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ABSTRACT
Genetic polymorphisms in CYP3A5 affects tacrolimus (Tac) bioavailability; however the optimal 
genotype-guided starting dose remains undefined. This retrospective cohort study examined the 
effects of the CYP3A5 allele on Tac pharmacokinetics in 431 Taiwanese renal transplant recipients. 
Genotyping was performed using the Axiom Genome-Wide TWB 2.0 array, with dose requirements 
and blood concentrations analyzed at multiple postoperative time points. CYP3A5 *3/*3 carriers 
required the largest dose reductions and exhibited the highest rate of Tac overexposure events 
(34.14%). Based on these results, we back-calculated an initial dosing formula to demonstrate that 
reducing doses for poor metabolizers (PMs) using a genotype-guided approach in our population 
could lower the risk of overexposure. Although preliminary, a genotype-guided initial dosing 
strategy reduced the likelihood of Tac overexposure by 69% (OR = 0.307, p = 0.018). These findings 
highlight the importance of identifying CYP3A5 poor metabolizers (*3/*3) for personalized therapy 
to minimize the risk of overexposure. Preemptive pharmacogenetic testing shows promise for 
enhancing dosing precision and treatment safety in Taiwanese patients.

Introduction

Tacrolimus (Tac) is a global cornerstone of immunosuppres-
sive therapy after kidney transplantation (KTx) [1,2]. However, 
its clinical use presents challenges owing to its toxicity, nar-
row therapeutic window, and high interindividual pharmaco-
kinetic variability [3]. Prompt achievement of effective 
therapeutic blood levels after transplantation is critical for 
preventing organ rejection [4]. The initial dose after KTx is a 
key determinant [5–9], yet it often takes 2–3 weeks to adjust 
the starting dose to a stable maintenance level via therapeu-
tic drug monitoring (TDM) [9]. Consequently, many patients 

experience overdosing during the early post-transplant phase 
[10–12]. Older patients, in particular, face a 43% risk of over-
exposure, often associated with a high rate of delayed graft 
function [13].

CYP3A5, an enzyme central to Tac metabolism, exhibits 
single nucleotide polymorphisms (SNPs) that account for 
40–50% of variability in Tac blood concentrations [1,14,15]. 
Allele frequencies of CYP3A5 vary across ancestries [16–18]. 
In Caucasians and Asians, nonfunctional CYP3A5 alleles (*3, 
*6, *7) predominate, primarily as CYP3A5*3, while the 
CYP3A5*1/*1 genotype (conferring extensive metabolism) 
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occurs in approximately 1% of Caucasians and 5–15% of 
Asians [17,19]. In contrast, the CYP3A5*1 allele is more prev-
alent in individuals of African descent, with frequencies rang-
ing from 45–73%, contributing to a higher proportion of 
extensive metabolizers [17]. As a result, Asians and Africans 
are more likely than Caucasians to require higher Tac doses 
to avoid underexposure.

Various professional societies, such as the Clinical 
Pharmacogenetics Implementation Consortium (CPIC) [19], 
the Royal Dutch Association for the Advancement of 
Pharmacy-Pharmacogenetics Working Group (DPWG), and 
French National Network of Pharmacogenetics (RNPGx) [20], 
recommend individualizing Tac treatment based on known 
CYP3A5 genotypes. CYP3A5 phenotypes were clustered 
according to the CYP3A5*3 allelic status: poor (PMs) 
(CYP3A5*3/*3), intermediate (IMs) (CYP3A5*1/*3) and exten-
sive metabolizers (EMs) (CYP3A5*1/*1 carriers).

The CPIC guideline recommends increasing the starting dose 
by 1.5–2.0 times the standard amount for IMs and EMs, consis-
tent with RNPGx annotations, while the DPWG suggests a 1.5- 
and 2.5-fold increase for IMs and EMs, respectively. However, 
most supporting evidence is derived from Caucasian populations 
and Western societies, leaving genotype-guided Tac dosing for 
Han Chinese populations underexplored.

