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Spatial correlation raises challenges in estimating confidence intervals for region specific

event rates and rate ratios between geographic units that are nested. Methods have

been proposed to incorporate spatial correlation by assuming various distributions for the

structure of autocorrelation patterns. However, the derivation of these statistics based on

approximationmay have to condition on the distributional assumption underlying the data

generating process, which may not hold for certain situations. This paper explores the

feasibility of utilizing a Bayesian convolutionmodel (BCM), which includes an uncorrelated

heterogeneity (UH) and a conditional autoregression (CAR) component to accommodate

both uncorrelated and correlated spatial heterogeneity, to estimate the 95% confidence

intervals for age-adjusted rate ratios among geographic regions with existing spatial

correlations. A simulation study is conducted and a BCMmethod is applied to two cancer

incidence datasets to calculate age-adjusted rate/ratio for the counties in the State of

Kentucky relative to the entire state. In comparison to three existing methods, without

and with spatial correlation, the Bayesian convolution model-based estimation provides

moderate shrinkage effect for the point estimates based on the neighbor structure across

regions and produces a wider interval due to the inclusion of uncertainty in the spatial

autocorrelation parameters. The overall spatial pattern of region incidence rate from BCM

approach appears to be like the direct estimates and other methods for both datasets,

even though “smoothing” occurs in some local regions. The Bayesian Convolution Model

allows flexibility in the specification of risk components and can improve the accuracy of

interval estimates of age-adjusted rate ratios among geographical regions as it considers

spatial correlation.

Keywords: spatial correlation, rate ratio, Bayesian statistics, BCM model, CAR prior

INTRODUCTION

The ratio of age-adjusted rates is a common measure in public health for comparing rates between
certain population groups or geographic units. The rate ratio comparing rates in a set of geographic
units with an area considered to be “standard” is especially of interest to public health policy stake-
holders on program planning and resource allocation. The key aspect of RR estimation between
geographic units is the accommodation of spatial correlation, and the overlap of each region with
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the overall study region. There is a necessity to consider
both sources of correlation into the interval estimation for
rates. Failing to account for spatial correlation leads to an
underestimated variability in the point estimate with lower
statistical power. Thus far, the approximation method based
on well-known statistical distributions (Gamma and F interval)
(1, 2) has been proposed to address the correlation between sub-
region and overall regions. Further, Zhu et al. (3) developed
a method to incorporate the spatial autocorrelation across
regions into the confidence interval (CI) by assuming the
structure of specific autocorrelation patterns which follows an
exponential distribution.

The Bayesian convolution model (BCM), which includes a
linear combination of an uncorrelated random effect and a
random effect correlated spatial heterogeneity, was first proposed
by Besag et al. (4) as a disease mapping technique to model the
within/between region variability of the event rate. The variability
can be decomposed into both correlated and uncorrelated
random effects for spatial heterogeneity. As compared to other
methods, the advantage of BCM is that inferences are made only
through observed data without over-specifying the asymptotic
distributions. In addition, for BCMmodel, the spatial correlation
structure is determined by the first order spatial effect rather
than the actual distance between regions, and that provides a
smoothing effect for the relative risk estimates in individual
areas toward the local average. (5) BCM has been found to
yield the best recovery of true risk under a variety of true risk
scenarios (6).

The first papers that tackled CI for age-adjusted rates (AAR)
and rate ratios (RR) were published by Fay and colleagues
(7, 8) based on the assumption that AARs follow a gamma
distribution. Tiwari et al. (1) expanded the algorithm to calculate
the RR of a sub-region and its parent region excluding the
sub-region itself. This algorithm does not consider overlap
between the two regions that the rate ratio is calculated for
(i.e., a sub-region and a parent region including the sub-
region). It is labeled the “Direct” method in the rest of
this paper.

To take into account the overlap between a sub-region and its
parent region, Tiwari and colleagues (2) developed an extension
to the earlier method that performed well in intensive simulation
studies. The approach derived 95% confidence intervals for
RR of Ri and R� based on F-approximations as well as
normal approximations. Through intensive simulations, they
found that F-intervals are often more conservative for rare
cancer sites; for moderate and common cancers, both intervals
perform similarly. This approach is labeled “Overlap” in the
rest of this paper to indicate that overlap between a sub-
region (e.g., county in a state) and its parent region (state)
is considered.

More recently, Zhu et al. (3) developed an algorithm
that considered both overlap between a sub-region and its
parent region, as well as the spatial autocorrelation between
all regions in the study area. The approach considered a
variance-covariance structure of RR that include three parts—
variance of the sub-region rates, variance of the parent region
rate, and the covariance which contains both overlap of

the sub-region and its parent, and spatial autocorrelation
between the sub-regions. A parametric form of spatial
semivariogram was assumed and estimated, and then the
variance-covariance matrix of RR was calculated. The delta
method was applied to transform the variance-covariance
matrix back to the original scale of RR. This method is labeled
“Spatial” in the rest of paper due to the inclusion of spatial
autocorrelation between regions. It was pointed out that
the “Spatial” method provided substantial improvements
over the Direct and Overlap methods by allowing for
spatial autocorrelation. When spatial autocorrelation is not
strong, the “Spatial” method performs equally as well as the
Overlap method.

