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Abstract

Background A variety of experimental animal models are used extensively to study mechanisms underlying cancer cachexia,
and to identify potential treatments. The important potential confounding effect of dietary composition and intake used in
many preclinical studies of cancer cachexia is frequently overlooked. Dietary designs applied in experimental studies should
maximize the applicability to human cancer cachexia, meeting the essential requirements of the species used in the study,
matched between treatment and control groups as well as also being generally similar to human consumption.

Methods A literature review of scientific studies using animal models of cancer and cancer cachexia with dietary interven-
tions was performed. Studies that investigated interventions using lipid sources were selected as the focus of discussion.

Results The search revealed a number of nutrient intervention studies (n=44), with the majority including n-3 fatty acids
(n=16), mainly eicosapentaenoic acid and/or docosahexaenoic acid. A review of the literature revealed that the majority of
studies do not provide information about dietary design; food intake or pair-feeding is rarely reported. Further, there is a lack
of standardization in dietary design, content, source, and overall composition in animal models of cancer cachexia. A model is
proposed with the intent of guiding dietary design in preclinical studies to enable comparisons of dietary treatments within the
same study, translation across different study designs, as well as application to human nutrient intakes.

Conclusion The potential for experimental endpoints to be affected by variations in food intake, macronutrient content, and
diet composition is likely. Diet content and composition should be reported, and food intake assessed. Minimum standards for
diet definition in cachexia studies would improve reproducibility of pre-clinical studies and aid the interpretation and
translation of results to humans with cancer.
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Introduction

Cancer cachexia is a wasting syndrome characterized by
ongoing loss of skeletal muscle mass (with or without loss of
fat mass) that leads to progressive functional impairment.
A global feature of cachexia is negative protein and energy
balance driven by a variable combination of reduced food
intake and abnormal metabolism. Experimental models are
used extensively to study mechanisms underlying cachexia
and to identify potential treatments. Preclinical studies enable
control of many factors such as genetics, age, tumour type,
and load that would be expected to influence the results of

an intervention in a human population. Paradoxically, the
important potential confounding effect of dietary intake and
composition used in many pre-clinical studies of cancer
cachexia is frequently overlooked. Where details of dietary
intake in animal experiments of cancer cachexia have been
included, the majority of animal diets are imbalanced or
lack certain essential nutrients, and frequently bear no
resemblance to those normally consumed by humans with
respect to macronutrient and micronutrient levels.?

Where nutrient interventions have been used for cancer
cachexia studies, there is wide variation in timing and
duration of supplementation, as well as route and frequency

© 2015 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society of Sarcopenia, Cachexia and Wasting Disorders
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.


http://creativecommons.org/licenses/by-nc-nd/4.0/

Diet composition in experimental animal models of cancer cachexia

111

of administration of any given nutrient, making it difficult to
compare results across different animal models, study
designs, and laboratory groups. Key metabolic differences
between rodents and humans are not widely appreciated.
Moreover the importance of background diet is often
ignored. Thus, animals fed nutrient-deficient diets may be
particularly sensitive to nutritional stress induced by the
cancer-bearing state, and demonstrate corresponding
exaggerated beneficial responses to supplements containing
the missing nutrients. Finally it can be argued that, to
maximize the applicability to human cachexia, attention
should be paid to making the composition of diets used for
experimental animals both sufficient for essential baseline
requirements for the species under study but also generally
similar to human diets.

To illustrate these points we have reviewed studies
performed in rodents that used a dietary intervention for
cancer or cancer cachexia. Evidence to support the consider-
ation of diet as an important experimental factor is
presented. Moreover, we suggest that minimum standards for
diet definition in cachexia studies should be adopted to
improve reproducibility of preclinical studies and aid interpreta-
tion and translation of results to humans with cancer.

