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ABSTRACT: Prediction of protein−ligand binding affinities is a central issue in
structure-based computer-aided drug design. In recent years, much effort has been
devoted to the prediction of the binding affinity in protein−ligand complexes using
machine learning (ML). Due to the remarkable ability of ML methods in nonlinear
fitting, ML-based scoring functions (SFs) can deliver much improved performance on
a selected test set, such as the comparative assessment of scoring functions (CASF),
when compared to the classical SFs. However, the performance of ML-based SFs
heavily relies on the overall similarity of the training set and the test set. To improve
the performance and transferability of an SF, we have tried to combine various
features including energy terms from X-score and AutoDock Vina, the properties of
ligands, and the statistical sequence-related information from either the binding site
or the full protein. In conjunction with extreme trees (ET), an ML model, we have
developed XLPFE, a new SF. Compared with other tested methods such as X-score,
AutoDock Vina, ΔvinaXGB, PSH-ML, or CNN-score, XLPFE achieves consistently better scoring and ranking power for various
types of protein−ligand complex structures beyond the CASF, suggesting that XLPFE has superior transferability. In particular,
XLPFE performs better with metalloenzymes. With its faster speed, improved accuracy, and better transferability, XLPFE could be
usefully applied to a diverse range of protein−ligand complexes.

1. INTRODUCTION
Computer-aided drug design (CADD) can accelerate the
process of drug development, saving much time and cost
compared to experimental procedures.1 Drug screening is
important in the discovery both of new drugs and new
applications for old drugs and is among the most important
tasks of CADD. To maximize the effects of drugs while
minimizing their side effects, the interactions between the drug
and the target should be fully understood. Accordingly, an
accurate prediction of binding affinity between drugs and their
target proteins is the key to drug screening.2

To date, many theoretical methods, such as quantum
mechanics/molecular mechanics,3,4 free energy perturbation,5,6

and thermodynamic integration,7,8 have been developed to
accurately predict the binding affinity of ligands for proteins.
Unfortunately, the routine applications of these methods in
high-throughput compound screening are hampered by high
computational costs. Scoring functions (SFs) however have
much lower computational costs and have found wide
application in the prediction of binding affinity in protein−
ligand complexes.9 Classical SFs can be force field-based,10,11

empirical,12−15 or knowledge-based.16,17 Force field-based SFs
are usually based on calculated energies, while empirical SFs are
based on a hypothetical equation with linear regression (LR)
parameters. In knowledge-based SFs, the energy terms are
derived from the statistics of protein−ligand interactions. In all
these SFs, a predetermined functional form is assumed to

characterize the relationship between binding affinities and the
relevant parameters.
With the recent rapid development of artificial intelligence,

much effort has been devoted to develop the machine
learning18−21 (ML) based SFs for binding affinity prediction
of the protein−ligand complexes. Compared to the classical SFs,
ML can automatically learn to use generalized nonlinear
functional forms and feature information from training data,
which can improve the accuracy of binding affinity prediction.22

ML can be classified into two categories: traditional ML-based
methods and deep learning (DL)-based methods.23 In tradi-
tional ML-based methods, the correlations between the binding
affinity and the selected features are calculated via nonlinear
regression using classical ML algorithms. For example, Zilian
and Sotriffer proposed amethod named SFCscoreRF, in which a
random forest (RF) method was used to perform the nonlinear
fitting of the SFCscore descriptors.24 Ballester and co-workers
developed a series of SFs using an RF algorithm and energy
terms taken mainly from RF-Score.25−27 Wang and Zhang
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introduced a newmethod namedΔvinaRF20, which was trained
by RF and is based on 20 features, including five AutoDock Vina
interaction terms, five ligand-dependent terms, and 10 buried
solvent-accessible surface area-related features.28 Very recently,
Xia and co-workers have developed a persistent spectral
hypergraph (PSH) model-based ML SF (PSH-ML), which
achieved a high Pearson’s correlation coefficient (Rp) of 0.855
for the scoring power in a CASF-2016 benchmark test set.29

