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Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports
learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit
characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence
of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between
spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children
with NDD and their relation to cognition in light of what is known in typically developing children and based on the available
evidence regarding childrenwithNDD.We integrate available data, identify gaps in understanding, and recommend future research
directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and
nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that
future studies should examine associations between sleep spindle characteristics and cognitive function in children with and
without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles
could improve sleep-dependent memory and other aspects of cognitive function in this population.

1. Introduction

Neurodevelopmental disorders (NDDs) are a heterogeneous
group of conditions in which the development of the central
nervous system is disrupted. Manifestations can include
impairments in motor function, learning, cognition and/or
communication, or neuropsychiatric problems. These issues
appear early in development, persist throughout life, and
produce notable impairments in social, communicative, cog-
nitive, and behavioral functioning [1] that can vary from
very specific limitations to global impairment in intelligence
and social skills. This group of disorders includes intellec-
tual disability (formerly referred to as mental retardation),
communication disorders, autism spectrum disorder (ASD),
Attention Deficit Hyperactivity Disorder (ADHD), specific
learning disorders, and neurodevelopmental motor disorders
including cerebral palsy (CP).

Sleep is a vital process for brain restoration and it is
critical for maintaining cognitive function. Strong empirical

evidence indicates that sleep spindles facilitate the plasticity
which supports learning, memory consolidation, declarative
learning, motor skills, and overall intellectual performance.
The cognitive functions that are related to sleep spindles are
also key domains of dysfunction in children with NDD [2].

Clinically significant sleep problems are prevalent in
children and adolescents with NDD [3, 4]. Among children
with neurocognitive difficulties, the impact of disrupted sleep
spindle generation may be amplified. Hence, the characteris-
tics of NDD may increase both the risk for and vulnerability
to abnormal sleep spindle generation.The goal of the present
review is to review and integrate existing evidence regarding
sleep spindle characteristics in children withNDD and, when
evidence is available, to examine the associations between
these characteristics and cognitive function.

A better understanding of relationships between sleep
and NDD is expected to provide insight into the pathophys-
iology and possibly the treatment of such disorders and
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improve our understanding of the association between sleep
spindles and cognition in children. It is likely that sleep spin-
dle characteristics represent a marker of brain development
and function, as well as a window into underlying brain
mechanisms that support cognition.

We will first briefly describe sleep spindle development
and its relationship with cognitive development and function
in typically developing children. We will then review the
available evidence regarding sleep spindle characteristics in
children with a variety of NDDs and their relation to cog-
nition. Finally, we will discuss the findings, identify gaps in
understanding, and recommend future research directions in
this emerging area of investigation.

2. Sleep Spindles in Typically
Developing Children

Sleep spindles represent an oscillating electrical potential in
the brain; they have a characteristic frequency of 11–16Hz
(usually 12–14Hz in healthy adults) and last from one to
several seconds in duration [5]. On scalp electroencephalog-
raphy (EEG), spindles are seen as sinusoidal waves that often
have a fusiformor “crescendo-decrescendo”morphology [6].

Sleep spindles are characterized by their symmetry;
synchrony between hemispheres; amplitude, which is the
peak-to-peak difference in spindle size, reflecting voltage;
frequency, which is the number of waveforms per second;
density, which is the number of spindle bursts/min of NREM
sleep; and the duration of spindle bursts. In infants, sleep
spindles last several seconds in duration, are expressed
maximally in the frontocentral location, are in the high alpha
or low beta frequency range, and are not synchronous. The
lack of synchrony is likely due to lack of myelination in the
neonatal brain. By 2 years of age, it is considered abnormal if
most spindles are still asynchronous [7]. In older children and
adults, sleep spindles are expressed diffusely across the head
but maximally over the central regions and in a bilaterally
synchronous and symmetric fashion [7]. Moreover, sleep
spindles can be divided into two distinct types based on
their frequency and field of expression. Slower spindles (9 to
<13Hz) occur maximally over the frontal regions, whereas
faster spindles (>13–16Hz) dominate [8, 9] over the central
and parietal head regions and typically precede slow spindles
by hundreds of milliseconds [9–11].The slow spindles display
a typical waxing-and-waning pattern, whereas fast spindles
are mainly waning [12]. This difference begins to develop
at around 2 years of age [13]. The two populations of sleep
spindles are thought to arise from and represent different
generators within the thalamus, with some level of cortical
involvement. They also demonstrate different maturational
patterns, suggesting that their development is associated
with changes in thalamocortical structures and maturation
of the physiological systems that produce spindles [6, 14,
15]. Shinomiya et al. suggested that separate investigation of
the two types of spindles may be important in evaluating
developmental processes in the central nervous systems of
children and adolescents, and that frontal spindle activity
could represent a good indicator of biological maturation
[15].