Challenges in using animal models of human
cancer cachexia

In humans, the mechanisms underlying cancer cachexia are
complex, heterogeneous, and largely poorly defined. This
complexity cannot be fully reproduced in animal models of
cachexia, despite attempts to try and bridge the gap between
human disease and animal models of cancer. A limited
number of tumour cell types are used in rodent experiments
[Lewis lung carcinoma (LLC); Colon 26 adenocarcinoma (C26)]
but these are often chosen to be representative of tumour-
types (i.e. lung and colorectal cancers) which are more
frequently associated with cachexia in humans. Tumour cell
lines are typically implanted subcutaneously into experimen-
tal animal models, and are left to grow until the tumour-
burden induces cachexia symptoms.> Although tumour cell
implantation induces cachexia, these tumours rarely metasta-
size, a key difference from cachexia-causing neoplasms in
humans.®> A variety of cachexia models are available, and
methodological variations within models also make study
comparisons difficult.* The majority of animal models for
cancer and cancer cachexia use mice and each strain may
have important differences relevant to their metabolic
responses to cancer. Thus, some strains of in-bred animals
are more susceptible to developing obesity and diabetes such
as the C57BL/6J strain,® which can significantly affect study
outcomes in cachexia. Furthermore, sex differences in growth
responses are recognized in rodents, which may also limit
generalizability of results to humans. Female rodents are

preferred over male rodents in studies with endpoints
involving body weight changes since females have a slower
growth curve and are less susceptible to rapid changes in body
weight. In contrast, studies attempting to limit hormonal
fluctuations within an animal prefer male rodents.®

In addition to metabolic and growth differences between
sexes and strains of rodents, it is important to remember that
there are also several important differences between human
and rodent metabolism. Young and healthy rodents are
commonly utilized in experimental studies; however young,
healthy animals may not accurately reflect the manifestation
of disease in adult or aging humans. For example, cancer
patients may present with a number of comorbidities such
as obesity, diabetes, heart disease, and are typically over
the age of 50years old.” Furthermore, the progression and
timeline of aging in humans are not equivalent to that in
rodents. Quinn (2005) determined that the ratio of rat to
human life span is 1 to 30, making the age of the host species
an important factor to consider in the study design.®
Moreover, rats reach mature skeletal size much earlier than
humans.® Rodents also differ from humans in several aspects
of metabolism. For example, rats have a higher activity of
liver enzymes involved in altering the chemical structure of
fats 1 and liver CYP enzymes involved in drug metabolism.**
Compared to human hepatocytes, rat hepatocytes are
much less susceptible to carcinogenic factors and mutagenic-
ity.!? Absence of a gall bladder in rats enables certain fats to
be secreted directly into the intestine;'® thus, rats have an
increased ability to eliminate cholesterol from the body.
Unlike humans, rats are capable of liver vitamin C synthesis
de novo,** resulting in 2.5-fold higher levels of vitamin C in
their bodies compared to humans.*> Rats also have a higher
metabolic rate than other mammals and indeterminant
growth, thus have a higher demand for energy relative to
their small body size compared to human requirements.®
In spite of all this, the similarities between rodents and humans
are still sufficient to justify use of rodents as models of human
disease,® but attention in design and interpretation of each
experiment is required.

Methods

Scientific articles were obtained through PubMed MEDLINE
searches containing the following search strings: (((cancer
OR neoplasm OR carcinoma OR malignant OR metastases)
AND (mouse OR mice OR murine OR rats)) AND cachexia)
AND (diet OR nutrition OR nutrient). Papers that did not
include a nutrient intervention were excluded as well as
interventions that involved pharmaceutical agents (Figure 1).
In the 1970s the American Institute of Nutrition (AIN) began
to develop semi-purified diets, with these diets becoming
more readily used and commercially available after 1985.
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Figure 1 Search results and paper exclusion.

Animal models of cancer cachexia
PubMed MEDLINE search string: (((cancer OR neoplasm OR carcinoma OR malignant OR metastases)
AND (mouse OR mice OR murine OR rats)) AND cachexia) AND (diet OR nutrition OR nutrient)

353 papers

Published before 1985

Review papers

papers

Non-tumour bearing models

226
papers
~ Pharmaceutical/biological
g compound interventions
105
papers
| Descriptive studies with no
" intervention included
57
papers

Exercise interventions

B

Nutrient intervention studies

44 papers

Fish oil, n-3 fatty acids, Eicosapentaenoic/Docosahexaenoic acids (n=16); Linoleic acid (n=2); Alpha-

ketoglutarate (n=2); Coconut oil (n=2); Leucine (n=7); Conjugated linoleic acid (n=2); Resveratrol (n=1);
Coptidis rhizoma herb (n=1); Glutamine (n=2); Selenium yeast (n=1); Butter yellow (n=1); Dairy milk fat
(n=1); Flaxseed oil (n=1); Wheat germ (n=1); Branched-chain amino acids (n=2); Vitamins E and C (n=1)

Note: Disparities in # number due to combination studies using multiple interventions.