Unlike ML, DL-based methods usually do not require feature
engineering, which can directly convert the original structural
data into the high-dimensional neural network for subsequent
regression. In 2017, Koes and co-workers developed a
convolutional neural network (CNN) SF, in which the input
is based on a comprehensive three-dimensional representation
of protein−ligand interactions.30 Other successful applications
of DL are TopologyNet,31 KDEEP,32 Pafnucy,33 Interaction-
GraphNet,34 and others.35−40 Compared with the DL methods
that rely on complex models, the traditional ML method has the
advantages of simplicity, fast training speed, and diminished
dependence on data and computing equipment. Therefore,
many current efforts still rely on the use of traditional ML to
improve the scoring power of SFs.27,41−48

Though the ML-based SFs can achieve much improved
performance on the selected test set such as the comparative
assessment of scoring functions (CASF),49 the performance can
be significantly diminished as the overall similarity thresholds
between the training set and the test set decrease. In some tests,
the performances of ML-based SFs are even inferior to those of
the conventional SFs.50 Specifically, the binding affinity
prediction in metalloenzymes is challenging due to the complex
interactions between the ligand, metals, and the protein
environment.15,51 As such, extensive efforts have been devoted
to improve the prediction accuracy for metallocomplexes.51,52 In
terms of these key issues, we wonder if the selection of more
suitable features and ML methods could significantly improve
the performance and transferability of SFs when compared to
the previous results. To pursue this, we combined diverse
features, including energy terms from X-score12 and AutoDock
Vina,13 properties of the ligand, and the sequence information
from either the active site or the full protein. Through this
elaborate selection and training, we have developed a new SF,
XLPFE. Compared with other testedmethods such as X-score,12

AutoDock Vina,13ΔvinaXGB,53 PSH-ML,29 and CNN-Score,30

XLPFE consistently achieves scoring power and ranking power
better than that of CASF49 for various types of protein−ligand
complex structures, suggesting that XLPFE has much-improved
transferability. In particular, XLPFE can achieve robust
performance in the scoring and ranking of binding affinity for
metalloproteins.

2. METHODS
2.1. Data Sets. The PDBbind database (http://www.

pdbbind-cn.org/),54−56 developed and maintained by Wang
and co-workers, provides a comprehensive collection of the
experimentally measured binding affinity data for complexes and
the PDB structures. It has been widely used for the development
and validation of SFs. The refined set provided by the PDBbind
database prior to 2018 was used as the training set, and the
refined post-2018 data set was selected as test set 1.57 CASF-
201649 was used as our test set 2. The number of complexes
contained in each set is given in Table 1. In 2020, Wang and co-
workers compiled data sets based on the PDBbind refined set by
removing redundant samples using various similarity thresh-

olds.50 We built the standard training sets (the second column of
Table 2) similarly to evaluate and select different models with

the CASF-2016 benchmark. In order to reduce the similarity
between the training set and test sets, we also have reduced the
size of the test set but maintained the size of the training set.
Also, the numbers of standard test sets are listed in the third
column of Table 2.

2.2. Feature Sets. Our feature set includes five subsets
derived from the energy term of AutoDock Vina (V), the energy
term of X-score (X), the statistic feature related to the ligand
(L), the statistic sequence-based feature related to the pocket
(P), and the statistic sequence-based feature related to the full
protein (F) (Table 3).

For the V subset, 58 features from the source code of Vina
were selected,13 including protein−ligand interaction terms and
a set of ligand properties. Besides the Gaussian, repulsion,
hydrogen bonding (HB), and hydrophobic terms included in
AutoDock Vina, some other terms, such as simple property
counts, electrostatic interactions, AutoDock4 desolvation
effects, nonhydrophobic contacts, and Lennard Jones 4−8 van
der Waals interactions (Table S1), were also included.
X-score,12 developed byWang and co-workers, is an empirical

SF, which is composed of four major energy terms with respect
to van der Waals interactions (VDW), HB, deformation effects
(RT), and hydrophobic effects. According to the different
approaches to its calculation, the hydrophobic effect can be
further sectioned into hydrophobic pairs (HP), hydrophobic
matching (HM), and hydrophobic surface (HS). HP calculates
the hydrophobic energy by counting the hydrophobic contact
pairs between the protein and ligand, whereas HM and HS
compute this energy using an HM algorithm and an HS
algorithm, respectively (see the Part S1 section for more
details).58−60 These six terms fromX-score constitute a subset of
X.

