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ABSTRACT Genetic screens in Saccharomyces cerevisiae have allowed for the identification of many genes
as sensors or effectors of DNA damage, typically by comparing the fitness of genetic mutants in the presence
or absence of DNA-damaging treatments. However, these static screens overlook the dynamic nature of DNA
damage response pathways, missing time-dependent or transient effects. Here, we examine gene de-
pendencies in the dynamic response to ultraviolet radiation-induced DNA damage by integrating ultra-high-
density arrays of 6144 diploid gene deletion mutants with high-frequency time-lapse imaging. We identify
494 ultraviolet radiation response genes which, in addition to recovering molecular pathways and protein
complexes previously annotated to DNA damage repair, include components of the CCR4-NOT complex,
tRNA wobble modification, autophagy, and, most unexpectedly, 153 nuclear-encoded mitochondrial genes.
Notably, mitochondria-deficient strains present time-dependent insensitivity to ultraviolet radiation, posing
impaired mitochondrial function as a protective factor in the ultraviolet radiation response.
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Genome-wide screening techniques in the model organism Saccha-
romyces cerevisiae have permitted extensive functional annotation of
nearly every gene (Winzeler et al. 1999; Schuldiner et al. 2005;
Breslow et al. 2008; Baryshnikova et al. 2010; Douglas et al. 2012;
Kofoed et al. 2015). In such screens, the relative contribution of each
gene is often determined according to the fitness of the corresponding
gene knockout strain, as inferred frommacroscopic phenotypes, such
as colony size (Costanzo et al. 2010; Baryshnikova et al. 2010; Kuzmin
et al. 2014; Bean et al. 2014) or relative strain abundances (Winzeler
et al. 1999; Giaever et al. 2002; Breslow et al. 2008; Schlecht et al.
2017). However, biological processes are dynamic (Celaj et al. 2017);
isolated snapshots may not adequately describe their full complexity

(Bandyopadhyay et al. 2010). Furthermore, genetic perturbations
may not always result in notable changes in the observed colony
fitness, as defects may be small (Thatcher et al. 1998; Baryshnikova
et al. 2010; Styles et al. 2016), transient or context-dependent (Styles
et al. 2016).

To address these limitations, additional assays have been directed
at the capture of dynamic responses. For example, high-throughput
fluorescence imaging studies can characterize microscopic phe-
notypes such as dynamic protein localizations and abundances
(Dénervaud et al. 2013; Kraus et al. 2017). Although limited in
scalability, liquid micro-culture assays, in which the growth curves
of mutant strains are analyzed, permit characterization of dynamic
growth responses as well as identification of marginal fitness phe-
notypes (Warringer et al. 2003; Toussaint and Conconi 2006). Recent
efforts have been made to improve scalability of growth curve anal-
ysis by leveraging existing genetic mutant colony array technology
(Hartman and Tippery 2004; Shah et al. 2007; Banks et al. 2012;
Zackrisson et al. 2016; Barton et al. 2018).

The DNA damage response (DDR) is a collection of complex and
dynamic mechanisms that ensures detection and repair of DNA
damage as well as coordination of repair with other cellular phys-
iological processes such as cell cycle arrest and damage tolerance.
Ultraviolet radiation (UVR) is a ubiquitous environmental source of
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DNA damage, mostly in the form of UV-A (320-400nm) or UV-B
(280-320nm) waves. UV-C waves (200-280nm) are largely filtered by
the atmosphere (Matsumura and Ananthaswamy 2004), but, being
most efficient in DNA-damaging ability (Ravanat et al. 2001), are
routinely used in research. UVR primarily causes the formation of
helix-distorting cyclobutane pyrimidine dimers (CPDs) and 4-6-
photoproducts (4-6PPs), which are repaired by the nucleotide exci-
sion repair (NER) machinery. UVR also induces lower levels of
oxidative DNA damage, single-strand breaks, and protein-DNA
crosslinks (de Gruijl et al. 2001; Cadet and Wagner 2013), which
are repaired by base excision repair and other machinery (Prakash
and Prakash 2000; Sinha and Häder 2002; Schärer 2013). The DDR is
linked to many other cellular processes, such as transcription, rep-
lication, ubiquitination, and the cell cycle, highlighting the dynamic,
interconnected nature of this process (Prakash and Prakash 2000;
Srivas et al. 2013).