2.1. Generation of Sleep Spindles. Sleep spindles are a pro-
totypical thalamocortical rhythm generated and “paced” in
the thalamus via a network of synaptic interactions involving
inhibitory (GABAergic) neurons in the reticular thalamic
nuclei, thalamocortical cells, and cortical pyramidal neurons
[16]. In animal models, the spindle rhythm is abolished
by destruction of the thalamus, whereas it persists after
decorticationwhen the thalamus is preserved [14, 17]. Spindle
frequency is determined in large part by an interplay between
mutually interconnected GABAergic inhibitory neurons of
the reticular nucleus of the thalamus and the thalamocortical
neurons, with influence from inputs of the cortex and
brainstem [14]. Reticular thalamic neurons impose hyperpo-
larization on thalamocortical neurons, thereby activating a
nonspecific cation current that depolarizes the thalamocorti-
cal neurons and activates low-threshold calcium ion currents
and bursting. The latter process provides feedback excitation
to reticular thalamic neurons, thus closing the loop. Each
thalamocortical burst also imposes an excitatory postsynaptic
potential (EPSP) on pyramidal neurons, providing the basis
for the spindle waveforms observed on scalp EEG.

2.2. Development of Sleep Spindles. In typically develop-
ing children, very early (“rudimentary”) spindles may be
observed as early as term to 2 weeks postterm [15, 18–
21] and it was proposed that they could appear earlier in
premature infants [22]. Spindles become more easily iden-
tified between 3 and 9 weeks postterm, when they often
occur in relatively long trains lasting up to 10 seconds during
quiet sleep [21, 23, 24]. In the first 6 months, spindles may
occur unilaterally, often alternating between hemispheres.
Asymmetry is common as well. Spindles become increasingly
more synchronous between hemispheres during the first year
of life, reflectingmaturation of interhemispheric connections
[25]. By 12 to 18 months, most sleep spindles are expressed
in a bilaterally synchronous and symmetric fashion, with
maximal expression over the central regions.

Maturation alters sleep spindle activity in terms of the
spindle frequency, amplitude, duration, and density [15, 18–
20, 26, 27]. Changes in the development of spindle duration
and density are thought to follow a U-shaped distribution,
whereas that of the interspindle interval shows an inverted
U-shape. Three distinct phases of sleep spindle development
have been proposed: (1) infants up to 9-10 months old exhibit
long spindles (around 1.5 s) having a relatively low density
(<3/min) and a relatively short interspindle interval (around
20 s); (2) children from 10 months up to 3 years exhibit
a decrease in the spindle length (to around 0.8 s) and an
increase in the interspindle interval (up to 111 s), yielding an
even lower spindle density (0.3–1.2/min); and (3) over three
years of age, children show short interspindle intervals (5–
10 s) and long spindle durations (0.9–1.5 s) of high density
(4–10/min).These changes presumably reflect developmental
changes in thalamocortical structures and maturation of
the physiological system that produces spindles [26, 27].
Sleep spindle peak frequencies increase from childhood to
adolescence [15, 28, 29], when global maturational changes
in sigma power predominate in the slow sigma frequency
band [29]. The topographic representation of sigma power
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provides insight into these age-related changes [30] by show-
ing that the fast sigma power increases over the centroparietal
areas, while the slow sigma power decreases over frontal
areas across childhood and adolescence [15, 30]. Given the
association between neural maturation and changes in sleep
spindle activity, it has been proposed that sleep spindles could
be used as a potential index of neural maturation [27].

2.3. Sleep Spindles and Cognitive Development in Typically
Developing Children. Intellectual ability is closely related to
cortical development in children and adolescents. Intelli-
gence is associated with the trajectory of cortical devel-
opment, primarily that of the frontal regions which are
implicated in the maturation of intelligence [31, 32]. Synaptic
density increases until around puberty (11 years for girls and
12 years for boys), whereupon synaptic pruning begins [33].
In fact, vigorous cortical thinning by early adolescence has a
positive association with IQ [34].

A similar pattern is seen in the developmental changes
of sleep spindles. Initially, during development, the increased
neuronal connectivity results in higher sleep EEG amplitudes
because the size of these waves reflects the number of
synaptic connections [31, 35–37]. Thereafter, pruning results
in smaller neuronal populations that oscillate in unison, with
corresponding decreases in EEG power.These changes in the
brain appear to parallel the rapid development of cognitive
abilities at similar ages [31, 33, 38–43]. Synaptic pruning and
increasing myelination during adolescence result in faster
and more efficient information processing, which is mani-
fested by an increased ability to perform complex cognitive
operations, increased speed and efficiency in completing sim-
ple information-processing tasks, and improved performance
on intelligence tests across adolescence [37].

Slow spindles have been correlated with visual perceptual
learning [44], while fast spindles have been correlated with
more complex abilities and processes, such as fluid intel-
ligence [45], learning ability [46] and word-location associ-
ations [47]. It has been proposed that they could be used as
a neurobiological indicator for the level of cognitive devel-
opment.

2.4. Sleep Spindles and Cognitive Function in Typically Devel-
oping Children. Theprocesses underlying sleep spindles have
been hypothesized to benefit cognitive functions and “off-
line” information processing in several ways. First, it is
assumed that sleep spindles serve as a “gating mechanism”
to protect sleep from being interrupted by external stimuli,
such as noise [48], thereby allowing optimal time for off-line
information processing. Historically, thalamocortical (TC)
cells were thought to gate sensory transmission by switching
from tonic to burst dischargemode [16].The bursting pattern
occurs during NREM sleep in the form of sleep spindles,
while the tonic pattern of activity occurs in wakefulness.
The tonic activity pattern was thought to relay sensory
information to the cortex via the thalamus from a variety
of afferent inputs, while the bursting or spindle pattern was
thought to serve a gating role.More recently, researchers have
proposed that both modes can relay stimuli to the cortex.
However, while tonic spikes reliably transmit information,

the stereotyped discharge profile of bursts leads to nonlinear
distortion of sensory inputs [49]. Burst firing of TC cells
during spindles would thus filter external stimuli. It has
been proposed that one way in which sleep spindles could
support cognitive function is by blocking interference (i.e.,
performing a gating function) to allow uninterrupted off-line
processing and consolidation of information.