Table 1. Summary of the Data Sets

source numbers

training set PDBbind refined set (before 2018) 4190
test set 1 PDBbind refined set (after 2018) 394
test set 2 CASF-2016 285

Table 2. Sample Size of the Nonredundant Set under
Different Similarity Thresholds

sequence similarities (%) numbers of training sets numbers of test sets

100 4190 285
95 3949 158
90 3390 57
85 2824 23
80 2318

Table 3. Summary of the Feature Sets

feature set terms dimension

AutoDock
Vina

58 terms from the Vina source code 58

X-score VDW, HB, RT, HS, HM, and HP 6
ligand charge; C, N, O, H, F, P, S, Cl, Br, and I element

numbers; and 1, 2, 3, am, and ar bond numbers
16

pocket 20 amino acid numbers and crystal H2O number 21
full protein 20 amino acid numbers 20
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For the information of the ligand (L), a total of 12 features
were considered, including the total charge of the ligand, the
number of atoms of each element (C, N, O, F, P, S, Cl, Br, I, and
H), and the number of each type of bondsingle bond, double
bond, triple bond, amide bond, and aromatic bond.
For the information from the binding site (P), a total of 21

features were selected, including the quantity of 20 amino acids
and the number of water molecules in the site. For the
information of the full protein (F), the quantitative distribution
of 20 amino acids was taken into account.
In order to eliminate the influence of unit and scale differences

between features, each feature was subsequently standardized
using the sklearn.preprocessing.StandardScaler class.
2.3. ML Methods. Scikit-Learn61 0.24.1 was used to

generate machine-learning models. LR, tree-related models
including extra trees (ET),62 RF,63 extreme gradient boosting
(XGBoost),64 support vector regressions (SVR),65 and neural
networks (NN)66 were selected. The MLmodels can be used to
predict the binding affinity according to

F x x x( , , ..., ) prei 1 2 n i= (1)

where (x1,x2,...,xn) is the vector of input features and n is the
number of features. F is the machine-learning model that adopts
a nonlinear function. The output is the predicted binding affinity
for protein−ligand complex i. Different models obtain the
minimum mean absolute error (MAE) in different ways
according to

1
N

MAE (pre exp)
i 1

N

i i∑= −
= (2)

where prei and expi are the predicted and experimental binding
affinities of the protein−ligand complex, respectively, and i and
N are the number of samples in the training set. Fivefold cross-
validation was used to efficiently search the hyperparameter
space for each model. After training a call (five calls in total), the
cost function (the MAE of predictions on the subset) across
folds is returned to the estimator, which in turn chooses a new
hyperparameter configuration for the next call using its
acquisition function (eq 1) to further decrease the model’s
cost function (eq 2). A brief description and tuned hyper-
parameters of each ML method are shown in Table S2. The

results from all models are the average of 10 repeated
experiments.

2.4. Performance Evaluation. The Rp is a measure of the
linear dependence of the predicted binding affinity values on the
experimental values according to eq 3. The Spearman
correlation coefficient (Rs) can measure the strength of an
association between the predicted and experimental binding
affinity values according to a monotonic function (eq 4). RMSE
is the root mean square error between the predicted binding
affinity and the experimental value (eq 5). These are calculated
as follows

R
(pre pre )(exp exp )

(pre pre ) ( exp exp )

i 1
N

i i

i 1
N

i
2

i 1
N

i
2p

ave ave

ave ave

=
∑ − −

∑ − ∑ −
=

= = (3)

R 1
6 r r

N N 1

( pre exp)

( )
i 1
N

i i
2s = −

∑ −
−

=

(4)

1
N

RMSE (pre exp)
i 1

N

i i
2∑= −

= (5)

prei is the binding affinity from the given SF on the ith complex
in the test set; expi is the experimental binding constant (in
logarithm units, logKa) of this complex; preave and expave are the
corresponding averages; rprei is the rank of the binding affinity of
the ith complex; rexpi is the rank of the experimental binding
affinity of this complex; andN is the total number of samples. All
predicted values were based on the crystal structures of the
protein−ligand complexes.