For this reason, papers before 1985 were not included in the
present review.

Results

The search captured 353 papers in the initial search (Figure 1).
After removal of studies not meeting the inclusion criteria,
44 papers investigating a number of nutrient interventions
remained (see Figure 1). The majority of studies applying a
nutrient intervention involved n-3 fatty acids, mainly
eicosapentaenoic acid (EPA; 20:5n-3) and/or docosahexaenoic
acid (DHA; 22:6n-3) (n=16 studies). This review will focus in

detail on the influences of dietary content on the results and
interpretation of studies, with an emphasis on study designs
applying interventions with various lipid sources.

Important variations in the delivery of
experimental diets

The majority of pre-clinical models reviewed in the literature
provide diets ad libitum (free access), while fewer studies
control daily food intakes with fixed amounts.’”*® Certain
animal strains may require food to be delivered in controlled
daily amounts to prevent over-feeding.)” In contrast,
providing diets ad libitum when food intake is also recorded
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may enable researchers to associate the amount of nutrient
intake with outcome measures. Form of diet delivery may
explain differences in study outcomes if animals ate different
amounts of food during the study. Typical outcomes in
cachexia studies include muscle mass and weight loss, both
of which are intimately related to food intake. Regardless of
the diet control, food intake is an essential measure particu-
larly when nutrient intakes are associated with study
outcomes. The use of rodent models also enables pair
feeding which would not be ethically conceivable in human
subjects and allows precise manipulation of dietary intakes
while accounting for the effects of food intake per se on
experimental outcomes.

Composition of experimental animal diets

Animal diets used in the laboratory are categorized into three
main groups: cereal-based (non-purified) chow, purified or
semi-purified, and chemically defined diets.’® Diets either
have an open formula, indicating that the dietary composi-
tion has been published and is available to the scientific
community, or diets can have a closed formula, indicating
the dietary composition and ingredients are known only to
the manufacturer.?® Chemically defined, or elemental diets,
are made of purified triglycerides, free fatty acids, free amino
acids, sugars, vitamins, and minerals.*! Semi-purified diets
are composed of purified proteins, starch, sugars, and
defined lipid components from specified fats and oils.

Standard laboratory chow diets

From the body of literature reviewed, it is clear that the
majority of diets used are standard laboratory chow from
commercial sources provided ab libitum (free access). Two
of the most common laboratory rodent chows are the
Standard Rat and Mouse Breeding Diet from Pilsbury
(Birmingham, UK) and Panlab Laboratory Chow (Barcelona,
Spain). Laboratory chow does not have a standard macronu-
trient composition, and is formulated from plant materials,
meat meal, fishmeal, and fats that are rarely defined.?
Standard laboratory chow diets vary from batch to batch,
and individual ingredients may also vary over time.?*?3
Chows with closed formulas are incompletely characterized,
making it nearly impossible to determine exactly what is in
a particular batch.?* These factors make it difficult to report
the composition of lab chow, aside from the manufacturers
name, since a batch fed five years ago will be different from
a batch fed one year ago making results from individual
studies difficult to replicate in future studies. Laboratory
chow aims to meet the essential requirements for a rodent,
but is delivered pre-mixed, making it difficult to modify.?*
Most laboratory chows provide the minimum requirement
for essential fatty acids for rodents, usually 1.5% total

diet,>*% and the primary source of fat in standard laboratory
chow diet is most often corn oil.?®

Laboratory chow diets also contain micronutrients or
compounds that are unknown to researchers and may impact
study endpoints and results. For example, many commonly
used natural-ingredient laboratory chows use soy as a protein
source, inadvertently adding phytoestrogens to the diet in
the form of isoflavones.”’” A number of studies have
investigated the effects of using laboratory chow in animal
models of breast cancer and endocrine/hormonal organ
systems 2%° have determined that the variability in commer-
cial rodent chow diets interferes with the value of these
animal models and experimental results.?” The variation in
isoflavone content between formulations of rodent chow
and between batches of the same formulation has been
shown to be several fold different.?” A number of studies
have also found chemicals present in rodent chow such as
arsenic,®® mercury,® and polychlorinated dioxins,>* with
these chemicals having the potential to exert effects on gene
expression and phenotypic outcomes. Chow diets may
significantly alter effects of experimental treatments, and in
particular, affect gene and protein expression.

