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ABSTRACT Fifty years after the discovery of Epstein-Barr virus (EBV), it remains un-
clear how primary infection with this virus leads to massive CD8 T-cell expansion
and acute infectious mononucleosis (AIM) in young adults. AIM can vary greatly in
severity, from a mild transient influenza-like illness to a prolonged severe syndrome.
We questioned whether expansion of a unique HLA-A2.01-restricted, cross-reactive
CD8 T-cell response between influenza virus A-M158 (IAV-M1) and EBV BMLF1280

(EBV-BM) could modulate the immune response to EBV and play a role in determin-
ing the severity of AIM in 32 college students. Only ex vivo total IAV-M1 and IAV-
M1�EBV-BM cross-reactive tetramer� frequencies directly correlated with AIM sever-
ity and were predictive of severe disease. Expansion of specific cross-reactive
memory IAV-M1 T-cell receptor (TCR) V� repertoires correlated with levels of disease
severity. There were unique profiles of qualitatively different functional responses in
the cross-reactive and EBV-specific CD8 T-cell responses in each of the three groups
studied, severe-AIM patients, mild-AIM patients, and seropositive persistently EBV-
infected healthy donors, that may result from differences in TCR repertoire use. IAV-M1
tetramer� cells were functionally cross-reactive in short-term cultures, were associated
with the highest disease severity in AIM, and displayed enhanced production of gamma
interferon, a cytokine that greatly amplifies immune responses, thus frequently contrib-
uting to induction of immunopathology. Altogether, these data link heterologous im-
munity via CD8 T-cell cross-reactivity to CD8 T-cell repertoire selection, function, and
resultant disease severity in a common and important human infection. In particular,
it highlights for the first time a direct link between the TCR repertoire with patho-
genesis and the diversity of outcomes upon pathogen encounter.

IMPORTANCE The pathogenic impact of immune responses that by chance cross-
react to unrelated viruses has not been established in human infections. Here, we
demonstrate that the severity of acute infectious mononucleosis (AIM), an Epstein-
Barr virus (EBV)-induced disease prevalent in young adults but not children, is asso-
ciated with increased frequencies of T cells cross-reactive to EBV and the commonly
acquired influenza A virus (IAV). The T-cell receptor (TCR) repertoire and functions of
these cross-reactive T cells differed between mild- and severe-AIM patients, most
likely because these two groups of patients had selected different memory TCR rep-
ertoires in response to IAV infections encountered earlier. This heterologous immu-
nity may explain variability in disease outcome and why young adults with more-
developed IAV-specific memory T-cell pools have more-severe disease than children,
who have less-developed memory pools. This study provides a new framework for
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understanding the role of heterologous immunity in human health and disease and
highlights an important developing field examining the role of T-cell repertoires in
the mediation of immunopathology.

KEYWORDS CD8, Epstein-Barr virus, TCR repertoire, cross-reactive, heterologous
immunity, immune memory, influenza

Over 95% of the world’s population acquires a persistent infection with Epstein-Barr
virus (EBV) before the age of 30. The vast majority of acute EBV infections occur in

childhood and are essentially asymptomatic or unremarkable (1, 2). However, 30 to 37%
of U.S. college freshmen are EBV seronegative (3). Half of these EBV-susceptible
individuals acquire EBV infection in the first 2 years of college, with most (60 to 77%)
displaying symptoms of acute infectious mononucleosis (AIM) (3, 4). AIM is associated
with a massive CD8 T-cell expansion; symptoms can vary greatly in severity from a mild
short influenza-like illness to a more severe syndrome with sore throat, lymphadenop-
athy, splenomegaly, hepatomegaly, and debilitating fatigue lasting months (1, 2). A rare
5% of the population appears never to acquire the infection and remains EBV serone-
gative (5). Severe illness requiring hospitalization has been reported in individuals who
acquire primary EBV infection late in life (6). Persistent EBV infection is also associated
with the development of certain malignancies, including nasopharyngeal carcinoma
and Burkitt’s lymphoma (2) or autoimmune disorders such as multiple sclerosis (MS) (7).