3. RESULTS
3.1. Selection of Feature Set Combinations. Nine

feature sets with different combinations (XLF, XLP, XLPF,
VXL, VXP, VLF, VLP, VXLP, and VLPF) were applied to the
multiple LR, and five ML models (ET, RF, SVR, NN, and
XGBoost) were used. Figure 1 compares the performance of
different feature sets and different ML models on the test set. As
the dimension of features increases from the top to the bottom, it
can be seen that the performance of Rp fails to improve steadily.
However, it can be seen that the tree-related ML methods (ET,
RF, and XGBoost) in general have a performance that is better

Figure 1. Pearson correlation coefficients between the experimental data and the predicted binding affinities on (A) test set 1 and (B) test set 2 (CASF-
2016) for combinations of different feature sets andMLmethods. The dimension of features increases from the top to the bottom. The darker the color
(blue), the higher the correlation, and the lighter the color (yellow), the lower the correlation.
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than that of the other two (SVR and NN). On test set 1, VLP
achieves the highest Rp value of 0.703, while XLPF has the
highest Rp value of 0.816 on test set 2 (CASF-2016). Consistent
with the previous observation, the highestRp also corresponds to
the lowest RMSE on the same feature set (Table S4). In
particular, the VLP and XLPF feature sets achieve the low RMSE
values of 1.30 and 1.36, respectively. Thus, both the VLP and
XLPF feature sets were selected for further testing. It can be seen
that in most combinations, performances in test set 2 are better
than in test set 1. The different performance may be related to
data diversity and similarity between the training set and test set.
3.2. Comparison of Different MLMethods. According to

the different similarity thresholds in the training set, the stability
of LR and ML methods was assessed on the VLP and XLPF
feature sets. Figure 2A, B shows the performance of different
machine models on both feature sets with different similarity
thresholds of the training set. In order to reduce the similarity
between the training set and test sets, we also have reduced the
size of the test set but maintained the size of the training set
(Table 2). Figure 2C,D shows the performance of different
machine models on both feature sets with different similarity
thresholds of the test set. Consistent with our test study
described in the previous section, the tree-related methods, ET,
RF, and XGBoost, perform better than the other two, SVR and
NN, albeit the performance decreases with the decrease in the
similarity.50 Overall, ET is the best model in view of its stable

and near-best performance. As shown in Figure 2, the Rp
obtained from ET using the XLPF feature set is generally higher
than that produced using VLP, and XLPF with 63 features has
lower feature dimensions than VLP with 95 features. Thus, the
combination of XLPF feature sets and the ET model (labeled as
the XLPFE model) was selected in our subsequent studies.
As summarized in Figure 1 and Tables S3 and S4, XLPFE

achieves Rp = 0.68 and RMSE = 1.34 on test set 1, while the
corresponding values are 0.816 and 1.41 with test set 2 (CASF-
2016). In terms of the CASF-2016 data set, we further tested and
compared more than 30 common SFs included in the data set.
As summarized in part 1, model XLPFE achieved a Pearson
correlation coefficient of 0.816 and a Spearman correlation
coefficient of 0.66, which identifies it as one of the best SFs in the
CASF-2016 data set. The additional tests on the performance of
XLPFE on CASF-2016 and its subsets can be found in Table S6.

3.3. Evaluation of Feature Importance. Figure 3A shows
the calculated feature correlation of XLPFE. It can be seen that
there is no high correlation between most features. The highest
correlation is X-Score-related HP, HS, and HM. The three
hydrophobic algorithms are highly related to the energy
calculation of hydrophobic action, but they do not exceed
0.9.67 The correlation between features and experimental values
is basically proportional to the importance of features (Figure
3B). When the correlation between features and experimental
values is higher, its importance is often higher. The features

Figure 2. Pearson correlation coefficients between the experimental data and the predicted binding affinities for different sequence similarity
thresholds of the training set using(A) VLP feature set and (B) XLPF feature set and different sequence similarity thresholds of the test set using(C)
VLP feature set and (D) XLPF feature set. Different MLmethods are shown in different colors: LR in blue, ET in orange, RF in green, NN in red, SVR
in purple, and XGBoost in brown.
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mentioned with high correlationHP, HS, and HM also have
similar importance.
The feature importance was based on the number of times a

feature is used to split the data across all trees. Figure 3B shows
the feature importance analysis of model XLPFE. It is seen that
the VDW item generated using X-score ranks first in feature

importance. Among the top eight features selected from feature
importance, five items are from subset X-score, two are from
ligand, and one is from the protein active site. Among the top 30
features in Figure S3, only one feature, the occurrence of Ser, is
from the full protein. This is consistent with previous studies,
which showed that the use of active site sequences can improve

Figure 3. (A) Correlation matrix of features and experimental values. (B) Feature importance. Feature importance values are calculated based on the
number of times a feature is used to split the data across all trees. Here, the eight most significant features are shown.