Purified, semi-purified, and nutritionally made diets

The most common commercial source for semi-purified diets
is the American Institute of Nutrition (AIN) formulation. The
AIN first developed these diets to reduce the variance when
researchers developed their own formulations. Results from
studies prior to AIN-developed diets were difficult to
compare across studies and nutrition disciplines. The original
AIN diet was the AIN-76A formulation, which was later
revised and replaced by AIN-93.3® AIN-93 diets are offered
in Growth (G) or Maintenance (M) forms, depending on the
age of the animals being fed. AIN semi-purified diets are
available without macronutrients and micronutrients, which
enables researchers to formulate and alter the diet according
to the particular study objectives. As opposed to corn oil,
which was used in AIN diets prior to 1993, soybean oil has
been used since 1993 which, compared to corn oil, has a
more balanced fatty acid composition [15% saturated fat,
54% linoleic acid (n-6 fatty acid), 8% alpha linoleic acid (n-3
fatty acid), 23% oleic acid (n-9 fatty acid)]. Unlike protein
meal used in chow diets, the protein source is purified and
contains high quality defined protein sources.

In comparison to laboratory chow, the ingredients included
in purified or semi-purified diets are considered open formu-
las and are well characterized. There are several benefits to
using semi-/purified diets over laboratory chow in murine
study designs. When diet modifications occur in nutrient
interventions, semi-purified diets provide a benefit over
laboratory chow; if the nutrient intervention involves a
modification of the fat source, semi-purified diets enable fats
to be added and modified by the researcher. For example,
corn oil can be substituted for olive oil, safflower oil, fish
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oil, or individual fatty acids of interest to determine effects of
fatty acids or to enable matching of fatty acid composition
between experimental groups. Furthermore, semi-purified
diets allow researchers to modify fat quantity, and the propor-
tion each type of fat contributes to the diet as a whole.

The influence of background diet on results of
nutritional interventions

In nutrient intervention studies, little attention is paid to
background diets for their particular nutrient of interest.
The phrase, ‘a standard rodent chow was used’ is written fre-
quently, indicating that the content and composition of the
animal diet are either unknown to researchers, or considered

Figure 2 Proposed dietary design flow chart.

unimportant.?” Knowing the composition and quantity of the
diet fed is required to interpret findings relative to human
disease states. After meeting nutritional requirements of
the rat, the first criteria in dietary design are formulating
the comparison diets to be isocaloric and isonitrogenous
between treatment and control diets within the same study
(Figure 2). Although studies may define dietary compositions
in detail, fundamental matching of calories and nitrogen
content between diets is often overlooked 3*7® (Table 1).
Second, proportions of macro- and micronutrients could be
made similar to human intakes (Figure 2).

A review of the literature reveals that many dietary designs
do not subscribe to the criteria outlined in Figure 2. In
three similar studies, male NMRI mice were implanted with
MAC16 tumour cells, and supplemented with medium-chain

Isocaloric
- Matched for kcal/gram diet

- Fat: 9 kcal/gram

Isonitrogenous

DIETARY DESIGN

- Carbohydrates: 4 kcal/gram
- Protein: 4 kcal/gram

- Matched for grams of nitrogen/gram diet

Macronutrient content

- Current human intakes:
- Carbohydrates: 45-65% total kcal
- Fat: 20-35% total kcal
- Protein: 10-35% total kcal

Micronutrient content

- Meet minimum requirements for species

- Monounsaturated fatty acids (MUFA)
- Polyunsaturated fatty acids (PUFA)

- Essential (n-3) and (n-6) fatty acids
- Saturated fatty acids (SFA)

Proportions repr

- PUFA:SFA (P:S ratio)
- General reccommendation:1.0
- Actual human intake: 0.6

ive of recomm

- General recommendation: 6:1-4:1
- Actual human intake: 10:1-20:1

Fat composition

ded human intakes or actual human intakes:

- n-6/n-3 ratio* (No established recommendation)

* Types of n-3 fatty acids may be important to consider: a-linolenic acid (ALA),
eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA)
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triglycerides ***” and eicosapentaenoic acid (EPA; Table 1).**