In this paper we propose a BCM approach and make
comparison among the four existing methods. The objective of
the study is to 1) explore the usefulness of Bayesian hierarchical
convolution model in the cancer registry data with spatial
correlations; and 2) compare the interval estimation based on
BCMwith other approximationmethods for the age adjusted rate
or RR. The proposed method is labeled as BCM method in the
figures and tables presented in this paper.

METHODS

For I geographic units and J age groups in the study area, let’s
assume that the data available are Dij, the number of deaths (or
new cases), and nij, the count of the population size from region i
and age group j, then the age-specific rate, Rij, often expressed
as number of cases per 100,000 people at risk, is calculated as

Rij =
Dij

nij
× 100, 000. A direct age-adjustment is

Ri =
J

∑

j=1
wj

Dij

nij
× 100, 000

=
J

∑

j=1
wjRij

(1)

where wj is the proportion of population size for age group j

in the standard population and
J

∑

j=1
wj = 1. Hence, the AAR

is the weighted average of age-specific rates, weighted by the
standard population. Let � denote the total region of interest,
e.g., a whole state where data come from. Then the overall rate
for � is computed by age adjustment after summing the number
of deaths (numerator) and population (denominator) over all the
geographic regions, i.e.,

R� =
J

∑

j=1
wj

I
∑

i=1
Dij

I
∑

i=1
nij

× 100, 000

=
J

∑

j=1
wjRj

(2)

For the rest of this paper, we use Ri, R�, and Di, D� to
denote the random variables for the sub-regional and overall
area AAR and count, respectively. The corresponding lower-case

Frontiers in Public Health | www.frontiersin.org 2 June 2019 | Volume 7 | Article 144

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Jiang et al. Bayesian Intervals of Rate Ratios

letters denote the observed rates or counts, or realizations of
the random variables, respectively. It is assumed that the age-
specific counts Dij are independent Poisson random variables
with parameters λij, the relative risk of events in area i and
age stratum j as compared to the expected reference rate, and,
Dij ∼ Poisson

(

nij[λij]
)

.

Direct Method
The “Direct” method refers to the algorithm developed by Tiwari
et al. (1). The CIs of RR between Ri and R(−i) were developed
to approximate the rate ratio of Ri to R�, where R(−i) refers to
the AAR of the whole area after deleting region i. Since Ri and
R(−i) are linear combinations of independent Poisson random
variables Dij, the mean ui, u(−i), and the variance σ 2

i, σ
2
(−i) of

Ri and R(−i) are also linear combinations of λij. Applying the
delta method, both the mean and the variance of the rate ratio are
estimable as the linear combinations of the observed age-specific
rates rij:

E

(

Ri

R(−i)

)

≈
µi

µ(−i)
(3)

Var

(

Ri

R(−i)

)

≈
σ 2
i µ2

(−i) + σ 2µ2
i

nµ4
(−i)

(4)

The details of this method can be found at Appendix A of
Tiwari et al. (1).

Overlap Method
The Overlap method is based on the proportional age-
distribution assumption (2), i.e., the ratio of the population in a
sub-region to that of the parent region is approximately the same
across all age-groups. This proportion, denoted as pi, accounts
for the overlap in the sub-region’s population and that of the
parent region. The parent region AAR R� is approximately a
linear combination of the AAR of Ri and R(−i), i.e., R� ≈ piRi +
p(−i)R(−i). Hence

Ri

R�

=
Ri/R(−i)

piRi/R(−i) + p(−i)
(5)

where p(−i) = 1− pi. Hence, CIs of Ri
R(−i)

(derived in the “Direct”

method) will lead to those for the rate ratio Ri
R�

. The details of this
method can be found in Tiwari et al. (2).

Spatial Method
The “Spatial” method expands the “Overlap” method to include
not only the overlap pi, but also the spatial autocorrelation

between regions i and i
′

, which is estimated with an exponential
semivariogram function. According to the First Law of
Geography by Tobler (9), that “everything is related to everything
else, but near things are more related than distant things,” it is
assumed that the correlation between values measured in two
locations decreases with distance. A Kriging technique (10) is
applied to the generalized linear models (11, 12) to estimate
the covariance between the rates in two locations. To find the

variance of rate ratio Ri/R�. the logarithm of the rate ratio is
considered and

Var(ln(Ri/R�) = Var(ln Ri)+ Var(ln R�)

−2Cov(ln Ri, ln R�) (6)

In the equation above, the variance of the logarithm of the
AARs can be estimated using the delta method and the
variance of the AARs, and the covariance term is estimated
using the assumed exponential semivariogram function. The
resulting variance of rate ratio Ri/R� can be decomposed
into four components, which represent the variance of the
sub-region AAR Ri, the variance of the parent region AAR
R�, the correlation of Ri and R� due to population overlap,
and the autocorrelation between Riand Ri′ (AAR in another
region i

′

).