Here, we combine classical fitness measurements (i.e., colony
fitness, CF) with a dynamic fitness evaluation technique, Genome-
wide Evaluation Of Dynamic Events (GEODE), to examine the
response of S. cerevisiae to UV-C radiation. In addition to established
DNA repair genes, we find components of the CCR4-NOT complex,
autophagy, and tRNA wobble uridine modification. We also un-
expectedly find that many strains deficient in genes with mitochon-
drial functions are insensitive to UVR-induced DNA damage, posing
impaired mitochondria as a protective factor in the UVR response.

MATERIALS AND METHODS

Yeast strain identification
We chose to screen the diploid homozygous knockout yeast library
(ATCC, GSA-7). To validate all strain identities, we designed a
sequencing strategy by which to identify strains based on the unique
barcodes incorporated into the Yeast Knockout Library. Primers
(Table S1) capable of amplifying the UPTAG region (strain-specific
barcode) were designed such that the forward primer contained a
well-specific barcode. Combining this well-specific barcode with the
amplified UPTAG allowed us to uniquely identify strains and their
plate locations via pooled sequencing. The diploid library was found
to contain 4467 unique strains (See Figure S1, File_S1 for Supple-
mentary Methods).

Library maintenance and screening protocol
Using a Singer pinning robot (Rotor 100, Singer Instruments), the
library was up-scaled from 96 to 384-format. A liquid-handling robot
(Freedom Evo 200, Tecan) was used to re-array the library such that
each edge colony also appeared inside the plate. The yeast array was
maintained on agar + YPAD in 1536 format under G418 selection at
4C (for storage) or room temperature (for growth). The evening prior
to screening, 1536 plates were replicated onto 2% carrageenan plates,
prepared as previously described (Jaeger et al. 2015) containing
synthetic complete media (without G418) and grown overnight at
room temperature. To screen, the collection was upscaled to 6144-
density onto pre-warmed 2% carrageenan plates which were then
placed facedown (without lids) inside an imaging light-box on a
sanded, black acrylic surface. Plates were imaged with a Nikon D800e
camera, fitted with an AF Micro Nikon 60mm lens, using Camera
Control Pro 2 Software (Nikon). Grayscale images were taken at five-
minute intervals and stored as TIFF images. For UVR treatment,
plates were taken from the setup immediately after image #48 (4 hr),
placed, face-up without lid, into a UV cross-linker (Hoeffer UVC500-
115V) and treated with 15 · 103 mJ/m2 UV-C. They were immediately

placed back into the imaging station before image #49 was taken at
the next five-minute interval (i.e., no images were missed due to UVR
treatment). Imaging was continued up to 48 hr. The experimental
setup was repeated nine times, resulting in 18 plates per condition. In
further analysis, three of 18 plates were removed from analysis due to
insufficient imaging time.

Image analysis
Images were processed using MATLAB Colony Analyzer Toolkit
V2, which we make available. Image crops were defined manually
for each plate before and after UV treatment; colony grid place-
ments were manually defined for each plate (images 48, 49, 300)
usingManualGrid() and were reused for other images. Images were
smoothed using MATLAB’s imdiffusefilt() with default settings.
Colony borders were established with HalfModeMax(). Colony area
and colony intensity (i.e., the sum intensity of the pixels constituting
a colony) were extracted. Note that only colony intensities are
discussed/reported in this study. Colony intensities were spatially
corrected on each plate with the SpatialBorderMedian() function
with SpatialSmooth() and BorderMedian() options. Growth curves
were smoothed with smoothdata() using the rlowess option over a
window of 48 timepoints (4 hr).