Mice were fed a rat/mouse breeding diet ad libitum for 2 weeks
before a dietary intervention began. Mice were randomized
into diet groups containing 11.5% total energy from fat (source
and composition unspecified by Beck and Tisdale, 1989 “® and
Hudson and Tisdale, 1994; ** palm oil used in control diet in
by Tisdale, Brennan and Fearon, 1987 *’). All three studies
modified the control diet to consist of 80% of total energy from
medium-chain triglycerides, and Hudson et al. ** included a sec-
ond treatment diet group, which consisted of 80% total energy
from EPA ethyl esters. The proportions of fat in the diets within
the same study are not similar to each other, nor are they
congruent with human intakes. In another study, male Wistar
rats bearing the Yoshida AH-130 ascites hepatoma, animals
were randomized to receive resveratrol injections, or saline
injections while consuming standard laboratory chow.*® The
diet consisted of 71% total kcal carbohydrates, 22% total kcal
protein, and 7% total kcal fat. In contrast to the very high
contribution of fat to the diets in Beck et al.,*®* Hudson
et al,** and Tisdale et al.,*” the macronutrient proportion of
this diet compared to a typical human diet would be considered
low in fat. Thus, results are difficult to extrapolate to humans,
since the macronutrient imbalance results in either a high
fat/low carbohydrate diets or low fat/high carbohydrate diets.
These examples represent the majority of typical animal dietary
designs in the preclinical cachexia literature, where the first
criteria of matching kilocalories between diets are not met.

Important considerations related to fat quantity
and composition in dietary models

The following discussion will aim to provide a framework
focused on fat content and composition of experimental
diets. The principles and underlying considerations applied
to fat as a macronutrient can also be applied to protein and
carbohydrate quantity and composition.

Fat content and composition are important to consider,
especially in studies focused on ‘tumour x host x nutrient’
interactions. As a recommendation, it is important for fats
included in the diet to first meet the nutrient requirements
for the species being used, and second, for the composition
and types of fat in the diet to be matched between diet treat-
ments, and finally to represent what is commonly consumed
by humans (Figure 2). Most laboratory chow diets use corn oil
as the only source of fat,>° while fat blends that include more
than one type of oil or fat source are used only in semi-
purified or nutritionally made diets.>* A corn oil-based diet
will result in a higher proportion of n-6 fatty acids and n-6/
n-3 fatty acid ratio than other oil types. In Wistar rats bearing
the Walker 256 tumour, rats were fed high-fat diets (49%
total kcals), low-fat diets (9% total kcals), or diets with fish
oil and sunflower oil with varied ratios of n-6/n-3, 6:1;
30:1; and 60:1 (Table 1).3°*° pizato et al. 3**° aimed to

demonstrate that a lower n-6/n-3 ratio (6:1) was more effective
in preventing cachexia compared to higher n-6/n-3 ratio diets;
however the diets were not matched for calories. Higher ratios
of n-6/n-3 fatty acids have been associated with greater
inflammation and enhanced tumour growth,’*>? emphasizing
the importance of considering the n-6/n-3 ratio in dietary
design. In addition to metabolic differences between n-6 and
n-3 fatty acids, the length of fatty acid chains also has an
impact on metabolism and energy expenditure. Compared
to long chain fatty acids, medium chain fatty acids are
absorbed more efficiently and have been associated with
weight loss or reduced weight gain in long-term studies. Thus,
fatty acid chain length is an additional factor to consider in
dietary design given the differences in metabolism between
long and medium chain fatty acids.>® A number of studies to
date have reported that promotion of mammary tumours in
rodents fed a high-fat diet, compared with those fed a low-
fat diet, may be due to specific metabolic activities of the type
of fatty acids in the diet, independent of calories.>® These find-
ings reiterate the importance of designing macronutrient in-
takes to be representative of the research question at hand,
and to further take into account the composition of the mac-
ronutrient class in addition to matching diets for kilocalories.

When adding or replacing fat in diets it is also important to
note that this frequently alters other aspects of diet composi-
tion. The majority of studies that provide high-fat diets used
sources of fat, with or without another nutrient, added to a
background diet of standard laboratory chow.>”** These
results should be interpreted cautiously since the capacity
for chow diets to be modified is limited, and adding nutrients
into the diet may reduce concentrations of the other nutri-
ents.” This can result in a diet that is deficient for example,
in protein per gram of chow. When animals are fed ad libitum,
they will consume to a specific number of calories per day,
therefore a high-fat diet, which is more calorie dense per
gram of diet, also affects protein intake. The addition of nutri-
ents to standard chow also makes it difficult to compare to
the original lab chow. The control group may be receiving
adequate proportions of macro- and micronutrients, whereas
the experimental group may be deficient in certain nutrients.