Bayesian Convolution Model (BCM)
Under the same assumption that Dij ∼ Poisson

(

nijλij
)

and
that the counts are conditionally independent given λij, where
λij represents the relative risk of events in area i and age
stratum j as compared to the expected reference rates. We can
estimate λij as:

log
(

λij
)

= α0 + υi + ui (7)

where the terms consist of an intercept α0, uncorrelated (vi)
and correlated (ui) heterogeneity, respectively. The convolution
is the spatial random effect defined as ξi = υi + ui,
where υi and ui are used to capture spatially correlated and
unstructured extra variation in the model (13). α0 represents
the baseline log relative risk of disease across study region
and age strata. Generally, the uncorrelated and correlated
heterogeneity effects are specific for area i and age j, but in
this study, we assume that the heterogeneity effects do not
change among age groups and only vary with geographic areas.
Additional terms can be included in the definition of the
model for the risks as needed. We denote this model as BCM
(14), chapter 7. If the model only contains the uncorrelated
heterogeneity effect, it is referred to be UH model. Details of the
prior specification and posterior inference for BCM model are
shown below.

Prior Specification
We need to specify prior and hyper-prior for the model
parameters. The prior distribution of intercept α0 has a normal
distribution with mean of 0 and variance of σ 2

α (or precision τα),
the standard deviation follows a uniform distribution:

α0 ∼ N(0, τ−1
α ), τα =

1

σ 2
α

, σα0 ∼ uniform(0, 100) (8)

The uncorrelated heterogeneity (v) has a zero-mean Gaussian
prior distribution.

[vi|...] ∼ N(0, τ−1
v ), p(v) ∝ τmv exp

{

−
1

2
τv

m
∑

i=1

v2i

}

(9)
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The intrinsic conditional autoregression’s (autoregressive)
improper difference prior distribution (CAR) is assumed for the
structured correlated effect u (8), and it also follows a singular
normal distribution:

ui ∼ CAR(τ−1
u , nδi ) or [ui|...]∼N(

¯
uδi ,

σ 2
u

nδi

)ūδi (10)

ūδi and σ 2
u /nδi are the conditional moments of the intrinsic

Gaussian formulation mean and variance, respectively. ūδi =
∑

i′∈ δi

ui′/nδi is the average over the neighborhood of the ith

region, τu is the precision of the estimation for correlated
heterogeneity effect, which is simply the inverse of the already
defined variance hyper-parameter. nδi is the number of regions
in the neighborhood of i th region.

The hyper-priors for the standard deviation of the intercept is
assumed to be uniformly distributed σα0 ∼ uniform(0, 100). The
hyper-priors for variance parameters for uncorrelated (σ 2

ν ) and
correlated spatial random effects (σ 2

u ) are assumed to be inverse
gamma distribution IG(k, θ), which has the similar idea to assume
a gamma hyper prior for the precision parameters τu and τν , k
and θ are the shape and scale parameters. In our program we
assume k= 2 and θ = 0.5.

Prior (τu, τν) ∝
1

Ŵ(k)θk
xk−1e−

τu
θ

1

Ŵ(k)θk
xk−1e−

τv
θ ,

k = 2, θ = 0.5. (11)

The posterior distribution based on Poisson likelihood is
formulated as

P(α0, u, ν, τu, τν |Dij) = L(D|e, θ , δ)p(α0|σα0 )p(ν|τv)

p(u|τu)p(σα0 )p(τv)p(τu) (12)

=

I
∏

i=1

J
∏

j=1

{

exp(eijθij)(eijθij)
Dij/Dij!

}

× τα0
exp

{

−
1

2
τα0α

2
0

}

× τ I/2u exp







−
1

2
τu

∑

i

∑

i′∈δi

(ui − ui′ )
2







× τ I/2v exp

{

−
1

2
τv

I
∑

i=1

v2i

}

× prior(σα0 ,τu, τv)

Posterior Sampling
The posterior distribution is sampled usingMarkov ChainMonte
Carlo (MCMC) algorithm-Gibbs sampler for u and Metropolis-
Hastings sampler for the other parameters α0 and v.