We conducted a retrospective study to investigate the 
association between CYP3A5 alleles and Tac concentrations 
in the Taiwanese population. We found that, in this study 
population, the optimal strategy was not to increase the ini-
tial dose for IMs and EMs but to reduce the initial dose for 
PMs, in contrast to the guideline recommendations. Based on 
our results, we back-calculated a preliminary Tac dosing for-
mula for Taiwanese patients, which reduced Tac overexposure 
by 69% in this cohort, offering the potential to enhance 
treatment precision and safety.

Materials and methods

Subjects

From June 2019 to November 2022, we recruited patients 
over 20 years of age from a medical center in Taiwan, in 
cooperation with the Taiwan Precision Medicine Initiative 
(TPMI) project, which is managed by Academia Sinica, Taiwan. 
Clinical information on the participants was collected using 
medical records, and all participants were genotyped with an 
Affymetrix TWB 2.0 SNP array. In this retrospective study we 
included patients who: (1) underwent KTx for the first time; 
(2) were on a Tac-based immunosuppressive regimen and (3) 
had CYP3A5 gene information (6986 G > A, rs776746) from 
TPMI and were retained after quality control.

Patients received a Tac-based immunosuppressive regi-
men, typically combined with mycophenolate mofetil (MMF) 
or azathioprine and corticosteroids (prednisone). The stan-
dard protocol included an initial Tac dose of 0.15–0.2 mg/kg/
day, MMF at 1–2 g/day or azathioprine at 1–2 mg/kg/day, and 
prednisone starting at 20 mg/day, tapered to 5–10 mg/day by 
3 months post-transplant. Patients were administered either 

immediate-release Tac (Prograf®) or extended-release Tac 
(Advagraf®), based on clinical judgment and patient-specific 
factors. The target concentration of the pre-dose Tac trough 
was 8 to 12 ng/mL three months after KTx. The dose-adjusted 
Tac trough concentration (C/D) was calculated by dividing 
the measured C by the corresponding daily weight -adjusted 
Tac dose (ng/ml per mg/kg).

Definition of outcomes

The primary outcome was the occurrence of Tac overexpo-
sure (12 < C < 20 ng/mL) and Tac at toxic levels (C> =20 ng/mL) 
as seen in our cohort within a 3-month period. Intra-individual 
variability (IIV) in Tac doses or concentrations was expressed 
as a coefficient of variation using the following formula: CV% 
= (σ/μ) × 100. IIV was calculated from at least three Tac levels 
measured within the first 90 days after transplant, using rou-
tine TDM values closest to days 0, 10, 30, 60, and 90, depend-
ing on clinical availability. These analyses were performed 
separately for each group of genotypes of CYP3A5.

Building a dosing equation

To personalize Tac dosing, we conductedunivariate linear 
regression analysis to assess the association between the 
3-month dose-adjusted Tac trough concentration (C/D ratio) 
and CYP3A5 genotypes in 253 renal transplant recipients 
with available body weight data. Patients were randomly 
divided into training (n = 168) and validation (n = 85) cohorts. 
The training cohort’s regression results are shown in 
Supplementary Table 1. A dosing equation (Equation 1) was 
derived to estimate the required Tac dose (mg/kg/day) to 
achieve target trough concentrations (8–12 ng/mL) during 
the initial 3-month post-transplant period.

Statistical analysis

Categorical variables were summarized as frequencies and per-
centages. Continuous variables are summarized as mean and 
standard deviation (SDs) or median and IQR. The Kruskal-Wallis 
test was used to compare continuous Tac measurement vari-
ables among the three groups. All statistical analyses were per-
formed using SPSS® statistical software package (version 22.0, 
IBM Inc., Armonk, NY, United States). Statistical significance was 
set at p < 0.05 was considered statistically significant.