Sleep spindles appear to actively enhance information
processing via their role inmemory consolidation. Behavioral
studies in animal models and humans have shown that learn-
ing improves more during and following a period of sleep
than during an equivalent amount of waking time [50–52].
Neuroimaging studies have shown that the patterns of brain
activity elicited during initial learning are replayed during
subsequent sleep, demonstrating the presence of dynamic off-
line information processing [53]. Underlying this enhance-
ment or stabilization of memory across a sleep period is the
concept of sleep-dependent memory consolidation, whereby
memory traces become more stable and resistant to inter-
ference over a period of time. The consolidation of declar-
ative memory results from a dialog between reactivated
hippocampal memory traces and the neocortical networks
that retain long-termmemory representations [54]. In adults,
sleep-dependent consolidation of declarative memory has
been correlated with a range of neurophysiological measures,
including the amounts of slow wave activity (1–4Hz), slow
oscillations (0.5–1Hz), and sleep spindles. This indicates that
sleep plays an active role in the hippocampal-neocortical dia-
log [54]. Recent research conducted in children of different
ages has shown that their sleep-dependent consolidation of
declarative memory is comparable to that of adults, whereas
that of procedural skills is not [55, 56].

One explanation for how sleep spindles contribute to new
learning is related to the hypothesis that sleep spindles facili-
tate the priming of synapses for plastic changes, [57] thereby
enabling the off-line information processing that is essential
for learning to be completed [58]. Data from simulations of
sleep spindle activity have indicated that repetitive thalamic
bursts (similar to sleep spindle activity) generate robust entry
of Ca2+ into cortical dendrites [59], which produces condi-
tions that favor the priming of synapses for plastic changes
(i.e., by activating proplastic signaling molecules such as
protein kinase A and Ca2+/calmodulin-dependent protein
kinase II). The synaptic potentiation induced by spindles
is consistent with the hypothesis of “active system consoli-
dation” [60], which proposes that sleep spindles potentiate
memory traces by reactivating selected neuronal circuits.

In addition to the contribution of sleep spindles to creat-
ing the conditions that allow for optimal sleep (i.e., by gating),
brain plasticity, and memory consolidation, the characteris-
tics of sleep spindles have been shown to be stable within
subjects across different nights [6], and to correlate with
intellectual ability, particularly fluid intelligence. This has led
to the view that spindles, at least under non-pathological
conditions, constitute to some extent a biophysical measure
of intelligence.

In children, mixed results have been reported in regard
to the direction and strength of associations between the
different characteristics of sleep spindles and performance
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on intelligence tests and memory tasks. Geiger et al. found
that peak sleep spindle frequency was negatively correlated
with full scale IQ but that relative sigma power correlated
positively with full scale IQ and fluid IQ [61]. Gruber et
al. showed that lower sleep spindle frequency was associ-
ated with better performance on the intelligence perceptual
reasoning and working memory WISC-IV scales but that
sleep spindle amplitude, duration, and density were not
associated with performance on IQ tests [62]. Chatburn et
al. observed that the number of fast spindles was positively
correlated with narrative memory and negatively correlated
with sensorimotor functioning. Mean central frequency of
spindles was also negatively correlated with sensorimotor
functioning, planning ability, and working memory [63].
Hoedlmoser et al. found that children with higher sleep
spindle activity, as measured at frontal, central, parietal, and
occipital sites during both baseline and experimental nights,
exhibited higher general cognitive abilities (WISC-IV) and
declarative learning efficiency (i.e., number of recalled words
before and after sleep) [64].

Astill et al. reported that individual differences in the
dominant frequency of spindles and slow waves were pre-
dictive for performance on finger sequence tapping tasks.
Children performed better if they had fewer slow spindles,
more fast spindles, and faster slow waves. On the other hand,
overnight enhancement of accuracy was most pronounced in
children with more slow spindles and slower slow waves, that
is, the children with an initial lower performance at baseline.
Thus, associations of spindle and slow wave characteristics
with initial performance may confound interpretation of
their involvement in overnight enhancement. Slower fre-
quencies of characteristic sleep events may be a marker of
slower learning and immaturity of networks involved in
motor skills [65]. Bódizs et al. found that fluid IQ correlated
positively with fast spindle density and amplitude in girls and
that these correlations peak in the frontocentral regions. In
boys, by contrast, the only positive spindle-index of fluid IQ
was found to be the frequency of fast spindles [66]. Doucette
et al. observed that children with faster processing speeds
exhibited higher slow sigma power over the parietal region
[67]. For a detailed description of these findings in typically
developing children please see Table 1.