The exact mechanisms that lead to induction of AIM are still very poorly understood.
Most prior research suggests that EBV-specific CD8 T-cell responses are robustly
expanded and may contribute to immunopathology in AIM; during the persistent
phase of infection, EBV-specific CD8 T cells appear to be important in the control of viral
replication (1, 2, 8–10). However, available data also suggest that EBV employs multiple
mechanisms to evade the host immune response, and this may be critical to its ability
to silently infect most of the population and establish latency in memory B cells (11, 12).
For instance, EBV does not induce a strong type 1 interferon (IFN) response (13, 14); EBV
also encodes an immunosuppressant interleukin-10 (IL-10) homologue within its ge-
nome (11, 12).

Here, we postulate that in some individuals, changes in the CD8 T-cell repertoire
resulting from prior unrelated infections results in AIM immunopathology. Over the
course of an individual’s life, encounters with various antigens leave imprints on the
immune system that affect innate and adaptive immune responses in subsequent
infections. These heterologous effects on immunity may be beneficial or harmful
(15–22). Evidence for heterologous immunity mediated via T-cell cross-reactivity, even
to unrelated viruses, and its impact on disease outcome in both mouse and human
studies is continuing to increase (23–28). Mouse models show that T-cell cross-reactivity
can change patterns of T-cell immunodominance (24), lead to the generation of
narrowly focused T-cell repertoires and T-cell escape viral mutants (29), and sometimes
confer a level of beneficial protective immunity impacting the difference between life
and death (17, 30, 31) but at other times be detrimental, leading to more-severe disease
with substantially altered pathology (17, 26, 32, 33).

While mechanistic studies of humans are difficult to perform, AIM provides a system
amenable to mechanistic analyses. We and others have described heterologous immu-
nity to three viruses that infect humans (influenza A virus [IAV], hepatitis C virus, and
dengue virus) (34, 35) and more recently between dengue virus and Zika virus (36). IAV,
the cause of influenza, is an important human pathogen, and “heterotypic” or protec-
tive heterologous immunity has been documented via both CD4 and CD8 T-cell
cross-reactivity to IAV strains (37–39). Mycobacterium bovis BCG, live polio, and measles
vaccines have been reported to decrease death due to unrelated pathogens in devel-
oping countries (40). Intriguingly, children vaccinated with BCG also had a 40% lower
incidence of atopy (41). Detrimental heterologous immunity may help explain why
young adults, who have complex, large, potentially cross-reactive memory T-cell pools,
commonly get more severely ill with infections like those due to EBV, cytomegalovirus
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(CMV), varicella-zoster virus, and mumps virus, which normally are mild in younger
children (42).

This study highlights the importance of virus-specific CD8 T-cell receptor (TCR)
repertoires in the mediation of heterologous immunity. TCR sequence diversity is
thought to enhance the surveillance efficiency of CD8 T cells and has been associated
with improved viral control and reduced viral escape (34, 35, 37). We recently used TCR
sequences to relate structural interactions between peptide-major histocompatibility
complex (MHC) complexes and TCRs to the selection of TCR repertoires and the
functional consequences of these interactions in response to the HLA-A2-restricted
influenza virus A-M158 (IAV-M1) epitope (43). CD8 TCR repertoires in response to
common viruses (IAV, CMV) are highly diverse and individualized; this is often referred
to as the “private specificity” of TCR repertoires. However, “public” clonotypes, which
are defined by the use of the same V, J, or CDR3 amino acid sequences in many
individuals, are favored for expansion, likely because of selection for optimal structural
interactions (44–46). Our recent results (43) suggest that antigen-specific TCR reper-
toires have evolved “focused diversity,” i.e., public clonotypes with highly diverse
private responses, to provide the ability to rapidly recognize their antigen, while
retaining flexibility should the antigen mutate or to assist in rapid responses to a new
cross-reactive pathogen. Although there are some recent limited reports of the TCR
repertoire being linked to disease (47), the role specific TCRs play in the mediation of
T-cell functional responses and disease outcome is still poorly understood.