Results

Genotyping and patient characteristics

In total, 431 KTx recipients were enrolled in this study. Clinical 
characteristics and genotype frequencies are summarized in 
Table 1. The patients had a mean age of 42.1 years old and 
were predominantly male (231/431; 53.6%). The mean body 
mass index was 23.6 kg/m2. The number of genotype CYP3A5 
*3/*3, *1/*3, and *1/*1 were 224 (52.0%), 162 (37.6%), 45 
(10.4%), respectively.
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The allele frequencies of CYP3A5 *1 in our cohort (29.23%) 
were similar to those in the TPMI (28.80%) and gnomAD 
database (28.16%) [21].

CYP3A5 genotype were associated tac dose, C/D ratio and 
overexposure ratio

There was a significant correlation between the CYP3A5 gen-
otype and Tac dose. The recipients were classified into three 
groups according to their CYP3A5 genotype (*1/*1, *1/*3, 
and *3/*3) to explore the association between Tac pharmaco-
kinetics and different alleles. The initial dose for all recipients 
did not exceed 0.1–0.2 mg/kg/day, which is recommended by 
the drug labels approved by the US Food and Drug 
Administration (FDA). As shown in Figure 1(A), the 
weight-adjusted Tac dose was significantly lower in CYP3A5 
*3/*3 than in CYP3A5 *1/*1 carriers and CYP3A5 *1/*3carrier-
sat day 10, 3momths, 6 months, 9 months and 1 year after 
transplantation (p < 0.01). The Tac C/D ratio also showed sig-
nificant differences among the three groups at all -time 
points. The C/D ratio of CYP3A5 *3/*3 carrierswas the highest 
among the three groups, with the C/D ratio of CYP3A5 *1/*1 
carrier being the lowest (Figures 1(B)). The detailed data are 
shown in Supplementary Table 2. Our data also showed that 
CYP3A5 *3/*3 carriers experienced a higher rate of overexpo-
sure (34.14%, p < 0.01) (Table 2). However, CYP3A5 polymor-
phism did not affect Tac intra-individual variability (IIV) at the 
dosage or concentration level.

Initial dose adjusted downward after three months

In order to understand the changes in the starting dose in 
different CYP3A5 genotypes, we compared the Tac dose from 
day0 and 3 months. We found that all participants, regardless 
of phenotype, had decreased doses after 3-month (p < 0.001), 
respectively (Figure 2). The Tac median dose was adjusted 
down to 0.16, 0.13, and 0.07 mg/kg/day in different CYP3A5 
genotype after three months. Our data also showed that the 
CYP3A5 *3/*3 carriershave the highest degree of decline, 
which decrease from 0.19 to 0.07 mg/kg/day (63%).

Optimize tac dosing strategy through regression model

We performed linear regression analysis to determine the 
association of 3 months Tac C/D ratio. A Tac genotype-guided 
initial dosing strategy to calculate the required Tac dose/kg 
to attain the desired target Tac level during the initial 
post-transplant period was developed as Equation 1 (Eq.1).

Equation 1 Required Tac dose/kg/daily =

Desired stable tacrolimus level ng mL
CYP A

CY

/( )
− ( )

−

111 70 3 5 1 1

55

∗ ∗

PP A3 5 1 3∗ ∗( )

	 (1)

CYP3A5*1/*1 or *1/*3 genotypes were coded as 1 (expres-
sors), and CYP3A5*3/*3 as 0 (non-expressors).

The univariate model explained 27.6% of Tac dose vari-
ability (R2 = 0.276, p < 0.001; Supplementary Table 1). To 
explore potential confounders, a multivariate model includ-
ing sex as a covariate was tested but showed no significant 
contribution (p = 0.153), with R2 increasing marginally from 
0.276 to 0.281. The univariate model was retained for its sim-
plicity and clinical applicability. In the validation cohort 
(n = 85), Eq.1 reduced Tac overexposure risk (>12 ng/mL) by 
69% (OR = 0.307, p = 0.018). An expected initial Tac dosing 
table based on Eq.1 is provided in Table 3.