Prediction of Age Adjusted Rate (Ratios) and

Associated 95% Confidence Interval

To obtain the age adjusted measures AARi =
J

∑

j=1
wj

Dij

nij
and

AAR =
J

∑

j=1
wj

Dj

nj
, these measures can be calculated from the raw

data, based on the methods described by Zhu et al. (3) and Tiwari
et al (2). These statistics are referred as raw statistics. The age-

adjusted rate for the overall study area is AAR =
J

∑

j=1
wj

Dj

nj
, where

Dj =
∑

i
Dij and nj =

∑

i
nij. The weights are usually pre-defined

(or can be calculated separately). The age-adjusted rate in the

ith region is AARi =
J

∑

j=1
wj

Dij

nij
. The age specific expected rate is

eij = nij

I
∑

i=1
Dij

I
∑

i=1
nij

. The age adjusted expected rate is ei =
J

∑

j=1
nij

I
∑

i=1
Dij

I
∑

i=1
nij

.

Prediction of Age Adjusted Rate (Ratios) and

Associated 95% Confidence Interval
The AARs Ri and R� can be calculated from the raw data,
using formulas (1) and (2). These statistics are referred as
raw statistics.

BCM is fitted using MCMC and yields posterior sampled
values for the parameters including intercept (α0), uncorrelated
(vi) and correlated (ui) spatial heterogeneity effect. From that
sample we can obtain both posterior mean estimates of λij
and the credible intervals for λij. Once we fit a model to the
original data, the predicted counts DP

ij are generated under the

fitted model from a predictive distribution DP
ij ∼ Poisson(nijλ

∗

ij)

where λ
∗

ij is a value from the sampler, then there would be

a set of DP
ijs generated for each of the g sampler values. The

AARs are computed based on these DP
ijs. For each D

Pg
ij , the

predicted count for the g-th value of the sampler, the AARs
for specific area and the overall area are computed the same
way as in formulas (1) and (2). This provides a sample of
predicted AARs and RR, from which it is possible to estimate
credible intervals.

SIMULATIONS

Simulation studies are conducted to compare the performance
across the four methods—“Direct,” “Overlap,” “Spatial,” and the
BCM methods. The simulated datasets are generated based on
three simulation scenarios presented in Table 1: (1) Convolution
model which includes an intercept term, uncorrelated random
noise, and correlated spatial heterogeneity. Intercept and the

TABLE 1 | Simulation scenarios and parameters.

Models T1: BCM model T2: common

spatial trend

T3: random effect on

county and age

Fixed

parameters

α0 = 0.1, τv =

100 (precision for

noise)

τγ = 100

(precision for

age random

effect)

τγ = 100 (precision for age

random effect)

Varying

parameters

τu = 50 (small),

100 (medium),

200 (large)

α0 = −3.2,

α1 = 0.1, α2

= 0.32

α0 = −0.1, τv = 10 (small)

α0 = 0.05, τv = 200 (large)
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precision parameter for the random noise are fixed. Precision
for the spatial heterogeneity random effect varies between small,
medium, and large values. Thismodel is referred as T1. (2) Spatial
trend model which includes an intercept and linear trend on
both latitude and longitude, as well as a random noise effect with
a fixed precision parameter (referred as T2). (3) Uncorrelated
random effects on county and age in which the precision on
age effect is fixed and the precision on the county random
effect ranges between large and small values (T3). Values of the
parameters are specified so that the relative risk θij approximately
falls in range (0.3, 3.0). For each of the 6 scenarios, 1,000
datasets are simulated with the total countD assumed to be 3,000
and 13,000 to mimic rare and common diseases, respectively.
Population is set to be the population of the State of Kentucky, the
true data example to be introduced in the next section. The “true”
rate ratio is defined as the average of the 1,000 simulated datasets.
Simulation scenarios for all model settings are assembled based
on parameters listed in Table 1.

The first 100 of the 1,000 simulated datasets are used to
evaluate the performance of the four methods. The evaluation
criteria include: (1) mean length of 95% interval estimate (CI);
(2) coverage probability, measured by the proportion of overlap
between 95% intervals from the simulated datasets and the model
fitted 95% intervals; and (3) measure of variability, which is the
standard deviation of CI length. Only the first 100 simulated
datasets are used due to the lengthy computation time in BCM
model. It took 4 weeks to run BCMusing the 100 datasets for each
of the six simulation scenarios and common (Count= 13,000) or
rare (Count= 3,000) diseases.