In summary, sleep spindles appear in early infancy, and
they change and develop through childhood and adolescence
in a progression that parallels the milestones of cortical
development. Sleep spindles appear to contribute to off-line
information processing by protecting sleep (and thus sleep-
dependent processes) frombeing interrupted.They also seem
to facilitate the brain plasticity that allows essential learning
to occur through processes such as memory consolidation.
Finally, certain characteristics of sleep spindles have been
correlated with intellectual performance, particularly fluid
intelligence.

3. Sleep Spindles in Children with
Neurodevelopmental Disorders

Despite the high prevalence of sleep problems in children
with NDD and the wide range of cognitive deficits in

this population, there is only limited information regarding
the characteristics and function of sleep spindles in this
population. Only a handful of studies have examined sleep in
children with NDD, and the existing data are limited in scope
and the range of disorders studied.The few existing studies on
the putative association between sleep spindles and cognitive
function have been conducted in children with intellectual
disabilities, ASD, reading disabilities, and ADHD. However,
although the body of knowledge is scattered, often based on
nonstandardized methods, not always up-to-date, and based
mostly on descriptive and correlational studies, it provides
important insights into the extent to which sleep spindles
are abnormal in these populations compared to typically
developing children. Moreover, the existing studies give us
an initial view of the nature and extent of the associations
between sleep spindles and different intellectual levels in chil-
dren with neurodevelopmental disorders or (in a few studies)
a more direct idea of the associations between sleep spindles
and information processing or intellectual performance.

3.1. Sleep Spindles in Children with Intellectual Disability.
Intellectual disability is characterized by three findings: an
intelligence quotient (IQ) of 75 or below; significant limita-
tions in adaptive behaviors; and onset of disability occurring
before age 18. In the past, the term “mental retardation” was
used to describe this condition, but this term is no longer used
[68]. The common causes of intellectual disability include
genetic conditions, brain insults during pregnancy, problems
at the time of birth, medical problems that affect brain health,
and exposure to environmental toxins (e.g., lead ormercury).

Sleep problems are more severe and more prevalent in
children with NDD than in typically developing children.
Insomnia in normally developing young children is most
often behaviorally based [69], whereas insomnia in children
withNDD ismore oftenmultifactorial, with neurologic,med-
ical, and psychiatric comorbidities contributing to behavioral
issues. Moreover, insomnia in NDD tends to be chronic,
often lasting into adolescence or adulthood [70]. Quine
showed that sleep problems are persistent in children with
developmental disabilities [71], and Wiggs and Stores found
that the average duration of sleep problems in such children
is 7.13 years (SD 4.04 years) [72].

Alarmingly high prevalence rates for sleep disorders have
been cited in children with intellectual disabilities: 86% in
children under 6 years old, 81% in those aged 6 to 11 years
old [71], and 77% in those aged 12 to 16 years old [73]. Night
waking and settling difficulties are particularly common,
affecting over half of children with NDD aged up to 16 years.
The chronicity of these problems was illustrated by Quine
[71], who found that half of children with NDD with settling
problems and over two-thirds of those with night waking
were still having problems 3 years later.

Sleep disorders are also highly prevalent in children with
ASD: recent studies have reported prevalence rates as high
as 40–85% in these children versus 20–40% in typically
developing children [74–76]. The commonly reported sleep
disturbances include prolonged sleep-onset latency, restless
sleep, frequent nocturnal awakenings, and reduced total sleep
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time. Fifty-three percent of 2- to 5-year-olds with ASD had at
least one sleep problem, compared with 32% of controls [77].
Children with ASD often take more than 1 hour to fall asleep,
andmany have nocturnal awakenings that may last as long as
2-3 hours [78]. Sleep problems in ASD tend to persist past
mid-puberty [79]. A longitudinal case-control study found
that insomnia was 10 times more likely to be reported in
ASD children than in controls, and that remission of sleep
problems at 11 to 13 years was far less likely in ASD children
than controls (8 versus 53%) [79]. The most common sleep
problems in ASD are sleep-onset delay, frequent nocturnal
awakenings, and reduced sleep duration [80].

As for ADHD, as many as 70% of children with this
disorder have been reported to display mild to severe sleep
problems [81]. The prevalence rates differ by ADHD subtype,
with the highest prevalence in the combined subtype [82],
though sleepiness may be more frequent in the inattentive
subtype [83]. In addition, psychiatric comorbidities andmed-
ication used both increase the prevalence of sleep problems in
ADHD [82]. Children and/or their parents reported bedtime
resistance, sleep-onset difficulties, night awakenings, difficul-
ties withmorning awakenings, sleep breathing problems, and
daytime sleepiness significantly more than healthy controls
[84]. Although there is no sleep problem specific to ADHD
[81], the most commonly reported issue is “difficulty falling
asleep [81].”