Some AIM patients and healthy persistently EBV-infected donors have HLA-A2.01-
restricted CD8 T-cell responses cross-reactive to an immunodominant and highly
conserved IAV-encoded M158 epitope (IAV-M1) and two EBV-encoded epitopes, EBV
BMLF1280 (EBV-BM) and EBV-BLRF1109 (EBV-BR) (48, 49). We have also recently detected
unique, functionally IAV-M1/EBV-BM cross-reactive oligoclonal CD8 TCR repertoires in
five rare individuals who remain EBV seronegative (MA-EBV-SN) into their 4th decade of
life, suggesting that cross-reactive CD8 T cells may protect from EBV infection (5). These
studies provide a strong rationale for further examination of the potential role of both
virus-specific and cross-reactive TCR repertoires in the mediation of clinical outcomes
upon pathogen exposure. Mouse models of heterologous immunity have shown that
the same epitope cross-reactive response can either be protective or induce immuno-
pathology, depending on the individual’s history of infection and TCR repertoire (24,
49–54). Here we sought to determine if there is a correlation between the expansion of
IAV-M1/EBV-BM cross-reactive T-cell responses and the severity of AIM during EBV
infection. In addition, if these memory IAV-M1 cross-reactive responses had TCR rep-
ertoires different from those of seropositive persistently EBV-infected healthy donors
(HD-SP) and if they differed between mild- and severe-AIM patients, this would be
strong evidence that prior selection of cross-reactive IAV-M1 memory TCR repertoires
influences the severity of AIM. Our hypothesis is that following infection of an immune
host with a heterologous virus, cross-reactive T-cell responses, when present, are
selectively expanded and impact the outcome of disease due to the heterologous virus.
Thus, these studies have systematically examined whether CD8 T-cell cross-reactivity
between an individual’s memory responses to IAV and EBV lytic antigens plays a role in
the modification of antigen-specific CD8 population frequencies, function, and TCR
repertoire and whether this correlates with disease outcome during AIM.

RESULTS
Characteristics of the study populations. Over a 10-year period, we enrolled 32

AIM patients and 17 healthy persistently EBV-infected seropositive donors (HD-SP). In
both groups, the median age was 20 years and there was equal representation of males
and females (see Table S1 in the supplemental material). Because the goal of this study
was to determine the role of cross-reactive CD8 T cells in the mediation of AIM severity
and because the clinical presentation of AIM varied greatly between patients, we
developed a strategy to score disease severity. Adenopathy, the most common sign of
AIM on physical examination (our unpublished data), directly correlated (Fig. S3, graph
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i) with the degree of expansion of atypical lymphocytes, i.e., large granular lymphocytes
documented on the peripheral blood smear and used as one of the diagnostic criteria
for AIM. An inversion of the CD4/CD8 ratio in peripheral blood mononuclear cells
(PBMCs) has long been associated with acute viral infection because of the large
expansion of CD8 T cells, another pathognomic finding in AIM. We found that the
CD4/CD8 ratio inversely correlated with the percentage of atypical lymphocytes
(Fig. S3, graph ii). Thus, for some of the correlation studies, we used the percentage of
atypical lymphocytes as a direct and quantitative measurement of AIM severity. How-
ever, in order to actually stratify each patient into the mild- or severe-AIM group, we
scored AIM severity by using these same three direct measurements of AIM pathology,
including the percentage of atypical lymphocytes in peripheral blood, the level of
lymphadenopathy as scored by the same research nurse, and the CD4/CD8 ratio in
PBMCs (details are in Materials and Methods) (Table S1). On the basis of this scoring
strategy, AIM patients could be stratified into two groups, with severe-AIM patients
having a significantly (Student t test) higher adenopathy score (6.5 � 0.6 versus 3.3 �

0.8; n � 15 or 16; P � 0.01) and percentage of atypical lymphocytes (44 � 4.2 versus
23 � 3.8; n � 15 or 16; P � 0.002) and a lower CD4/CD8 ratio (0.6 � 0.08 versus 1.4 �

0.1; n � 15 or 16; P � 0.001) than mild-AIM patients.
Evidence of increased IAV/EBV CD8 T-cell cross-reactivity in severe-AIM pa-

tients by tetramer costaining directly ex vivo in PBMCs. CD8 T-cell cross-reactivity
can be complex and is easiest to demonstrate if costaining with two tetramers is
successful, usually when the two epitopes have similar avidity to the same TCR (29, 48,
49). However, cross-reactive epitopes may not share sequence identity and weaker
affinity for one of the ligands may, because of competition, reduce tetramer binding, as
has been reported for MHC class I cross-reactive ligands in autoimmune diseases and
tumor studies (55–57).

Costaining of CD8 T cells with epitope-specific tetramers is the most direct way to
demonstrate cross-reactivity. Representative fluorescence-activated cell sorter (FACS)
plots from patients in both severity groups demonstrate higher frequencies of circu-
lating total IAV-M1 (without tetramer costaining), cross-reactive IAV-M1�EBV-BM, and
cross-reactive IAV-M1�EBV-BR tetramer� CD8 T cells in a representative severe-AIM
patient than in a mild-AIM patient or a control HD-SP (Fig. 1a). These cross-reactive
responses usually peaked at visit 1 or 2 and then declined at subsequent visits, along
with the total EBV-BM- and EBV-BR-specific responses. In contrast, there was no evidence
of cross-reactive responses to CMV pp65 by tetramer costaining during AIM in CMV-
seropositive donors (data not shown). However, the tetramer costaining method has to be
carefully controlled, as in some cases one tetramer binds with higher affinity and blocks
the binding of the other (Fig. 1b and c) (49). This problem was particularly evident in
the severe-AIM patient group, where there was significantly more blockade of the
cross-reactive IAV-M1 tetramer binding by EBV-BM or EBV-BR tetramers ex vivo than
staining in mild-AIM patients (Fig. 1b and c; Fig. S2a). T cells can also cross-react to
EBV-BM and EBV-BR, and EBV-BM tetramer binding was also blocked by EBV-BR
tetramer in some severe-AIM patients (Fig. 1c; Fig. S2a). Epitope-specific blockage of
tetramer staining was also present in some AIM patient short-term cultures (Fig. S2b).
Because of these issues with tetramer blocking affecting the accuracy of tetramer
frequency determination, when we refer to IAV-M1, EBV-BM, or EBV-BR tetramer�

frequencies, we are referring to the total population by using data from the single
tetramer staining frequencies (these frequencies will thus include the cross-reactive
populations). Thus, ironically and very inconveniently, the blockade of the binding of
one tetramer by the presence of a second tetramer is also further evidence of
cross-reactivity.