The results of the simulation study are presented in Table 2

(Count = 13,000) and 3 (Count = 3,000). The four methods
are compared based on the length of the interval estimates, the
coverage probability, and the standard deviation of the intervals.
A narrower interval indicates more liberal estimation. Coverage
probability is supposed to be close to 95%. Standard deviation of
the intervals indicates variation of the interval estimates. Since
the data are simulated according to the Kentucky population,
the 120 counties in Kentucky are categorized according to the
size of the county population. The 40 large counties have an
average population of 191 k, the 40 medium counties have an
average population of 48 k, and the 40 small counties have an
average population of 24 k. Within each simulation scenario,
large counties tend to have more liberal interval estimates, with
coverage probability closer to 95%, and variation of interval
length tend to be small. There is an obvious improvement in the
interval estimates from the Direct method to the Overlap method
to the Spatial method, especially when the precision of spatial
random effect is large compared to medium or small values.
Compared to other methods, BCMmodel has the largest average
CI length and variability of the CI length across all simulation
scenarios (Tables 2, 3). When the data were simulated under
the spatial convolution model with a very precise correlated
spatial effect (i.e., large tau), the BCM approach yields the largest
coverage probability among all methods. For all simulation
scenarios, the length of CI decreases as population size increases.
The performance of each method becomes worse as the precision
of the parameters decreases. T
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APPLICATION EXAMPLES

Comparison of the four methods was made using cancer
incidence data from the National Cancer Institute’s Surveillance,
Epidemiology and End Results (SEER) Program. SEER collects
data on cancer cases from various locations and sources
throughout the United States. This program currently collects
and publishes cancer incidence and survival data from state and
metropolitan level population-based cancer registries covering
∼30% of the US population. The data is released through
statistical software SEER∗Stat (15) for the analysis of SEER
and other cancer-related databases, such as mortality and
county attributes. SEER∗Stat calculates the non-adjusted and age-
adjusted rates (AARs) of cancer incidence or mortality, as well
as the rate ratio and the 95% CIs of the RR between selected
geographic areas using the Direct method.

Using dataset released in the SEER∗Stat software (16),
we analyze the Kentucky male lung cancer and oral cancer
(both genders) incidence data (Data has been provided in the
Supplementary Material section) to obtain model-based age
adjusted rate and county-to-state RR with associated credible
intervals. The state of Kentucky has the highest cancer rates for
both incidence and mortality. Cigarette smoking and tobacco
chewing prevalence are high, especially in the southeast area
of the state which is part of the Central Appalachia region
(17). Tobacco use causes many types of cancer, including cancer
of lung, mouth, esophagus, throat, bladder, and pancreas (18).
We calculate the age-adjusted incidence rates of lung cancer
(male only) and oral cancer (both genders) for the 5-year period
between 2006 and 2010. These two cancer sites are selected
to represent a more common and a rare cancer, respectively.
The lung cancer state rate is 126.94 per 100,000 and the rates
vary considerably among the 120 counties, from 57.01 to 207.21
(Figure 1, Direct), resulting in the county-to-state RR between
0.45 and 1.63 (Figure 2, Direct). There is also a spatial pattern,
with higher rates in the southeast mountain area, and lower rates
in the north and central areas. The oral cancer state rate is 13.12
and the county rates vary between 3.96 and 30.80 (Figure 3,
Direct). The county to state RR range between 0.30 and 2.35
(Figure 4, Direct).

The population nij and number of cases Dij in each region and
age strata are read in the matrix of I (region) rows and J columns
for each age specific count, with each region associated with a
unique index (FIPS code). For each region and age stratum, the
expected number of cases eij is computed using reference rates

for the disease incidence: eij = nij

I
∑

i=1
Dij

I
∑

i=1
nij

. To fit the joint model

to obtain posterior mean and distribution of the relative risk λij,
observed count and expected count with adjacency matrix are
entered into the MCMC algorithm. The adjacencies for the CAR
prior distribution are computed from the county or state maps
using R functions in library maps, maptools, and library spdep.
The program used for conditional autoregression model analysis
is self-written MCMC algorithm function based on BCM using
the R language (19).
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FIGURE 1 | Age-adjusted rate estimated from statistical methods (Direct top vs. BCM middle) and their difference (bottom) using 2006–2010 lung cancer incidence

data in Kentucky counties.

RESULTS

Table 4 shows the point and interval estimates of AARs and RR
using all four methods, for the top, middle, and lowest 5 RR of
lung cancer incidence data in Kentucky counties. The interval
estimates showed shrinkage from the Direct to the Overlap and
to the Spatial method. By contrast, the BCM method yields
different point estimates but a wider interval length as BCM
incorporates the uncertainty from spatial random effect, so the
interval estimate for BCM is wider. Overall, BCM provides a
smoothing effect by considering the neighborhood information
for the point estimates of relative risk estimates, especially for
the regions with small counts. The point estimates of the AAR
from BCM model algorithm are close to those from the Direct
estimate (Table 4): the difference in overall rate is 0.02 and mean
difference in the AAR of all regions is 1.21. The mean rate ratio
difference between two methods is also minimal (0.01). However,

the interval length of BCM algorithm is greater than that is
calculated from the “Direct” method, for both rate and RR.