Discussion

In our study, there was a significant correlation between the 
CYP3A5 genotype and Tac dose. After 3 months, CYP3A5 *3/*3 
carriers experienced the greatest reduction in prescribed Tac 
dose and the highest percentage of Tac overexposure events 

Table 1.  Baseline patient characteristics and genotype frequencies.

Characteristics All treated patients(n = 431)

Sex, n(%)
  Female 200 (46.4%)
  Male 231 (53.6%)
Age (years), mean ± SD 42.1 ± 13.2
BMI (kg/m2), mean ± SD 23.6 ± 3.6
Creatinine (µmol/L), mean ± SD 2.19 ± 1.88
Baseline immunosuppression, n(%)
  Prednisone, n(%) 257 (59.6%)
 A zathioprine, n(%) 3 (0.7%)
  MMF, n(%) 169 (39.2%)
CYP3A5 rs776746, n(%)
  *1/*1 45 (10.4%)
  *1/*3 162 (37.6%)
  *3/*3 224 (52.0%)

Figure 1.  Distributions of weight-adjusted tac dose(A) and the C/D (B) of the individuals with *1/*1 or *1/*3 or *3/*3 CYP3A5 genotypes at day 0, day 10, 
3 month, 6 months, 9 months, and 1 year.
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(34.14%). Consequently, we suggest that the starting dose for 
KTx recipients should be lowered for carriers of CYP3A5 *3/*3. 
We propose starting doses of 0.20–0.29 mg/kg/day for CYP3A5 
1/1 carriers, consistent with current practice, 0.14–0.21 mg/kg/
day for CYP3A5 *1/*3, and 0.07–0.11 mg/kg/day for CYP3A5 
*3/*3, adjusted downward to maintain the therapeutic range 
of 8–12 ng/mL. Although preliminary, our genotype-informed 
dosing strategy, back-calculated from this Taiwanese cohort, 
reduced Tac overexposure risk by 69% within 3 months (OR = 
0.307, p = 0.018). These findings indicate that preemptive phar-
macogenetic testing offers potential for optimizing Tac ther-
apy and enhancing treatment safety in Taiwanese renal 
transplant recipients, subject to further refinement and pro-
spective validation.

Populations with a high prevalence of the CYP3A5*1 allele, 
such as African Americans, typically exhibit rapid Tac metabolism 
due to increased CYP3A5 enzyme activity. The Clinical 
Pharmacogenetics Implementation Consortium (CPIC) recom-
mends increasing the initial Tac dose by 1.5–2 times for 
CYP3A5*1/*1 or *1/*3 carriers to achieve therapeutic trough con-
centrations (8–12 ng/mL) [19]. Conversely, our Taiwanese cohort, 
predominantly CYP3A5*3/*3 (poor metabolizers), exhibited 

slower Tac metabolism, with 34.14% experiencing overexposure 
(>12 ng/mL). Lower doses (0.07–0.11 mg/kg/day) were necessary 
to prevent toxicity. These findings indicate the necessity of 
population-specific Tac dosing strategies.

Although CYP3A5 is the primary determinant of Tac 
metabolism, CYP3A4 polymorphisms, notably CYP3A4*22 
(rs35599367, C > T), also influence pharmacokinetics [22]. The 
CYP3A4*22 allele reduces enzyme activity by decreasing 
mRNA expression, resulting in higher dose-adjusted Tac 
trough concentrations (C/D ratio) and reduced dose require-
ments, particularly in CYP3A5*3/*3 carriers. In our Taiwanese 
cohort, where CYP3A5*3/*3 patients had the highest C/D 
ratios and required the lowest doses (0.07–0.11 mg/kg/day), 
CYP3A4*22 could theoretically increase overexposure risk. 
However, its prevalence in Asian populations is low (<1%) 
[23], and CYP3A5 dominates Tac metabolism. Thus, our study 
prioritized CYP3A5 genotyping (rs776746, 6986 G > A). Future 
studies integrating CYP3A4*22 and CYP3A5 polymorphisms 
could refine genotype-guided dosing, especially in popula-
tions with higher CYP3A4*22 frequencies, such as Caucasians.