3.1.1. Sleep Spindle Characteristics in Children with Intellec-
tual Disability. In 1962, E. L. Gibbs and F. A. Gibbs [85]
reported the presence of “extreme spindles” in children with
intellectual disability. Extreme spindles are characterized
by their diffuse expression, much higher voltage (200–400
microvolts), and continuous occurrence. In addition, several
studies examined sleep spindles in children with intellectual
disability related to different genetic disorders [86]. These
disorders included the neuronal ceroid lipofuscinosis (NCLs)
[87] and Costello syndrome. The NCLs are a group of
inherited progressive neurodegenerative lysosomal-storage
disorders that are characterized by progressive intellectual
and motor deterioration, seizures, and early death resulting
from neural loss and widespread accumulation of lipopig-
ments within cellular compartments [86]. The incidence
(affected persons per live newborns) was reported to be
1 : 12,500 in theUSA and Scandinavian countries, whereas the
worldwide figure is 1 : 100,000 [88]. Children with NCLs were
found to lack sleep spindles.

Costello syndrome, which is an autosomal dominant
disorder caused by mutations in HRAS, has an estimated
birth prevalence of 1 : 300,000 in the UK [89]. Costello
Syndrome [90] is characterized by delayed development
and intellectual disability, loose folds of skin, unusually
flexible joints, and distinctive facial features including a
large mouth. Researchers observed an increase in spindle
amplitude (extreme spindles). Another study was conducted
in children with malformations of cortical development [91].
These congenital brain disorders arise during embryonic and
fetal development and are characterized by abnormalities in
the volume, location, and/or architecture of cerebral gray

and white matter. For eachmalformation subject, the authors
identified a nonepileptic age- and sex-matched control
patient for whom an EEG study had been performed within
one year of themalformation subject’s study, which was of the
same type and demonstrated at least one sleep spindle burst.
The authors found no difference between cases and controls
in the mean spindle density or mean maximum spindle fre-
quency, but significant between-group differences were seen
in the laterality and anatomical distribution of spindles. Mal-
formation subjects had a significantly higher proportion of
unilateral sleep spindles compared to controls. Furthermore,
although the sample sizes were small, subjects with unilateral
malformations appeared to demonstrate a skewing of unilat-
eral spindles toward the contralateral side, with fewer spindle
bursts on the ipsilateral side to the malformation. Finally,
malformation subjects had a significantly different overall
anatomical distribution of sleep spindles, with an increased
proportion of both anterior and diffuse spindles. Finally,
Shibagaki et al. [92] reported a high prevalence of children
withmalformations of cortical developmentwith no spindles,
low incidence of sleep spindles, and/or extreme spindles.

3.1.2. Sleep Spindles and Intellectual Performance in Children
with Intellectual Disability. In a series of studies [92–94],
Shibagaki et al. classified the participants’ levels of function-
ing according to their developmental quotients (DQs). They
used the Tsumori and Inage questionnaire for infants and
children, which divides the children into severe, moderate,
and mildly intellectually disabled groups. They included
children with intellectual disability associated with a range of
disorders (e.g., congenital cerebral dysplasia, hydrocephaly,
Rubinstein-Taybi syndrome, Down’s syndrome, and chromo-
somal abnormality) and performed several studies investigat-
ing the occurrences of sleep spindles in these children. They
found that children with intellectual disability frequently
have no sleep spindles and that these children tended to
have a lower DQ than those with intellectual disability with
sleep spindles [94]. They reported a significant increase in
abnormal clinical EEGs and a significant decrease in the DQs
of children with high occurrences of shorter or no sleep
spindles compared to thosewith higher occurrences of longer
sleep spindles [93, 95].

3.1.3. Sleep Spindles and Memory Consolidation in Children
with Intellectual Disability. No study has yet been reported
that assessed memory consolidation in children with intel-
lectual deficits.

Collectively, these studies show that children with intel-
lectual disabilities due to a variety of heterogeneous genetic
and developmental disorders show significant alterations in
sleep spindles, including few or no sleep spindles, extreme
spindles, and/or an increased proportion of unilateral spin-
dles. In addition, the degree of sleep spindle abnormality
is associated with the severity of cognitive impairment. In
conditions with progressive neurodegeneration, spindle loss
has been correlated with the state of the disease, with a
complete absence of spindles seen during the most severe
stages.
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3.2. Sleep Spindles in ChildrenwithAutism SpectrumDisorders
(ASDs). ASDs are neurodevelopmental disorders character-
ized by repetitive behaviors and deficits in social interaction
and communication. A diagnosis of ASD is made based on
a constellation of requisite behavioral symptoms, including
persistent deficits in social communication and interaction
across multiple contexts, as well as restricted and repetitive
patterns of behavior, interests, and activities.

3.2.1. Sleep Spindle Characteristics in Children with ASD.
Studies comparing children/adolescents with ASD versus
controls showed that the former had a lower sleep spindle
density (Godbout et al. [96]), fewer sleep spindles over the
central regions [97], a lower NREM stage 2 sleep spindle
density in the prefrontal area, and shorter sleep spindle
duration in the frontal area [98]. However, another study
failed to find any difference in sleep spindles when comparing
children with ASD and typically developing children [99].

3.2.2. Sleep Spindles and Intellectual Performance in Children
withASD. Reference [98] examined the associations between
IQ (measured by the WISC-III) and sleep spindle density or
duration in children with high functioning autism compared
to typically developing children. The authors found that ver-
bal IQ was negatively correlated with frontal spindle density
and positively correlated with central spindle duration in
typically developing children, whereas verbal IQ and the
full scale IQ were negatively correlated with central spindle
density in the ASD group.