Directly ex vivo in PBMCs, only IAV-M1 and IAV-M1�EBV-BM tetramer� CD8 T
cells strongly correlate with AIM severity and predict an increased relative risk of
severe AIM. Significantly increased CD8 T-cell responses to total EBV-BM, to total
EBV-BR, and to total IAV-M1 in AIM patients were detected directly ex vivo by tetramer
staining (Fig. 2). Twenty-four-fold and 185-fold increases in the numbers of EBV-BM and
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FIG 1 Evidence of increased IAV/EBV CD8 T-cell cross-reactivity in PBMCs of severe-AIM patients by tetramer costaining directly ex vivo. (a) One way to
determine the frequency of cross-reactive CD8 T cells in peripheral blood sorted CD8 T cells is costaining of cells with different tetramer pairs as shown
in this representative example, which shows that during the acute phase of AIM at visit 1 (v1), a severe-AIM donor (E-1382) has more IAV-M1�EBV-BM
tetramer� CD8 T cells than a mild-AIM donor (E-1392) and HD-SP (D-002). (b) This same severe-AIM patient at v2 showed a competitive reaction and
mutual tetramer blocking of IAV-M1 and EBV-BM tetramer binding upon costaining with these two tetramers. Costaining with IAV-M1 and EBV-BR
tetramers did not result in double-tetramer-positive cells, but the level of IAV-M1 tetramer� cells declined compared to that of IAV-M1 single-tetramer-
staining cells. There was no blockade upon costaining with EBV-BM and EBV-BR or IAV-M1 and control tyrosinase369 –377 tetramers. In these studies, the
exact same tetramers were used for the single-color control and double-tetramer staining. The values in parentheses are the MFIs of the populations
indicated. (c) Significant IAV-M1-specific tetramer blockade by EBV-BM-specific tetramer and EBV-BR-specific tetramer was detected ex vivo in severe-AIM
patients (n � 11) compared to mild-AIM patients (n � 7). On the x axis, the red text indicates the tetramer-specific response that was being blocked
by the other tetramer. Below the line is the double-tetramer combination used for costaining. The estimated blocking level for each tetramer was
calculated by the formula [(costained tetramer A MFI/alone tetramer A MFI) � (costained tetramer A%/alone tetramer A%)] � 100. The gating strategies
used are shown in Fig. S1.
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FIG 2 Only total IAV-M1 and IAV-M1�EBV-BM tetramer� CD8 T cell levels in PBMCs analyzed ex vivo strongly correlate with AIM severity and predict the
increased relative risk of severe AIM. (a) The average numbers of tetramer� IAV-M1 (M1) (i), EBV-BM (BM) (ii) EBV-BR (BR) (iii) and IAV-M1�EBV-BM (M1� BM�)
(n � 23 to 25) (iv), but not CMV pp65-specific (n � 7 to 9) (v), CD8 T cells/ml of peripheral blood were significantly higher in AIM patients at the peak of their
CD8 response than in healthy persistently infected EBV-seropositive donors (HD-SP) (n � 8 to 12) (Mann-Whitney U test). ns, not significant. (b) During the
course of AIM, the peak (highest) frequency of tetramer� IAV-M1 (i), IAV-M1�EBV-BM (ii), and EBV-BM (iii) CD8 T cells ex vivo directly correlated with the
percentage of atypical lymphocytes; the peak frequency of tetramer� EBV-BR (iv), IAV-M1�EBV-BR (v), EBV-BM�EBV-BR (vi), and CMV pp65 (vii) CD8 T cells ex
vivo did not correlate with the percentage of atypical lymphocytes (n � 17 to 19 AIM patients per analysis). (c) During the course of EBV infection, the peak
(greatest) viral load (measured as the genome copy number per B cell) had a weak direct correlation with disease severity measured as the percentage of
atypical lymphocytes. (d) Display of pairwise correlations between variables of interest computed in a correlation matrix by using the Pearson correlation
coefficient (the P values shown are adjusted for the number of multiple variant comparisons) and then graphically displayed as a matrix by using the corrplot
R package with dark blue as the most positive correlation coefficient of 1 and dark red an inverse correlation coefficient of �1. Relative-risk analyses are shown
in Table S2.
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EBV-BR tetramer� cells/ml of blood, respectively, were observed, along with 10-fold
and 25-fold increases in cross-reactive IAV-M1 and IAV-M1�EBV-BM tetramer� cells/ml
compared to those in HD-SP (Fig. 2a). This did not appear to be a nonspecific or
bystander expansion of all memory cells, as an increase in the number of CMV pp65
tetramer� cells/ml was not observed in CMV-seropositive AIM patients (Fig. 2a,
graph v).