Numerous studies have explored genotype-phenotype asso-
ciations to improve KTx outcomes [24,25]. Significant associations 
have been reported between CYP3A5 and the Tac doses required 
for KTx recipients [26]. Our data also show that the Tac dose 
requirement was 1.5-fold to 2-flod higher in CYP 3A5 *1/*1 car-
riers than in CYP 3A5*1/*3 and CYP 3A5*3/*3 carriers. 
Dose-normalized trough levels (ng/mL/mg total daily dose, C/D 
ratio) as a predictive marker could help estimate an individual’s 
Tac metabolism [27–29]. Our data showed that the mean C/D 
value was higher than that in other Asian studies [6,30], either in 

Table 2.  Patient pharmacokinetic values during the study period according to CYP3A5 genotype.

CYP3A5 in B1-22

p valueCYP3A5*1*1 (n = 45) CYP3A5*1*3 (n = 162) CYP3A5*3*3 (n = 224)

Within 3 months
Tac concentration overexposure (12 < C < 20 ng/mL) 5 (11.11%) 25 (15.43%) 72 (32.14%) <0.001**
Tac toxic concentration (> =20 ng/mL) 2 (4.44%) 1 (0.62%) 10 (4.46%) 0.078
Intra-individual variability (IIV) of Tac
Within 3 months (0–90 day) 18.33 (3.13–25) 25.00 (12.5–25) 20.00 (14.29–25) 0.192
Intra-individual variability (IIV) of Tac concentration
Within 3 months (0–90 day) 25.00 (20–33.33) 33.33 (20–33.33) 25.00 (20–33.33) 0.481

Chi-Square test. Kruskal Wallis test. *p < 0.05, **p < 0.01. Result are expressed in median(Q1-Q3) or as number and (percentage).

Figure 2.  Comparison of body weight-adjusted dosage of tacrolimus within 3 months after surgery between CYP3A5 genotype. The box spans data 
between two quartiles (IQR), with the median represented as a bold horizontal line.

Table 3.  Ranges of expected initial tac daily dose (mg/kg) based on 
CYP3A5 genotype.

Target concentration (ng/ml)

CYP3A5 genotype 8 9 10 11 12
CYP3A5*1/*1 0.20 0.22 0.24 0.27 0.29
CYP3A5*1/*3 0.14 0.16 0.18 0.20 0.21
CYP3A5*3/*3 0.07 0.08 0.09 0.10 0.11
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CYP3A5 expressers (CYP3A5 *1 carriers) or non-expressers 
(CYP3A5 *3/*3). This suggests that our patient’s overall metabolic 
rate of CYP3A5 may have been slower than that of other 
patients. Therefore, if recipients treated according to current 
practices did indeed have high rates of overexposure or toxic 
concentrations, they could be associated with nephrotoxicity, 
neurotoxicity and new-onset diabetes after transplantation, as 
well as the onset of malignancies or infections. To avoid poten-
tially harmful Tac overexposure, precision medicine targets the 
adjustment of prescriptions based on information about genetic 
polymorphisms.

In a randomized controlled study that included 280 KTx 
recipients, Thervetet  al [15]. showed that adaptation based 
on CYP3A5 (with 2 dose regimens, 0.3 mg/kg/day for CYP3A5 
expressers and 0.15 mg/kg/day for CYP3A5 non-expressers) of 
the Tac initial dose was associated with not only a higher 
proportion of patients achieving target C0 at an earlier time 
post-transplantation, but also fewer Tac dose modifications 
and a shorter delay in reaching target C0 levels when com-
pared to simple weight-based dosing in which all patients 
received a fixed dose of 0.2 mg/kg/day. Therefore, dosing 
schedules based on the conclusions of Thervetet al. were fur-
ther translated into the recommendations of the CPIC [19].