3.2.3. Sleep Spindles and Memory Consolidation in Children
with ASD. One recent study [99] examined memory consol-
idation in children with ASD. Twenty-two participants with
ASD and 20 control participants between 9 and 16 years of
age were trained to criterion on a spatial declarative memory
task and then given a cued recall test. The subjects were
allowed a period of daytime wake (Wake) or a night of sleep
(Sleep), both of which were monitored with home-based
polysomnography. Upon retest, bettermemory consolidation
was observed in the Sleep group compared to theWake group
for both ASD and control children; however, participants
with ASD had poorer overall memory consolidation. The
change in performance across sleep, independent of medi-
cation and age, showed no significant relationship with any
specific sleep parameter other than the total sleep time, and
there was a trend toward less forgetting in the control group.

In summary, there are conflicting findings with respect
to sleep spindles in children with ASD. Whereas the data
from one research group suggest that individuals with ASD
have shorter spindle durations, lower spindle density, and
decreased sleep spindle frequencies, other groups have not
replicated these findings. In addition, childrenwithASDhave
poorer memory consolidation than controls.

3.3. Sleep Spindles in Children with ADHD. Attention deficit/
hyperactivity disorder (ADHD) is one of the most com-
mon NDDs in childhood, affecting approximately 3%–5% of
school-aged children [1] and enduring throughout adoles-
cence and adulthood. A diagnosis of ADHD is dependent

on developmentally inappropriate symptoms of inattention,
hyperactivity, and/or impulsivity, with onset before the age of
7 years and impaired functioning in two ormore settings [68].

3.3.1. Sleep Spindle Characteristics in Children with ADHD.
There are conflicting findings with respect to sleep spindle
characteristics in children with ADHD. Some studies [100]
failed to find any statistically significant difference in the
number of sleep spindles between hyperactive and control
children, while other studies found significantly fewer [101]
or more [102] sleep spindles in the EEGs of unmedicated
hyperactive boys compared to normal controls.

3.3.2. Sleep Spindles and Intellectual Performance in Children
with ADHD. No published study has yet examined this asso-
ciation.

At present, there is no consistent evidence for abnormal
or altered sleep spindle activity in children with ADHD
and sleep spindles activity per se has not been measured in
studies examining memory consolidation of children with
ADHD. However, there appear to be differences in the
memory consolidation of children with ADHD versus typ-
ically developing children [103, 104], in that sleep benefits
declarativememory in typically developing children, whereas
ADHD children show deficits in sleep-associated consolida-
tion of declarative memory and a reduced functionality of
slow oscillations in this consolidation. In contrast, although
procedural memory in typically developing children does not
benefit from sleep, the data suggest that sleep appears to
normalize the daytime deficits in procedural memory found
among ADHD children [104].

3.4. Sleep Spindles in Children with Dyslexia. Developmental
dyslexia is a hereditary neurological disorder that is char-
acterized by the presence of severe and persistent reading
and/or spelling impairments despite normal intelligence and
adequate schooling. Almost no studies are available on sleep
in children with dyslexia. The existing data have shown an
alteration of sleep architecture characterized by an increase
in slow wave sleep (SWS), a decrease in REM sleep, and a
longer REM sleep latency in children with reading disabilities
compared to controls [105].

One study [106] examined sleep spindles in 19 children
with developmental dyslexia and 11 normally reading chil-
dren between 7 and 16 years of age. The authors observed
increases in spindle activity and sigma power in children
with dyslexia and found that these parameterswere correlated
with the degree of dyslexic impairment. No information is
available regarding sleep spindles and memory consolidation
in this population. However, these results suggest that sleep
spindle abnormalities may exist in children with dyslexia and
that these abnormalities could be related to or correlated
with impairment. Additional studies are needed to test these
hypotheses.

4. Discussion

The goal of this paper is to review and integrate the available
evidence regarding sleep spindle characteristics in children



Neural Plasticity 21

with NDD and (when possible) their associations with
cognitive function. Before we attempt to integrate the find-
ings across different disorders, we must note the significant
methodological limitations of the existing work.Most studies
had small sample sizes and thusmight have overestimated the
effect size and/or be difficult to replicate. This becomes even
more challenging when researchers used data from the same
participants inmultiple publications (e.g., [94, 107]). Another
limitation involves the heterogeneity of the samples. First,
clinical heterogeneity is inherent with each of theNDDunder
discussion. In addition,many of the studiesmay have suffered
from developmental heterogeneity, as they lumped together
participants of different developmental stages in terms of
their puberty, sleep, and cognition. Heterogeneity may also
have arisen from the inclusion of participants having dif-
ferent intelligence levels and/or comorbid conditions. These
sources of heterogeneity cause us to question whether the
results could be generalized to other settings and situations.
Additional issues are related to methodological differences
between the studies, which make it difficult to compare
results directly. For example, in some studies EEG patterns
were recorded during a full night of sleep, while in others
sleep was induced by chloral hydrate during the daytime
and only sleep recordings from routine clinical EEG were
analyzed. In the latter case, medication effect cannot be ruled
out, and the amount of time spent in stage 2 NREM sleep was
limited, meaning that fewer sleep spindles were detected.