Data analysis
Any colony with fewer than six data replicates in either untreated or
UVR-treated conditions was removed. Data for colonies appearing
&amp;gt;1x on the 6144-plate were regarded as extra replicates,
resulting in analysis of 4294 unique strains. Due to overgrowth at
later timepoints, the dataset was restricted to the first 40 hr of growth.
Growth curves were normalized to a colony intensity of zero (total
pixel intensity of colony). End-normalized curves were computed by
normalizing each curve to its final colony intensity. Plate-specific
reference curves were calculated as the median curve from all strains
on a plate. Deviation profiles were calculated by comparing plate-
specific reference curves to observed colony curves. LagVstall was
computed from deviation profiles as the sum of distances between a
given endpoint-normalized curve and the reference curve for that
plate. Colony fitness was extracted as the final colony intensity of each
colony on plates. LagVstall and colony fitness were Z-scored using
MATLAB’s normalize() function with ‘robust’ settings, which nor-
malizes to a median absolute deviation of one. Colony intensities or
lagVstall were compared between UVR-treated and untreated con-
ditions using ttest2(), and q-values were calculated using mafdr(),
based on a previously defined method (Storey et al. 2002). Both
q-values and uncorrected p-values are reported. Figures with shaded
standard deviation around growth curves were generated with a
modification of stdshade() (Musall 2010).

GO term enrichment, other gene set enrichment
The dataset was filtered for the 95th and 5th percentiles of untreated
lagVstall, resulting in 215 genes from each tail. These gene sets (Table
S2) were tested for Gene Ontology (GO) term enrichment by hyper-
geometric test using MATLAB’s hygedcdf() as 1-hygecdf(x-1,M,K,N),
where hygecdf() calculates the probability of drawing up to x successes
in N samples drawn without replacement from total population K,
which contains M items with the desired characteristic. Significant
GO terms were selected at an q-value cutoff of 0.05 (adjusted as
described previously). Fold enrichment was calculated as the fre-
quency of the term in the nominated strains divided by the frequency
of the term in the overall dataset. Genes not present in the screen were
not considered. Only enriched GO Biological Process terms are
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reported. GO Biological Process terms used for enrichment anal-
ysis were obtained from the GO Consortium (2020-01-01, http://
doi:10.5281/zenodo.2529950).

DDR and mitochondrion-annotated gene sets were queried using
YeastMine (Cherry et al. 2012; Balakrishnan et al. 2012). Specifically,
the GO terms “mitochondrion” and “DNA damage response” (and
children of these terms), as well as the phenotype “UV Resistance
Reduced” were queried. Other gene sets were obtained from the
indicated resources (Figure 3, Table S4). Hypergeometric tests and
fold enrichment analysis were performed as described above. Genes
not present in the screen were not considered. Three-way Venn
diagrams were created with EulerAPE (Micallef and Rodgers 2014).

YeastNet visualization
YeastNet v.3 (Kim et al. 2014) was downloaded and visualized in
Cytoscape 3.8.0 (Shannon et al. 2003). The network was subsetted for
genes nominated by either colony fitness or lagVstall. Note that these
networks are slightly smaller than the full gene sets nominated in our
screen due to YeastNet’s lack of ‘dubious ORFS’ (222/247 colony and
295/326 genes nominated by colony fitness and lagVstall, respec-
tively). Edges with weights $ 1.5 were filtered. GO enrichment was
performed and visualized on these subnetworks using BinGO (Maere
et al. 2005). Alternatively, gene sets of interest were queried on
YeastMine and visualized on the network.

Data availability
The following items have been included as supplemental files in GSA
Figshare: Descriptions of supplemental files (File_S1), 40-hour data-
set (File_S3) including all pre-processed (spatially-corrected) and
normalized replicate colony intensities; 24-hour restricted dataset
(File_S4), scripts used for data processing (File_S5,6), and scripts
required to reproduce figures presented in this paper (File_S7,8).
The MATLAB Colony Toolkit Analyzer V2 software is available
on GitHub (https://github.com/idekerlab/Matlab-Colony-Analyzer-
Toolkit-v2.git). The following items are available upon request: raw
image files in TIFF format, preliminary processed datasets, scripts
used in image processing and plate normalization, and sequencing
files/scripts for library strain identification. Supplemental material
available at figshare: https://doi.org/10.25387/g3.12685667.