However, in 2016, another randomized controlled trial 
involving 237 KTx recipients showed that there was no sig-
nificant difference between a genotype-based dose group 
and a standard dose group (p = 0.76) in Tac exposure within 
the therapeutic range (10–15 ng/ml) at their first steady state 
(day 3 after transplant) [1]. Post hoc analyses demonstrated 
that participants were more likely to experience a higher fre-
quency of supratherapeutic concentration (C) situations 
(defined as C > 20 ng/mL), particularly for CYP3A5 expressers 
in the genotype-based group (initial dose received 0.3 mg/
kg/day) or CYP3A5 nonexpressers in the standard-dose group 
(initial dose received 0.2 mg/kg/day). The incidence of supra-
therapeutic Tac concentration in the two groups was 46.4% 
and 47.4%, respectively. This suggests that avoiding dose 
increases for CYP3A5 expressers could reduce supratherapeu-
tic Tac exposure population-wide. In 2019 a French study [31] 
adjusted the CPIC guideline recommendations, lowering the 
starting dose of Tac for these genotypes in the prospective 
part of their study. Thus, the new regimen for the initial dose 
of Tac became the following: 0.10, 0.20 and 0.30 mg/kg/d for 
the genotypes CYP3A5*3/*3, CYP3A5*1/*3 and CYP3A5 *1/*1, 
respectively. The study showed that even when CYP3A5 
non-expressers received the median initial dose of 0.1 mg/kg/
day, nearly 40% of recipients still exhibited Tac overexposure. 
Our back-calculated doses (0.07–0.11, 0.14–0.21 and 0.20–
0.29 mg/kg/d for the CYP3A5*3/*3, CYP3A5*1/*3 and CYP3A5 
*1/*1 genotypes, respectively) compared to the French study 
(0.10, 0.20 and 0.30 mg/kg/d for the CYP3A5*3/*3, 
CYP3A5*1/*3 and CYP3A5 *1/*1 carriers, respectively) support 
the feasibility of CYP3A5-based dosing while suggesting that 
lower-than-conventional doses may be preferable.

One limitation of this study is that we did not assess the 
role of drug-drug interactions, particularly the inhibitors of 
CYP3A or P-glycoprotein which increase Tac concentration. 

Thus, our Tac concentration data may have been overesti-
mated. Additionally, we did not collect data on Tac formula-
tion use, nor did we stratify patients by CYP3A5 genotype to 
determine the distribution of formulations within each group. 
Differences in formulation may have affected dose require-
ments and Tac concentrations, representing a potential con-
founder. Future studies should quantify Tac formulation use 
and evaluate the impact of formulation switching on dosing 
to optimize pharmacogenetic strategies.

The strength of this study lies in its pharmacogenomic 
analysis of Asian KTx recipients, with a sufficient number of 
CYP3A5 *1/*1 carriers to yield robust conclusions. Our retro-
spective data revealed that the current dosing practices 
often result in high overexposure or toxic concentrations. 
Thus, we conclude that genotype-specific Tac doses are 
essential for pharmacogenetic optimization.

Conclusions

In conclusion, we demonstrated that CYP3A5 variants signifi-
cantly influence the required dose of Tac in KTx recipients, 
highlighting the need for an initial Tac dosing strategy based 
on CYP3A5 genotypes. Our research reveals the value of pre-
emptive pharmacogenetic testing, with a back-calculated 
dosing formula in this Taiwanese cohort reducing Tac overex-
posure by 69%, paving the way for achieving adequate Tac 
therapeutic exposure in precision medicine. However, as this 
genotype-guided approach remains preliminary and specific 
to our population, future studies are required to incorporate 
additional Tac-associated genes and to validate this strategy 
prospectively in diverse cohorts.
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