The Bayesian disease-mapping analyses for lung cancer data
are presented in Figures 1, 2, which displayed the point estimate
of the age-adjusted mortality rate, the rate ratio, and the
difference between the direct and BCM methods (BCM minus
direct) for each area based on 2006–2010 lung cancer incidence
dataset. BCM provides a “smoothing” effect for the point
estimates. Specifically, in eastern Kentucky, estimated region-
specific AARs are higher (shaded in a darker color) based on
both the direct and BCM methods. In the difference maps,
the eastern Kentucky is shown in a lighter shade, meaning
BCM produces lower estimates toward an overall smoothing
average. By contrast, there are more areas with lower rate
estimates (shaded in lighter color) in the western regions after
controlling for spatial correlations. However, overall, BCM
maintains “appearance” of the direct estimation while producing
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FIGURE 2 | Rate ratio estimated from statistical methods (Direct top vs. BCM middle) and their difference (bottom) using 2006–2010 lung cancer incidence dataset.

“smoothing” effect for the regions with extreme (high or low)
rates by considering the neighborhood information.

Table 5 shows the point and interval estimates of AARs and
RR using all four methods, for the top, middle, and lowest 5 RR
of oral cancer incidence data in Kentucky counties. Similar to
the lung cancer example, the oral cancer overall rate and region-
specific AAR (and the rate ratios) yielded from BCM model are
similar to the direct estimates. Fewer extreme rates are shown in
the map (Figures 3, 4) produced from BCM model as compared
to the map from direct estimates. The difference between the
BCM and the direct estimates (bottommaps in both Figures 3, 4)
shows an opposite distribution pattern, indicating the smoothing
effect of the BCM method. In terms of variation, BCM method
provides a wider interval than the Direct estimates for both rate
and rate ratio estimates (Table 5).

To further compare the direct method and BCM model, we
plot the interval length of RR between direct method and BCM
model for both lung and oral cancer datasets (Figure 5). In both
datasets, there is a remarkably high correlation between direct

and BCM estimation. For lung cancer dataset with larger number
of events, there is 30% difference in the length of RR intervals
between Direct and BCM model, and on average BCM yields
wider intervals as compared to the direct estimation. For oral
cancer dataset, the difference in length of RR interval is <10%
between direct and BCM estimation. Tomake a valid comparison
between the Direct and the BCM estimates on the common
scale, we first standardized the interval length for RR from each
method into z-scores by subtracting the mean and dividing
by the standard deviation. Secondly, we applied the regression
technique based on iterated re-weighted least squares (IRLS) with
reweighted observations according to their absolute residuals.
After standardization, there is almost a perfect correlation (99%)
between two methods, the distributions of the interval length of
the rate ratio are very close for both datasets (Figure 6). In other
words, the county with the widest CI from the Direct method also
has the widest CI from BCM estimation.

We compare the interval length estimates across four different
methods (Figure 7). The interval length for the rate ratio
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FIGURE 3 | Age-Adjusted Rate estimated from statistical methods (Direct top vs. BCM middle) and their difference (bottom) using 2006–2010 oral cancer incidence

dataset.

shrinks from the Direct method, to the Overlap method and
to Spatial method in both oral and lung cancer analyses.
BCM method produces the widest CI for rate ratio in
both oral and lung cancer datasets. The median rate ratio
tends to be greater with BCM model as compared to the
other methods.

DISCUSSION

In this study, the BCM method is implemented to analyze
the Kentucky male lung cancer and oral cancer (both genders)
incidence data acquired from the NCI SEER program, with
the goal of obtaining the model-based age adjusted rate and

county-to-state RR with associated credible intervals by properly
taking into consideration the spatial correlation patterns. BCM
allows for incorporating both uncorrelated and correlated spatial
heterogeneity according to an existing neighborhood structure.
Among the different methods, the Overlap and Spatial methods
yield the same point estimates of rate or RR, only the interval
estimates show shrinkage from the Direct method, to the Overlap
and the to the Spatial method. By comparison, the proposed BCM
method produces the similar point estimates for rate and RR, but
since this method incorporates the uncertainty from the spatial
random effect, this leads to a much wider 95% CI for the RR.

Both the Spatial method and BCM consider the spatial
correlation for estimating a CI for RR. For both datasets,
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FIGURE 4 | Rate Ratio estimated from statistical methods (Direct top vs. BCM middle) and their difference (bottom) using 2006–2010 oral cancer incidence dataset.