Table 4. Performance of XLPFE, X-Score, AutoDock Vina,ΔvinaXGB, CNN-Score, PSH-ML, and Lin_F9 Evaluated against a Set
Consisting of 15 Selected Diverse Biological Targetsa

aBACE-1, β-secretase 1; CHK1, serine/threonine-protein kinase chk1; DPP4, dipeptidyl peptidase 4; ER, estrogen receptor; GluR2, glutamate
receptor 2; HIV PR, hiv-1 protease; HSP90, heat shock protein 90; LTA-4H, leukotriene A-4 hydrolase; P38a, mitogen-activated protein kinase 14;
PDE4B, camp-specific3′,5′-cyclic phosphodiesterase 4b; PDK1, 3-phosphoinositide-dependent protein kinase 1; PTP1B, protein tyrosine
phosphatase 1B; and SRC, proto-oncogene tyrosine protein kinase src. The more intensely red the table, the smaller the value, and the more
intensely green the table the larger the value.
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the prediction of the affinity.68,69 For the occurrence of amino
acids in the protein active site, it can be seen that His, Gly, Tyr,
and Trp rank in the top position (Figure S3), probably because
they can form hydrogen bonds with ligands and thus play key
roles in ligand binding. Leu and Phe also rank quite high,
possibly due to their contribution to the formation of
hydrophobic pockets.
3.4. Performance of XLPFE on Diverse Biological

Targets. In this section, the performance of XLPFE with
different biological targets is evaluated. For this purpose, we
collected an expanded test set covering 15 different biological
targets, including various kinases, secretory enzymes, and
hydrolases. For each target, we collected all the relevant crystal
structures of complexes that contain small molecule ligands with
relatively reliable bioactivity data available from the PDBbind
general set (for the PDB ID list of all the collected crystal
structures of the 15 selected targets, see Table S7). In order to
maintain a reasonable data size, targets including less than 10
complexes are not selected in data sets. For each target, the
performance of XLPFE on the collected complexes was
evaluated and characterized in terms of Rp, Rs, and RMSE.
Table 4 shows the calculated Rp, Rs, and RMSE values for each
target. The predicted Rp values for the 15 targets are in the range
0.384−0.891, and the average value is 0.692. The predicted Rs

values are between 0.315 and 0.845, and the average is 0.657.
The RMSE values are between 0.90 and 2.44, and the average is
1.58. For comparison, we also tested other popular SFs,
including the traditional SFs X-score, AutoDock Vina, and
Lin_F9, as well as the ML-based SFs ΔvinaXGB53 and PSH-
ML29 and DL-based SF CNN-Score.30,70 In ΔvinaXGB, a
feature set of Vina’s 58 energy terms and other interaction-
related terms have been applied to the XGBoost algorithm,
which achieved a scoring power of 0.796 on CASF-2016.53 PSH-
ML uses the graph and spectrum theory to generate additional
features and has an outstanding scoring power on the
benchmark set CASF-2016 with an obtained Rp value of

0.855.29 It is noted that the results of CNN-Score we used herein
were calculated from CNN affinity of GNINA.70

As shown in Table 4, XLPFE outperforms AutoDock Vina,
ΔvinaXGB, and Lin_F9 in terms of average Rp, Rs, and RMSE.
Compared to those in X-score, CNN-score, and PSH-ML, the
predicted average Rp and Rs values are improved in XLPFE,
although the average RMSE is lower than that in X-score, CNN-
score, and PSH-ML. Overall, XLPFE achieved the highest
average values of both Rp and Rs among these seven SFs,
suggesting that it has robust scoring and ranking power. These
results clearly indicate that XLPFE can achieve good and
consistent performance on all the test targets, implying that it
can be used for a broad range of biological targets. The
sensitivity of our method in predicting the binding affinity of
similar molecules for the same target in drug design was also
confirmed.71 Detailed discussions are listed in Part S2 of the
Supporting Information. This shows that XLPFE has a
considerable ability to correctly sort structurally similar ligands
that have the same target.