RESULTS

High-throughput growth curve analysis with GEODE
We sought to establish a platform for the efficient capture and
analysis of genome-wide dynamic growth curves. We achieved this
platform by combining time-lapse imaging with an ultra-high-
throughput 6144-colony array (Bean et al. 2014), which permits
interrogation of an entire yeast gene deletion library on a single agar
plate. We elected to screen non-essential strains using the homozy-
gous diploid gene knockout library (Winzeler et al. 1999), which is
less subject to the effects of secondary site mutations than the haploid
library more typically used for genetic screens (Giaever and Nislow
2014). As each parental haploid strain involved in the creation of the
diploid library had been generated via independent transformations,
deleterious secondary site mutations are thus limited to two scenarios:
the independent generation of the same mutation in both parental
haploid strains, or deleterious haploinsufficient mutations created in
a single parental haploid strain. To further improve screen quality, we
verified the identity of all gene knockout loci via pooled barcode
sequencing, updating strain annotations in 316 cases (Supplementary
Methods, Fig S1A-D). The yeast library was robotically pinned in

6144-array format and imaged for 40 hr, (Figure 1A) with or without
UVR treatment administered at 4 hr of growth. After spatial correc-
tion and selection for high-quality growth curves (Materials and
Methods), we analyzed the growth of 4294 unique diploid knockout
strains, encompassing, on average, 11 replicates per strain per
treatment (Figure 1A, B).

We noted that many strains followed a similar growth trajectory,
approximated by median population growth (dashed line, Figure 1C).
We observed a diversity of growth trajectories about this curve
(Figure 1B), raising the question of how to best identify, characterize
and compare the significant differences. For example, consider the
growth of strains deleted for the gene MSR1, encoding a nuclear-
encoded mitochondrial tRNA synthetase, or RPL37A, encoding a 60s
ribosomal subunit (Cherry et al. 2012). Both strains demonstrated
decreased, yet similar, final colony intensities compared to the global
population (Figure 1C). However, the two strains followed different
growth trajectories in untreated conditions: msr1D tracked the pop-
ulation median trajectory for a short time, but then fell progressively
behind the population, whereas rpl37aD grew slowly throughout the
time course.

To standardize all growth curves for comparison, we normalized
each curve to a final colony intensity of one, such that each normal-
ized curve reflected progress of growth as a fraction of final colony
intensity (Figure 1D). Post-normalization, we observed that many
colonies now followed a similar trajectory (gray lines, Figure 1D)
which was well-represented by the population median line (dashed
line, Figure 1D). Conversely, the example strains were distinctly
different:msr1D (red line, Figure 1D) lay distinctly above the median
curve, while rpl37aD (blue line, Figure 1D) remained below the
median curve.

To quantitatively capture these differences, we calculated “de-
viation profiles” from the endpoint-normalized curves, reflecting the
distance from each curve to the population median at any point in
time (Figure 1E). We then calculated the integral of this curve, a
growth-comprehensive metric which summarizes overall deviation of
any particular growth curve from the population median. For reasons
discussed below (Figure 2), we named this metric “lag,” when
negative, and “stall,” when positive. Less fit colonies (determined
by traditional endpoint analysis) exhibited more variable growth
trajectories, and thus tended to have larger magnitudes of this metric,
which we henceforth call lagVstall (wide range of lagVstall in Figure
1F for low colony fitness). Importantly, lagVstall distinguished the
growth behaviors of msr1D and rpl37aD (Figure 1F).

GEODE reveals dynamic growth phenotypes across
mutant strains
We inspected the growth curves of strains with extreme lagVstall
scores (5th, 95th percentiles), which demonstrated strong deviation
(Figure 2A). Stall strains (red line, Figure 2B) tended to closely follow
the population trend for initial growth, but then stalled, falling
progressively behind the population median (dashed line, Figure
2A). In contrast, lag strains (blue line, Figure 2B) tended to grow
slowly for the duration of the experiment and stayed consistently
below the population median. Similar trends were observed upon
examination of growth rates: stall strains exhibited progressively
slower growth rates compared to the population, while lag colonies
started out with much slower growth rates that eventually matched
the population during stationary growth (Figure 2C). We found that
the lag gene set was enriched for gene functions involved in ribosome
synthesis and translation (7/7 enriched Gene Ontology categories,
Table S3), while the stall gene set was enriched for functions involved
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in respiration and mitochondria (8/9 enriched Gene Ontology cat-
egories, Table S3). Together, these results gave us confidence that
lagVstall can translate diverse growth trajectories in a manner that
integrates strain fitness and growth rates to inform biological
function.