EPA and DHA nutrient interventions

Although there is an abundance of evidence that suggests the
fatty acid profile is of importance for the efficacy of EPA and
DHA in vivo, most preclinical models have not considered the
fatty acid profile of the background diet when designing
nutrient intervention diets. The effectiveness of long-chain
fatty acids EPA and DHA on enhancing drug antitumour
activity has been demonstrated in several rodent models of
cancer.>® Interestingly, a comparison of studies has shown
that the effectiveness of EPA and DHA for antineoplastic
activities depends on the background diet, with effects
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greatest in studies where control diets contain fat sources of
palm or corn oil, and subsequently low levels of total polyun-
saturated fatty acids.’®’ Control diets with fat sources
from safflower or sunflower oil, and therefore higher levels
of total PUFA, do not give the same results.”>*>>® N-3 fatty
acids may exert different biological effects depending on
the background diet fat composition, n-6/n-3 ratio, and
polyunsaturated/saturated fat ratio.>**%®° Collectively,
studies suggest that amount of total PUFA in the diet may
be an important factor in determining efficacy of EPA and
DHA on cancer-related outcomes. These findings emphasize
the importance of a well-developed background diet in
studies of nutrient interventions, particularly those with
EPA and DHA. It is difficult to compare studies and interpret
findings when the majority of studies fail to provide appropri-
ate background diets.

Dietary designs to represent macronutrient content of human
diets

Many dietary designs do not reflect macronutrient propor-
tions typical of human consumption. While it is appreciated
the high degree of variability in dietary consumption patterns
of cancer patients over the disease trajectory,® it is still
possible and probably advisable to use diets which are at
least approximately in line with typical human diet macro-
nutrient composition to facilitate interpretation between
studies as well as translation to human populations.
Cremades et al. ** aimed to investigate whether a diet formu-
lated with a crayfish enzymatic extract enriched in essential
amino acids and n-3 fatty acids would be effective for the
treatment of cancer-associated cachexia by decreasing
mortality, morbidity and lengthened survival. A semi-purified
diet using the AIN-76A Vitamin and Mineral mixture was
developed with a macronutrient distribution of: 79% total
kcal carbohydrates, 15% total kcal protein, and 6% total kcal
fat. The source of fat in this diet was solely from olive oil,
being high in n-9 fatty acids, and relatively low in n-6 and
saturated fat, with minimal n-3 fatty acids. Although the fatty
acid profile was not given much consideration, Cremades
et al. ** carefully considered the nitrogen balance of the diet.
Since crayfish enzymatic extract is mainly protein and con-
tains all essential amino acids, the casein from the standard
diet was removed and replaced by the enzyme for the
crayfish diet to achieve isonitrogenous diets. While the
dietary design from this study includes a source of high quality
protein, it would be considered low in fat compared to typical
human intakes that fall in the range of 20-35% total kcal from
fat.®? Moreover, a low fat diet is not ideal in an experiment with
weight gain or maintenance as a study endpoint.

Nutrients provided via gavage

The majority of nutrient intervention studies administer the
intervention via the diet, either by incorporation into semi-
purified diets, or the addition of a nutrient to a standard

chow diet. However, some studies administer a nutrient
gavage, where oral pipettes are used to deliver an exact
amount of the nutrient to the animal ensuring that the nutrient
is ingested regardless of food intake. The dietary design upon
which the gavage is administered is still a key consideration.

Wistar rats inoculated with Walker 256 tumour cells were
randomized to receive a standard laboratory chow diet, or
treatment with coconut oil or fish oil (Table 1).** An
undefined source and amount of standard laboratory chow
was fed to all groups; rats were given bolus doses of either
coconut oil or fish oil at 1g/kgBW/day. Since the route of
administration was gavage, the addition of fat kilocalories
on top of the background diet of standard laboratory would
result in diets being dissimilar between control and treat-
ment groups. Feeding coconut oil (>90% saturated fat) on
top of laboratory chow (rich in n-6 fatty acids) does not
achieve a dietary intake resembling a human diet, which
consists of approximately 10% saturated fat. Moreover, the
authors do not provide any information about the back-
ground diet, proportion of macronutrients, kcals consumed,
or food intake, so it is not possible to determine the amount
of fat consumed in total or the intake of other macronutrients
in respect to the fat, such as the n-6/n-3 ratio. The fatty acid
composition of the background diet is particularly important
when the nutrient of interest is fat.