BCM produces a much wider 95% CI for the RR, which is
predominantly larger for lung cancer (higher count of events)
as compared to oral cancer (small count of events) data, while
the Spatial method has a shrinkage effect for the interval
estimates in lung cancer data but not for oral cancer data.
Unfortunately, there is little literature on the difference in
interval width for comparing BCM methods to non-spatial
methods. The exception is Best et al. (20) where they cite CV
(coefficient of variation) for different methods but do not assess
the addition of a spatial effect. One obvious reason is that
two approaches have different assumptions about the form of
spatial structures—the spatial method hypothesizes a parametric
exponential distribution for spatial correlation structure, and the
convolution model estimates spatial correlation by assuming a
conditional autoregressive (CAR) prior distribution. In addition,

the 95% credible interval estimated from BCM is formed by
Monte Carlo draws from the posterior distribution, which tends
to include a random noise component in the interval estimation,
and could potentially lead to a greater CI as compared to the
numerical approximation as is defined in the spatial methods.
As a side interest, we also compared the length of 95% CI in
RR produced from UH model and BCM model. The boxplot
(Figure A1) shows the UH and BCM model widths of 95% CIs
for the relative risk for Kentucky counties: the overall width is
greater for BCMmodel.

The main advantage of using BCM is to allow flexible
modeling of spatial correlation in a natural way by including
uncorrelated (UH) and correlated (CH) spatial heterogeneity.
Secondly, the posterior sampling based on Monte Carlo
simulation tends to be more accurate than the numerical
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TABLE 4 | Age-adjusted rate and rate ratio in top, middle, and bottom five counties based on 2006–2010 lung cancer incidence rate in Kentucky.

KY

counties

5-year population Rate Rate

Point estimate 95% Confidence interval length Point estimate 95% Confidence interval length

Direct Overlap Spatial BCM Direct Overlap Spatial BCM Direct Overlap Spatial BCM Direct Overlap Spatial BCM

Top Martin 36,297 182.625 182.625 182.625 178.942 108.940 105.321 105.321 143.209 1.439 1.439 1.439 1.411 0.860 0.827 0.795 1.131

Menifee 16,060 191.103 191.103 191.103 198.536 141.660 133.789 133.789 189.948 1.506 1.506 1.506 1.565 1.118 1.053 1.023 1.494

Knox 76,901 201.330 201.330 201.330 201.274 66.527 65.066 65.066 90.340 1.586 1.586 1.586 1.587 0.527 0.510 0.533 0.716

Floyd 97,745 204.490 204.490 204.490 215.446 58.036 56.888 56.888 82.871 1.611 1.611 1.611 1.699 0.461 0.443 0.480 0.660

Perry 70,952 207.208 207.208 207.208 215.165 69.607 68.023 68.023 96.439 1.632 1.632 1.632 1.697 0.552 0.532 0.560 0.769

Medium Clinton 25,266 133.002 133.002 133.002 135.443 93.542 88.857 88.857 121.322 1.048 1.048 1.048 1.068 0.738 0.698 0.618 0.960

Trigg 34,715 133.064 133.064 133.064 132.178 71.151 67.673 67.673 93.474 1.048 1.048 1.048 1.042 0.562 0.531 0.453 0.742

Laurel 142,606 133.429 133.429 133.429 133.534 41.568 40.770 40.770 55.472 1.051 1.051 1.051 1.053 0.330 0.320 0.259 0.438

Rockcastle 41,997 133.874 133.874 133.874 132.298 72.594 69.784 69.784 92.599 1.055 1.055 1.055 1.044 0.573 0.549 0.465 0.732

Grayson 64,483 133.918 133.918 133.918 134.879 57.631 55.879 55.879 79.002 1.055 1.055 1.055 1.063 0.456 0.438 0.362 0.625

Low Robertson 5,693 57.010 57.010 57.010 64.576 132.487 101.856 101.856 162.14 0.449 0.449 0.449 0.509 1.044 0.802 0.798 1.276

Shelby 98,522 83.601 83.601 83.601 84.731 39.350 38.175 38.175 55.414 0.659 0.659 0.659 0.668 0.311 0.300 0.291 0.436

Allen 48,168 95.687 95.687 95.687 98.046 56.487 54.081 54.081 79.390 0.754 0.754 0.754 0.773 0.446 0.425 0.395 0.629

Boone 283,630 95.868 95.868 95.868 90.411 28.948 28.513 28.513 36.985 0.755 0.755 0.755 0.720 0.230 0.224 0.213 0.294

Fayette 707,535 96.838 96.838 96.838 95.238 17.192 17.028 17.028 23.212 0.763 0.763 0.763 0.751 0.138 0.131 0.145 0.188

TABLE 5 | Age-adjusted rate and rate ratio in top, middle, and bottom five counties based on 2006–2010 oral cancer incidence rate in Kentucky.