Nomination of UVR-responders
We next turned to the comparison of the UVR-treated (UVR) and
untreated (UT) datasets. Initial inspection of the entire diploid gene
deletion dataset demonstrated strong reproducibility with high cor-
relation across replicates (⍴ = 0.97UT:UT; 0.92UVR:UVR), and even

across treatments (⍴ = 0.92UVR:UT) (Figure S2A), indicating that most
strains did not demonstrate a change in lagVstall due to treatment.
We employed a t-test to compare untreated vs.UVR-treated lagVstall
and colony fitness. This test nominated 494 genes whose knockout
modulated the response to UVR; 168 strains were identified by colony
fitness, 247 by lagVstall, and 79 by bothmetrics (q-value cutoff = 0.05,
Table S5). We noted that 67 nominated strains were annotated to the
DDR, representing 5.6 and 2.8-fold enrichments for sets of strains
nominated by colony fitness and lagVstall, respectively. In addition,
70 nominated strains had previously been associated with UVR
sensitivity (3.6- and 2.3-fold enrichment for colony fitness and

Figure 1 UVR Screen Pipeline. A) Schematic describing the UVR sensitivity screen. Plates were pinned and imaged for four hours at 5-minute
intervals. Plates were then treated with UVR and imaging was resumed for 36 hr at 5-minute intervals. Growth curves were extracted and analyzed,
resulting in the nomination of 326 genes by lagVstall (q-value cutoff = 0.05) and 247 strains by colony fitness (q-value cutoff = 0.05), with an overlap
of 79 genes. B) Heatmap of growth curves obtained for all strains in untreated conditions. Purple and green coloring represent timepoints when a
given curve existed above or below the median of all strains in the screen. C) Colony intensity (plate-normalized total pixel intensity) vs. time curves
for a subset of ten strains and two strains of interest, msr1D and rpl37aD. Average curves are shown; shaded areas represent standard deviation.
D) Endpoint-normalized growth curves for previously noted strains, reflecting progress to final colony intensity. E) Deviation profiles for previously
noted strains. F) Median of non-treated replicate Z-scores for lagVstall vs. colony fitness (normalized pixel area).

Figure 2 LagVstall Phenotypes. A) Deviation pro-
files for strains with extreme lagVstall. Average
curves are shown; shaded area represents stan-
dard deviation of each group of 214 strains.
B) Colony intensity (plate-normalized total pixel
intensity) vs. time. C) Growth rate (dPI/dT; PI, pixel
intensity) vs. time.
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lagVstall, respectively, Figure 3A and Table S4). We thus conclude
that we have nominated a set of genes with functional relevance to the
UVR response.

To further identify functional linkages among the nominated gene
set, we visualized the significant results on YeastNet, an integrated
gene-gene functional similarity network (Kim et al. 2014). One
notable difference between the colony fitness and lagVstall sets
was the differential abundance of DDR-annotated and mitochon-
drion-annotated genes. While colony fitness more robustly recovered
DDR-annotated strains (62/247 strains, Figure 3B, Figure S3A, Table
S4), lagVstall more robustly recovered mitochondrion-annotated
strains (121/326 strains, Figure 3C, Figure S3B and Table S4). In
the YeastNet subnetwork for colony fitness, DDR-annotated genes
were tightly connected, while mitochondrial genes were more loosely
connected, save for a dense cluster encoding components of the
mitochondrial ribosome (green nodes with black border, Figure 3B).
The lagVstall subnetwork demonstrated two densely connected
clusters, corresponding to mitochondrial and DDR genes, respec-
tively. The CCR4-Not complex was enriched in this network (yellow
nodes, Figure 3C). We also identified components of autophagy and
tRNA wobble uridine modification (Figure S3C).

Finally, we sought to understand differences in UVR response
behavior for DDR vs. mitochondrial-deficient strains. Many DDR-
deficient strains demonstrated reduced fitness (Figure 4A) and tended
to shift toward a stall phenotype upon UVR treatment, either by
increasing in stall phenotype severity or by overtly shifting from lag to
stall (Figure 4B, Table S5). For example, we observed that disruption
of DEF1, an RNAPII degradation factor associated with transcrip-
tion-coupled NER, led to extremely slow growth in non-treated
conditions that only matched population growth during stationary
phase (Figure 4Ci, ii). UVR-treatment severely perturbed growth,
preventing def1D from matching the population even during sta-
tionary phase (Figure 4Ciii, iv). In contrast, disruption of mitochon-
drion-annotated genes led to increased fitness (Figure 4A) and a
switch from a strong stalling phenotype to a unique, less-severe
stalling phenotype upon UVR treatment (Figure 4B, Table S5).
For example, the strain mrpl6D, which is deficient in a component
of the mitochondrial ribosome, fell progressively behind population

growth in non-treated conditions (Figure 4Di, ii). However, UVR
treatment reduced this difference such that mrpl6D did not fall
behind as rapidly, resulting in a modest increase in relative fitness
by the end of the screen (Figure 4Diii, iv).