3.5. Performance with Complexes Containing Differ-
ent Types of Metal Atoms. To further demonstrate the
performance of XLPFE, we performed binding affinity
predictions in various metalloproteins. For this purpose, we
collected the metalloproteins from PDBbind and classified them
according to metal types (Figure 4). For Zn-containing
metalloproteins, the training set and test set used in the previous
study15 were used for pretraining and testing (see Part S3 in the
Supporting Information for detailed results), and our method
performed well. For metalloproteins, the selection criterion is
based on the distance between the metal and any atom of the
ligand, which should be less than 3.0 Å. Accordingly, we have
selected over 50 metalloproteins containing Zn, Fe, Mg, Mn, or
Ca. For each metal type, the corresponding metalloproteins
were randomly divided into a training set (80%) and a test set
(20%).
In the feature set, one additional feature corresponding to the

number of metals within 3 Å of any atoms of the ligand was

Figure 4. Predicted affinities in complexes containing different types of metal atoms. Performances of XLPFE, PSH-ML, Lin_F9, and X-Score
evaluated against a set consisting of five kinds of selected metal contained targets are listed in the table at the bottom of the figure.
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added (Table S10). For comparison, we also tested the ML-
based SF PSH-ML29 and the classical SF Lin_F914. PSH-ML
uses the graph and spectrum theory to generate additional
features and has outstanding scoring power on the benchmark
set CASF-2016 with an obtained Rp value of 0.855.

29 Lin_F9 is
based on a linear combination of nine empirical terms, including
one energy term to describe the metal−ligand bonding
interactions.14 It was found that Lin_F9 achieves better
performance than Vina and X-score with metalloprotein
complexes. For a consistent comparison, the same training and
test sets as those used for XLPFE were applied to PSH-ML, and
all results are summarized in Figure 4.
Among the four SFs, XLPFE achieves the best overall

performance among all indexes, with the highest average Rp and
Rs values, as well as the lowest average RMSE. In particular, the
performance of XLPFE is much better than that of Lin_F9 or X-
score. For Zn-metalloproteins, XLPFE shows a similar perform-
ance to PSH-ML, but for Mn, Ca, and Fe, XLPFE shows a better
performance than PSH-ML. However, PSH-ML outperforms
XLPFE in terms of Mg. XLPFE is much faster than PSH-ML.
With PDB ID:1SZM as an example, PSH-ML needs 1370.62 s to
generate features using a single-core CPU, while XLPFE only
needs 0.91 s to generate features. In terms of Mg metal-
loproteins, our count shows that a considerable proportion of
them contains more than one Mg cofactor and if the effects of
multinuclear effects are accounted for in the future, the
predictive performance of XLPFE could be further improved.
Overall, XLPFE can achieve robust performance in the scoring
and ranking of binding affinity for metalloproteins and is among
one of the best SFs for metalloproteins.

4. DISCUSSION AND CONCLUSIONS

In this work, we have combined various feature sets and ML
methods to improve the scoring performance of SFs. The five
feature sets include energy terms from X-score (X) and
AutoDock Vina (V), the properties of the ligand (L), and the
statistic sequence-related information from either the binding
site (P) or the full protein (F), while the ML methods consist of
ET, RF, XGBoost, SVR, and NN. Among the various
combinations of feature sets and ML methods, we found that
the combination of XLPF feature sets and the ETmodel (labeled
as the XLPFE model) achieves the best and most stable
performance. On the benchmark set CASF-2016, XLPFE shows
outstanding scoring power (0.816) and ranking power (0.66),
which is one of the best SFs in the CASF-2016 data set. XLPFE
also shows consistently better scoring power and ranking power
than other SFs for various expanded test sets beyond the CASF,
including traditional SFs X-score and AutoDock Vina, ML-
based SF ΔvinaXGB, and DL-based SF CNN-score. In
particular, XLPFE achieved the best overall performance for
metalloproteins. All these findings suggest that an appropriate
selection of feature sets can render much improved trans-
ferability in ML-based SFs. Unlike some state-of-the-art SFs
based on the complex topological features or structural features,
the combination of simple energy terms and other properties
related to protein−ligand binding may achieve better scoring
performance and transferability.42,47 Thus, this study gives some
information that can lead to the further improvement of ML-
based SFs.

■ DATA AND SOFTWARE AVAILABILITY
All protein−ligand structural data and related experimental
binding affinity are from PDBbind (http://www.pdbbind-cn.
org/). Our training and test sets and the code of XLPFE are open
access (https://github.com/LinaDongXMU/XLPFE). Other
data and results are all listed in the Supporting Information.
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