These noted limitations may be inherent challenges of
investigating sleep spindles and cognition in children with
NDD. It could be difficult to obtain larger, more homogenous
groups given the prevalence of the disorders and their clinical
nature which includes significant comorbidity and diversity.
Technically and financially, it is challenging to conduct
laboratory-based sleep studies in children who are challeng-
ing tomanage, often have difficulty tolerating electrodes, may
dislike being in an unfamiliar environment, and can resist
cognitive testing. Hence, practical issues pose real barriers for
the feasibility of large, homogenous studies that use objective
measures of sleep and cognition.

Our review integrates the existing data pertaining to
sleep spindle characteristics in children with NDDs and
examines the results from studies seeking to correlate these
differences with cognitive processes. Table 1 presents the
evidence we reviewed regarding sleep spindles in children
with NDD and in typically developing children. Several
studies have found lower spindle density [96–98, 108] and
extreme spindles [96] in children with ASD. In children
with intellectual disabilities, absence of sleep spindles [87, 93,
107], extreme spindles [85], increased spindle activity [90],
unilateral sleep spindles [91], and higher ratio of children
with long spindles [95] have been documented. In children
with dyslexia, increase in power of frequency bands 0.5–3Hz
and 11-12Hz during N2 have been found [106].This observed
phenotypic variability neither proves nor refutes the existence
of shared mechanisms in NDDs. However, shared molecular
mechanisms have been shown to operate across disorder
boundaries. It has also been suggested that, in the future,
NDDs may be defined as pathological deviation of specific
developmental processes and/or be seen to represent stages

on a continuum of neurodevelopmental causality [109, 110].
Although it has not been experimentally demonstrated, it is
possible that alterations of sleep spindles may interfere with
cognitive processes and behavior. Alternatively, it is possible
that a proportion of neurodevelopmental impairments and
sleep spindle alterations arise as independent manifestations
of an underlying brain abnormality.

Even given the abovementioned issues, certain factors
could be better controlled to meaningfully decrease the het-
erogeneity of the studies, thereby improving their relevance,
validity, and generalizability. For example, better control of
age and sex would allow future studies to focus on groups
that are homogenous in these parameters.More studiesmight
be required to cover all age groups for both sexes, but the
information obtained in each study (even using small sample
sizes)will bemore significant.Thiswill improve reproducibil-
ity and prevent findings which lack reliability.

4.1. Potential Mechanisms Underlying the Interplay between
Sleep Spindles and Cognition in Children with Neurodevelop-
mental Disorders. One hypothesis regarding the nature of the
association between sleep spindle characteristics and NDD is
that impaired spindle activity could both reflect an abnormal
neurodevelopmental trajectory and compromise the estab-
lishment of normal cognitive processes in this population.
Although we do not yet know which pathways are involved
or whether they are common to the various NDD, different
hypotheses have been put forward regarding brain-related,
genetic, and environmental influences. We will discuss these
hypotheses in the context of the potential association between
sleep spindles and NDD.

Many neurodevelopmental disorders (e.g., ADHD, ASD,
and dyslexia) are accompanied by distinctive patterns of gray
and white matter changes in the brain [111]. The evidence
suggests that changes in gray matter may reflect structural
changes in synapses and their dendrites, whereas those in
the white matter reflect changes in myelination due to oligo-
dendrocyte pathology.The presence of structural pathologies
during development appears to provide a coherent biological
model for the onset and course of NDD, while also suggesting
a possible mechanistic basis for the associations between
sleep spindles and cognitive abnormalities in such conditions
[32, 112].

One factor that might facilitate the synchronization
of neuronal networks and boost oscillatory activity is the
strength of the underlying connections (i.e., the integrity of
the white matter) [113, 114].

Individual differences in spindles and slow waves report-
edly depend on the white matter microstructure across dis-
tributed networks.Thus, sleep oscillation profiles reflect both
the synaptic-level dynamics of the neuronal network and
the localized microstructural properties of the white matter
tracts that form its structural backbone. Indeed, diffusion-
tensor imaging revealed that the expression profiles of sleep
slow waves and spindles are partially determined by the axial
diffusivity strength over long-range white matter tracts [115].
In contrast, the higher-frequency waves (including the beta
and gamma frequency bands) mostly reflect short-distance
synchronization, which increases during early development
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andmight involve short-rangewhitematter axons rather than
the long-range white matter tracts. Associations have been
found between individual-level sleep spindling and white
matter integrity [115] and continuing white matter develop-
ment during late adolescence [116]. White matter abnormali-
ties have been found in several NDD, including ADHD [117–
122] and ASD. In the latter case, longitudinal data showed
that whitematter growthwas slower among boyswith autism,
especially in the parietal lobes, [123] and diffusion imaging
studies have revealed widespread disruption of white matter
tracts in ASD patients, especially between regions implicated
in social behavior [124–126]. Abnormal white matter devel-
opment might, therefore, be a mechanism that cuts across
neurodevelopmental disorders and might be related to both
sleep spindles and disorders of cognitive function.