DISCUSSION
In this study, we have applied GEODE, an ultra-high throughput
dynamic growth analysis technique to study the UVR response. In
addition to expected findings, such as involvement of DNA damage
repair genes, we also highlight a role for mitochondria in this
response.

Screen design
We elected to screen the homozygous diploid knockout library. With
two copies of each chromosome, phenotypes due to spurious muta-
tions should be rare. One ongoing issue affecting such genome-wide
screens, however, is the possibility of strain mixing or strain mis-
identification, as strains are stored in high-density arrays and handled
almost exclusively with robotic tools. In an effort to minimize the
impacts of mis-identified strains, we sequenced barcodes from our
yeast homozygous diploid knockout library in its 96-well form. This
resulted in identity correction for 316 strains. While it is possible that
mixing or alterations could have been introduced at later screening
stages, use of sequencing to verify strain identities was a crucial initial
step toward maximizing data quality.

Stall and lag growth phenotypes
Analysis of the dynamic growth data revealed two growth pheno-
types: stall vs. lag. The lag trajectory is characterized by continuous
poor growth. Strains demonstrating this phenotype were most
enriched for ribosome synthesis functions. It can be inferred that
these strains are deficient in fully-functional ribosomes and may thus
be translation-incompetent (Steffen et al. 2008, 2012), potentially
explaining the depressed growth trajectories we and others have
observed (Warringer et al. 2003; Steffen et al. 2008, 2012).

The stall trajectory is characterized by a period of growth that
resembles the population, after which the colony of interest stalls,
falling progressively behind. Strains exhibiting this phenotype were

Figure 3 UVR-responsive Strains. A) Chart demonstrating results of gene set fold enrichments on strains nominated by colony fitness (CF) and
lagVstall (LVS). Shading denotes significant result by hypergeometric test; cells with non-significant results have been left blank. Full results can be
found in Table S4. B, C) CF and LVS-specific subnetworks of YeastNet V3, respectively, with edge weight thresholded to $ 1.5. Green denotes
mitochondrial annotation; black border denotes annotation tomitochondrial ribosome. Pink denotes DDR-annotation. Yellow denotes components
of the CCR4-NOT complex.
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most enriched for mitochondrial functions. Our use of glucose-
containing medium may explain enrichment for these functions.
When present, glucose promotes ATP generation by fermentation;
enzymes required for metabolism of other carbon sources only appear
when glucose becomes limiting (Gancedo 1998; Merz and West-
ermann 2009). Thus, growth defects for respiration-deficient strains
are only observed when glucose is limiting and a switch to aerobic
respiration is required.

UVR-deviant strains
In our application to the UVR response, we nominated 494 UVR-
responding genes at an q-value cutoff of 0.05. 67 of these strains have
a previously identified role in the DDR, known sensitivity to UVR, or
both; 301 have known or predicted human orthologs, and therefore
may be functionally relevant outside of Saccharomyces. Additionally,
we noted that knockout strains identified by lagVstall trended
strongly toward resistance, while strains nominated by colony fitness
trended toward sensitivity, highlighting the need to examine both
static (colony fitness) and dynamic (lagVstall) metrics to gain a full
picture of the UVR-induced response.

Phenotypes of DDR-annotated strains
A subset of DDR-annotated strains tended to exhibit lag phenotypes
in non-treated conditions. DDR-deficient strains are known to be
afflicted by higher-than-usual basal mutation rates, aneuploidies, and
chromosomal rearrangements (Evert et al. 2004; Serero et al. 2014);
consequences of increased basal mutation include abnormal cell growth,
morphology, and increased DNA content (Evert et al. 2004), all of which

could conceivably contribute to a lag phenotype. Notably, UVR treat-
ment caused a shift toward stalled growth for some DDR-deficient
strains, such as def1D. The overall impact of UVR treatment is to slow
growth until cells repair DNA damage. While most strains recovered
rapidly from UVR treatment, DDR-deficient strains, such as def1D,
were likely unable to repair damage. The impediment to growth
endured into the stationary growth phase, thus producing a stall
phenotype in some of these strains.