KY

Counties

5-year population Rate Rate ratio

Point estimate Interval length Point estimate Interval length

Direct Overlap Spatial BCM Direct Overlap Spatial BCM Direct Overlap Spatial BCM Direct Overlap Spatial BCM

Top Caldwell 64,667 21.911 21.911 21.911 20.307 22.892 20.994 20.994 26.400 1.670 1.670 1.670 1.548 1.750 1.595 1.595 2.021

Cumberland 34,655 22.116 22.116 22.116 21.002 31.740 27.884 27.884 36.400 1.685 1.685 1.685 1.601 2.424 2.122 2.122 2.784

Clinton 50,824 22.532 22.532 22.532 23.081 25.728 23.219 23.219 33.200 1.717 1.717 1.717 1.761 1.966 1.766 1.766 2.538

Magoffin 66,458 22.640 22.640 22.640 22.877 23.649 21.778 21.778 30.900 1.725 1.725 1.725 1.744 1.808 1.655 1.655 2.352

Bracken 42,385 30.797 30.797 30.797 28.983 35.614 32.760 32.760 42.100 2.347 2.347 2.347 2.209 2.722 2.491 2.491 3.216

Middle Garrard 84,212 12.615 12.615 12.615 11.934 16.087 14.602 14.602 18.500 0.961 0.961 0.961 0.910 1.229 1.111 1.111 1.438

Letcher 122,330 12.619 12.619 12.619 12.081 12.968 11.964 11.964 15.800 0.962 0.962 0.962 0.921 0.992 0.909 0.909 1.216

Menifee 32,140 12.740 12.740 12.740 12.510 27.353 22.691 22.691 31.413 0.971 0.971 0.971 0.954 2.087 1.728 1.728 2.356

Johnson 116,617 12.924 12.924 12.924 13.661 12.976 11.905 11.905 17.300 0.985 0.985 0.985 1.041 0.992 0.905 0.905 1.324

Jefferson 3,647,412 12.930 12.930 12.930 12.733 2.270 2.243 2.243 3.0100 0.985 0.985 0.985 0.971 0.187 0.156 0.156 0.248

Bottom Wolfe 36,562 3.961 3.961 3.961 4.240 16.096 11.126 11.126 15.500 0.302 0.302 0.302 0.324 1.228 0.848 0.848 1.170

Hancock 42,757 4.248 4.248 4.248 3.910 15.794 12.102 12.102 14.100 0.324 0.324 0.324 0.298 1.205 0.922 0.922 1.091

Trimble 44,351 5.384 5.384 5.384 6.020 15.950 12.256 12.256 18.400 0.410 0.410 0.410 0.459 1.217 0.934 0.934 1.407

Carlisle 25,629 5.833 5.833 5.833 5.760 23.207 16.276 16.276 20.700 0.445 0.445 0.445 0.439 1.770 1.240 1.240 1.582

Allen 98,485 5.988 5.988 5.988 5.200 10.912 9.632 9.632 11.500 0.456 0.456 0.456 0.397 0.833 0.733 0.733 0.875
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FIGURE 5 | The comparison of rate ratio interval length between Direct method and BCM model (Before standardization). β is the slope for regression and ρ is the

bivariate correlation.

FIGURE 6 | The comparison of rate ratio interval length between Direct method and BCM model (After standardization). β is the slope for regression.

approximation, and the distributions of all the parameter
estimates and model information can be obtained. Further,
simulation studies have shown that BCM outperforms other
methods (non-parametric smoothingmethods, marginal mixture
models, and full Bayes models etc.) in the analysis of small
area disease incidence data with respect to overall recovery of
true risk (6).

As a limitation, the data example used in this study is
specifically on cancer surveillance. A larger sample could
be used to illustrate the application of the methodology in
a broader area in public health. More practical applications
will be needed to further evaluate the performance of
Bayesian convolution model and demonstrate its effectiveness.
Alternatively, approximate Bayesian Inference for Latent
Gaussian Models can be also obtained using Integrated Nested
Laplace Approximations (INLA) (6) which can yield improved
computational efficiency.

Bayesian approaches to statistical problems have gained
popularity in various fields, such as epidemiology, medical and
public health. Most government sources hold publicly accessible
aggregated health data due to confidentiality requirements. The
resulting count data, usually available at county or postal/census
region level, can yield important insights into the general
spatial variation of disease in terms of incidence or prevalence.
However, the novel application of spatial methodology is less
well-recognized in this area and it is expected to improve the
efficiency of analysis of clustering effect. Bayesian convolution
model (BCM) is the fundamental strategy that can incorporate
the uncorrelated and correlated spatial heterogeneity effect, the
extension of this model can further take into account the
unobserved confounding variables that have a spatial expression
over the course of the study or conduct the longitudinal type
analysis. A potential future direction in this research is to check
the predictive validity through simulation study or bootstrap
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FIGURE 7 | Boxplot of lengths of 95% CI for Rate Ratio by cancer site (oral or lung cancer) and method.

cross-validation, so that the method can be promoted for broader
planning applications. Another future research focus of this work
include the inclusion of clinical and registry-level analysis, as well
as population level analyses resulting from cancer registry data,
the data on health service utilization, and clinical trials.
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APPENDIX

FIGURE A1 | Boxplot of rate ratio CI width for comparing UH and BCM model

using oral cancer incidence dataset.
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