Costelli et al. 3’ fed male Wistar rats bearing the Yoshida
ascites hepatoma (YAH-130) standard laboratory chow (Panlab,
Barcelona, Spain) and similar to Togni et al. ** treatment ani-
mals received intragastric injections of EPA (1.5g/kgBW/day).
The composition of the background diet of standard laboratory
chow was not defined, and food intake was not reported. While
EPA was administered in a consistent dose, food intake may
have been reduced during the study period, which would
change other source of nutrients during the study period that
are known to interfere with EPA effectiveness such as the ratio
of n-3/n-6 fatty acids. Several other studies have administered
EPA/DHA interventions intragastrically ** (Table 1), or by bolus
micropipette dose,*>*? with only one of these studies adminis-
tering the background diet in a controlled daily amount and
reporting food intake '® (Table 1). In addition to the amount
of n-6 fatty acids, research also suggests that the absorption
of long chain n-3 fatty acids may be improved through the
meat, fish, and poultry factor or when consumed with monoun-
saturated fatty acids.>®> Chow diets are high in n-6 fatty
acids, and unbalanced for n-6/n-3 ratio which may alter the
absorption of EPA and/or DHA. It is difficult to know, however,
to what extent food intake is a factor when it is not reported.

Overall fat content and n-6/n-3 ratio in dietary design

Evidence suggests that the consumption of n-3 fatty acids
may exert antineoplastic effects through the incorporation
of n-3 fatty acids into membranes, replacing the n-6 fatty
acid, arachidonic acid. A higher intake of n-3 fatty acids,
therefore, may reduce pro-inflammatory mediators.®® On
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the basis of this hypothesis, Griffini et al. ®” fed Wag-rij rats
bearing CC531 colon carcinoma cells (i) low fat diet (11% total
kcal fat), (ii) n-6 PUFA diet (38% total kcal from fat as
safflower oil), or (iii) n-3 PUFA diet (38% total kcal from fat
as fish oil). The sole source of fat in the n-6 and n-3 fatty
acid treatment diets was safflower oil and fish oil respec-
tively. When evaluating this diet, one must first consider that
n-6 and n-3 fatty acids are dietary essential nutrients. When
providing fat sources with minimal amounts of either n-6 or
n-3 fatty acids, there is a risk of essential fatty acid
deficiency. Results could be attributed to the deficiency,
since the effects of n-3 fatty acids are being interpreted
against a diet containing only n-6 fatty acids as the PUFA
source, and additionally, results may be exaggerated when
comparing treatment and control groups.’®*® Further, diets
are not matched for calories, and food intake was not reported.

In three similar studies, Tisdale et al. >>*” investigated the
effects of feeding a fish oil or high fat diet on cachexia and
tumour growth in female NMRI mice bearing the MAC16
tumour, and Dagnelie et al. >* investigated the effects of
feeding fish oil on cancer cachexia and host liver metabolism
in Fisher F1 hybrid rats injected with MAT-Ly-Lu prostate
tumour cells. All three studies used the same dietary design.
Animals were fed a standard diet of laboratory chow,
containing 50% total kcal from carbohydrates, 20% total kcal
from protein, and 11.5% total kcal from fat (Pilsbury’s,
Birmingham, United Kingdom), or semi-purified treatment
diets with varying amounts of medium-chain triglycerides or
fish oil supplemented up to 80% total kcal supplied as
medium-chain triglycerides or 50% total kcal supplied as fish
oil (Table 1). The authors indicate that the treatment diets
were developed to be isonitrogenous and isocaloric by
reducing the carbohydrate content and supplementing the
remaining energy from the fish oil or medium-chain triglycer-
ides. However, this is not possible given the macronutrient
composition as fat provides 9 kcal/g, whereas carbohydrates
provide 4 kcal/g. Similar to Cremades et al.,** the standard
diet in both studies conducted by Tisdale et al. *** and
Dagnelie et al. * was low in fat, which is not ideal when
the study endpoints involve weight loss or gain. Moreover,
the proportion of fat in the high fat and fish-oil diets
aforementioned, 68-80% medium chain triglycerides and
50% fish oil respectively, are not proportions that are applica-
ble to human dietary intakes where very few medium-chain
triglycerides or fish oil lipids are consumed in the daily diet.
Similar to Griffini et al. ®” feeding fish oil as the sole source of
fat eliminates n-6 fatty acids from the diet and places animals
at a risk for essential fatty acid deficiency. Both studies fed a
high dose of fish oil, accounting for 50% of total energy in the
absence of n-6 fatty acids. Rats had free access to food through-
out the study period. Dagnelie et al. * did report that the fish
oil group had significantly lower food intake compared to
control animals, however, this could be related to caloric
density of the diets.

