints are ignored. Xu et al. (2019a) develop an adaptive
admittance control strategy, which is capable of dealing with
force control under model uncertainties, physical constraints

and real-time optimization. It is remarkable that the proposed
strategy focus on real-time obstacle avoidance in force control
tasks, and the controller is capable of ensuring the boundedness
of joint angles and velocities. At the same time, simulations
have shown the potential of optimization ability of norm of
joint speed.

5. CONCLUSIONS

In this paper, a novel collision-free compliance controller
is constructed based on the idea of QP programming and
neural networks. Different with existing methods, in this
paper, the control problem is described from an optimization
perspective, and the compliance control and collision avoidance
are formulated as equality or inequality constraints. The
physical constraints such as limitations of joint angles and
velocities are also taken into consideration. Before ending
this paper, it is worth pointing out that it is the first RNN
based compliance control method, which considers collision
avoidance problem in realtime, and also shows great potential
in handling physical limitations. In this paper, simple numerical
simulations in MATLAB are carried out to verify the efficiency
of the proposed controller. In the future, we will check
the control framework with different impedance models in
physically realistic simulation environments, and then consider
machine vision technology and system delay problem on physical
experimental platforms.
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FIGURE 9 | Simulation results of the established RNN in a narrow workspace. (A) Is the profile of λ1. (B) Is the profile of λ2. (C) Is the profiles of the desired and

reference trajectory along x-axis. (D) Is the profiles of the desired and reference trajectory along y-axis. (E) Is the profiles of the objective function of the proposed

controller and JPMI based method.

TABLE 1 | Comparisons among the proposed controller and existing methods.

Method Convergence Real-time Physical Force control/ Collision

optimization constraints kinematic control free

This paper Yes Yes Considered Force control Yes

Guo and Zhang (2012) Yes Yes Considered kinematic control Yes

Nanayakkara et al. (2001) Yes Yes Ignored Force control Yes

Xu et al. (2019a) Yes Yes Considered Force control No

Csiszar et al. (2011) Yes No Ignored Force control Yes
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