With respect to gray matter, the developmental changes
in the prefrontal cortex differ depending on the IQ of the
subject.The peak prefrontal gray matter volume is reportedly
reached at 13 years in very high-IQ subjects, compared to 9
years in children of average IQ, with both groups reaching the
same volume in late adolescence [32].The growth and retrac-
tion of dendrites are dependent on the number and activity of
the synapses that abut on their dendritic spines.Thus, changes
in the gray matter volume are likely to reflect the formation
and regression of synapses [127, 128]. The emergence of
childhood ASD, ADHD, and dyslexia all involve divergence
from the normal trajectories of gray matter development in
different lobes of the brain (for review see [111]).

For sleep spindles, graymatter volume in the auditory and
insular cortices was negatively correlated with sleep spindle
frequency and found to be predictive of slower sleep spindles
across individuals. Moreover, interindividual variability in
sleep spindles over the sensory cortex was shown to pre-
dict the extent to which the sleep state is protected from
experimental auditory stimulation [129]. These associations
between slower sleep spindle frequency and gray matter
volume in sensory areas may reflect the role of sleep spindles
(of slower frequency) in protecting sleep against sensory
disruption.

The association between sleep spindle frequency and the
gray matter volume in the insular cortex provides a specu-
lative basis for uniting various disparate findings in NDD.
The loss of gray matter in NDD could result in abnormal
sleep spindle activity, increasing the susceptibility to inter-
ference and thereby hindering sleep-dependent information
processing. Future studies are needed to empirically test this
possibility. Studies are also needed to examine the functional
outcomes of abnormal white or gray matter volumes with
respect to specific spindle characteristics, such as low fre-
quency or higher density. Such associations could potentially
explain a broad collection of cooccurring cognitive deficits in
the NDD that are characterized by gray matter abnormalities
(e.g., ASD, ADHD, and various learning disabilities).

4.2. Clinical Implications and Future Directions. This review
indicates that future studies should continue examining sleep
spindle characteristics and their associations with cognition
in children with NDD.This is important because it is possible

that aberrant spindle activity cuts across a number of phys-
iological and pathological conditions, potentially reflecting
impairments in neuroplasticity across these conditions. The
examination of spindlemeasures in childrenwithNDDcould
uncover developmental alterations that may characterize
progression of these disorders. Furthermore, since sleep has
been demonstrated to improve memory consolidation and
learning, potential changes in sleep spindles may also be
relevant to our complete understanding of the cognitive dif-
ficulties observed in many patients with NDD. Future studies
should seek to use large, well-phenotyped samples that are
homogeneous in age and sex and represent all developmental
stages of the disorder being investigated.They should also use
objective and standardized measures of sleep and cognition
plus, when possible, experimental designs that will allow the
authors to establish causality. Such studies would significantly
advance our understanding of this topic and could move us
toward answering important questions, such as what does it
mean to have fewer or aberrant spindles, in terms of cognitive
functioning? Can sleep spindle assessment in infancy and
toddlerhood enable the early identification of learning or
neurocognitive disabilities that could be addressed at an
early age (e.g., ADHD or dyslexia), potentially reducing
their negative impact on the developmental trajectory of at-
risk children? Longitudinal studies examining sleep spindle
characteristics and later outcomes in children at risk for
NDD could begin to answer these questions and potentially
identify reliable markers that could be used for routine sleep
assessments of infants and toddlers.This could open the door
to practical and relatively inexpensive methods for the early
identification and prevention of potentially lifelong disorders
that are debilitating yet treatable (e.g., dyslexia or ADHD).

Given the findings that implicate sleep spindles in mem-
ory consolidation and brain plasticity, another important
question is whether it could be possible to stimulate sleep
spindle activity as a means to improve cognition in children
with NDD. Since little or no spindle activity is associated
with poorer memory consolidation and/or intellectual per-
formance, could the stimulation of sleep spindles or other
oscillations during sleep increase brain plasticity, improve
memory consolidation, and/or improve intellectual perfor-
mance? One study conducted in children with ADHD pro-
vided promising initial evidence by suggesting that this may
be the case; external enhancement of frontal slow oscillations
(SO) at 0.75Hz by transcranial oscillating direct current
stimulation (DCS) was shown to elevate sleep-dependent
memory in children with ADHD to the level of healthy
controls. While children with ADHD showed worse memory
performance than healthy controls when subjected to the
sham condition, this memory deficit vanished following the
application of DCS during sleep. Several other methods
that have been shown to increase sleep spindle activity
or slow wave activity during subsequent sleep have also
improved sleep-dependent memory consolidation, including
anodal transcranial DCS [130, 131], intensive physical exercise
during the daytime [132], neurofeedback [133, 134], and phar-
macological manipulation of spindle density [135]. Future
studies should therefore investigate whether enhancement of
sleep spindles through these or other means could improve
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sleep-dependent memory consolidation or other aspects of
cognitive function in children with NDD.

In summary, relatively few studies have provided detailed
examination of sleep spindle characteristics in children with
NDD and their associations with cognitive function. Existing
studies suffer from the use of multiple, often nonstandard-
ized, methodologies and lack of exploration across the full
range of the NDD from early to late stages. Despite these
significant limitations, there is collective evidence that inves-
tigation of sleep spindles in children with and without NDD
is important because the mechanisms that underlie spindle
generation are involved with plasticity and with stabilization
of sleep, both of which are known to be important in
supporting optimal cognitive development and function.
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