One additional consideration for dietary intervention
studies where fish oils or other lipids are used is the suscep-
tibility of the prepared diets with the oils to peroxidation.
Peroxidation can change the flavour of the food, making it
less palatable, and can also result in a loss of the bioactive
lipid being studied. Therefore, it is recommended that diets
be prepared fresh, especially when using nutrients that are
susceptible to oxidation and a quality control measure is
implemented at various points throughout the study (i.e. diet
composition analysis at the beginning, middle and end of
the study) to ensure the diet components do not change
over the course of the study, and/or contribute to changes
in food intake.

Dietary design: case study

To illustrate a dietary design that meets the criteria outlined in
Figure 2, the study conducted by Dumas et al. *® will be outlined.
Dumas et al. *® developed isocaloric and isonitrogenous semi-
purified diets and included a pair-fed group to discriminate
the effects of food intake reduction per se from those of the
tumour or cachexia. The review of the literature revealed that
there was only one other fat supplementation study that
included a pair-fed group.*® Dumas et al. 3 aimed to prevent
severe cachexia by limiting a decline in food intake, weight
loss, and by reducing the inflammatory marker, TNF-alpha in
Berlin—Druckrey IX rats inoculated with DHD/K12 colon
tumour cells. Animals were randomized to the semi-purified
control diet or fish oil supplemented diet with free access
(Table 1). Diets were matched for calories and nitrogen
content, differing only in fatty acid composition. Dietary
composition was defined in g/kg diet: casein (220g), sucrose
(187g), cellulose (20g), DL-methionine (1.6g), mineral
mixture (40g), vitamin mixture (without vitamin E; 10g),
corn starch (371.4g), and lipids (150g). A variety of lipid
sources were used to match diets for fat amount and
composition. The lipid mixture in the control diet was
composed of 12% peanut oil and 3% canola oil; lipid mix-
ture in the fish oil diet was 8% peanut oil, 2% canola oil,
and 5% fish oil. Peanut oil and canola oil are high in oleic
acid (n-9 fatty acids) and linoleic acid (n-6 fatty acids),
while peanut oil is also a major source of saturated fat.
The main difference in composition of these diets is the
EPA and DHA in the treatment diet, allowing researchers
to attribute differences in the outcomes to the treatments.
The lipid profile and major macronutrient proportions of
the control diet are within the range of human dietary
intakes, within a range of fish oil intake that would be
achievable in humans, rendering these results applicable to
human populations. Macronutrient proportions that are
representative of typical human intakes, though rare in
preclinical studies, remain advantageous in enabling translation
of findings to human populations.
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Conclusion

There is a lack of standardization in dietary design, content,
source, and overall composition in animal studies of cancer
cachexia. In many cases, information about the diet is not
included. Standard lab chow may be easy and convenient to
use, but the uncertainty about diet content when using a
closed label diet is poorly appreciated. Knowledge that
different groups of animals within the same experimental
study are consuming diets divergent in nutrient content
may be critical to fully interpret the effectiveness of a given
intervention. Many studies using preclinical models fre-
quently fail to report food intake, or total energy and protein
content of the diet. The role of a variety of dietary and other
interventions cannot be effectively evaluated without more
detailed dietary disclosure and information about potential
confounding effect of dietary factors. Correct interpretation
of outcomes with a particular intervention is enabled
when full dietary disclosure accompanies rigorous dietary
designs. At minimum, diet content and composition should
be reported and food intake assessed during the study.

Implementation of a standard dietary design as set out in
Figure 2 that meets minimum basic criteria of dietary design
would facilitate comparison of preclinical studies and
replication of studies between research groups. Standardiz-
ing dietary designs in studies that are using preclinical
models to explore important questions regarding mecha-
nisms and interventions for cancer cachexia would be an
important step to moving preclinical findings to human
application.
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