Mitochondrial-annotated UVR-deviant strains
Mitochondria produce ATP and play important roles in amino acid,
nucleotide, and Fe-S cluster cofactor metabolism (Malina et al. 2018);
they are additionally a significant source of intracellular reactive
oxygen species. While it is known that nuclear-mitochondrial cross-
talk mediates coordination between the cell and its energetic factory
(Saki and Prakash 2017), the exact relationship between mitochon-
dria and DNA damage remains unresolved. Some studies report
transcriptional repression (Gasch et al. 2001; Jaehnig et al. 2013) or
inhibition of respiratory activity (Kitanovic et al. 2009) in response to
DNA damage, while other studies report a protective role for respi-
ration in response to DNA damage (Sung et al. 2010; Bu et al. 2019).
Uncertainties regarding the role of mitochondria extend further to
tumorigenesis, where mitochondrial abnormalities have long been
observed.

We were surprised to find that many strains deficient in genes
annotated to mitochondria were relatively resistant to UVR treat-
ment. It is possible that slowed growth due to UVR treatment was
associated with slower glucose depletion and thus prolonged anaerobic

Figure 4 Characteristics of DDR and mitochondrial
strains in response to UVR. A) Histogram of change
in colony fitness (UVR - Untreated Z-scores).
B) Histogram of change in lagVstall (UVR-Untreated
Z-scores). C, D)Growth curves fordef1D (red curves)
and mrpl6D (green curves), respectively. Shaded
area represents standard deviation; black line rep-
resents median curve for all strains in screen.
i, Colony intensity (plate-normalized total pixel in-
tensity) vs. time in untreated conditions; ii, Growth
rate (dPI/dT) vs. time in untreated conditions;
iii, Colony intensity (plate-normalized total pixel in-
tensity) vs. time in UVR-treated conditions; iv, Growth
rate (dPI/dT) vs. time in UVR-treated conditions.
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growth. However, prolonged anaerobic growth would equally benefit
all strains, since glucose inhibits respiration. Instead, our results would
seem to support a role for mitochondrial impairment in improved
recovery from UVR, as evidenced by weakening of stall growth
phenotype for strains such as mrpl6D. One possible explanation is
that an increased basal level of nuclear DNA damage resulting from
mitochondrial impairment (Rasmussen et al. 2003) ‘primes’ cells to
respond to subsequent induced DNA damage. If so, the protective
effects of mitochondrial impairment may be specific to the damaging
agent; differential resistance of respiration-deficient strains to H2O2

and 4NQO has indeed previously been reported (Rasmussen et al.
2003). Further supporting the possibility of damage type specificity,
47 knockout strains whose gene products localize to themitochondrion
were previously identified in another screen for UVR sensitivity, but
not 4NQO sensitivity (Begley et al. 2004). Further research will be
required to determine the mechanism by which mitochondrial im-
pairment may specifically influence resistance to UVR-induced DNA
damage.

Other UVR-deviant groups
We identified four components of the CCR4-NOT complex, which
regulates nucleotide production in response to replication stress and
DNA damage via induction of ribonucleotide reductase genes fol-
lowing treatment (Mulder et al. 2005). Consistent with previous
results, three knockout strains (ccr4D, mot2D, and pop2D) demon-
strated sensitivity to UVR and other damaging treatments, and one
strain (caf16D) did not. It is notable that this strain was identified on
the basis of lagVstall in our screen, and not strain fitness, possibly
indicating a transient UVR-associated phenotype that has yet to be
investigated.

We additionally noted autophagy and tRNA wobble uridine
modification components on the basis of lagVstall but not colony
fitness. It is well accepted that autophagy is induced in response to
DNA damage and plays roles in both repair of damage as well as cell
death resulting from DNA damage (Eliopoulos et al. 2016). Likewise,
modification of the wobble position on tRNAs has been shown to be
important in the production of selenoproteins, which are involved in
the detection of reactive oxygen species (Endres et al. 2015). Notably,
inspection of corresponding growth curves revealed few obvious
changes in growth pattern or strain fitness.
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