We then questioned whether there was any evidence of a potential role for these
cross-reactive IAV-M1 tetramer� cells in the mediation of AIM severity. Interestingly,
only some of these IAV and EBV epitope-specific CD8 T-cell responses correlated with
disease severity. Only the ex vivo peak (highest) frequencies of total IAV-M1 and the
cross-reactive double IAV-M1�EBV-BM tetramer� subset, but not the IAV-M1�EBV-BR
tetramer� subset, directly correlated with the severity of AIM measured as the per-
centage of atypical lymphocytes (Fig. 2b). Interestingly, of the EBV-specific responses,
only the total EBV-BM tetramer� frequencies weakly correlated with AIM severity, but
not the other early dominant epitope-specific response, EBV-BR or cross-reactive
EBV-BM and EBV-BR tetramer� cells. There was also no correlation between another
memory population, CMV pp65 tetramer� frequency and AIM severity (Fig. 2b). There
was a weak correlation between AIM severity and the peak EBV load (Fig. 2c). It should
also be noted that multivariate analysis of the peak total IAV-M1, EBV-BM, and EBV-BR
tetramer� frequencies ex vivo suggested that the total IAV-M1 tetramer� frequencies
were equivalently expanded within the mild- and severe-AIM groups during AIM to the
EBV epitope responses, except in one case; the EBV-BR tetramer� frequency was
greater than the IAV-M1 tetramer frequency in the severe-AIM group (one-way analysis
of variance [ANOVA] with Tukey’s multiple-comparison test, P � 0.04). However, the
display of pairwise correlations between all of these variables of interest, when com-
puted in a correlation matrix by using the Pearson correlation coefficient (Fig. 2d) and
multivariate analysis, suggests that there is something unique about the total IAV-M1
tetramer� response during AIM and in particular the double IAV-M1�EBV-BM te-
tramer� cross-reactive response, which may drive AIM severity. Only these two factors
significantly correlated with disease severity after adjustment for multivariate compar-
isons. It is possible, if not likely, that the majority of the total IAV-M1 tetramer� cells in
AIM were cross-reactive with EBV-BM, as their frequency directly correlated with the
IAV-M1�EBV-BM tetramer� frequency (Fig. 2d). In contrast, the frequency of cross-
reactive IAV-M1�EBV-BR tetramer� cells correlated with that of EBV-BR tetramer� cells
(Fig. 2d). In fact, relative-risk analyses also revealed that only total IAV-M1 tetramer� (if
�0.36%, relative risk � 4.9, odds ratio � 14, P � 0.05; Fisher’s exact test) and
IAV-M1�EBV-BM tetramer� (if �0.1%, relative risk � 5.8, odds ratio � 18.67, P � 0.02)
peak frequencies (usually at visit 1 or 2) could predict an increased risk of developing
severe AIM (Table S2). As in our highly controlled mouse studies of heterologous
immunity (33, 50), these cross-reactive IAV-M1-specific CD8 T-cell responses that ex-
panded during AIM were likely due to reactivated memory cells rather than de novo
new naive responses, as all of these patients were IAV immune. This is further sup-
ported by the observation that, in naive cord blood, IAV-M1-specific CD8 T cells do not
proliferate in response to EBV-BM or EBV-BR peptide stimulation (5). On the basis of
these studies, we propose a link between IAV-M1 and EBV-BM cross-reactive T cells and
AIM severity.

Directly ex vivo in PBMCs, the mean frequency of total IAV-M1 and IAV-
M1�EBV-BM tetramer� CD8 T cells was increased in the severe-AIM group.
Despite individual variation in EBV-specific responses, all AIM patients had significantly
higher mean frequencies of circulating total IAV-M1 (5-fold), EBV-BM (5-fold), and
EBV-BR (15-fold) tetramer� cells, measured directly ex vivo in PBMCs than did HD-SP
(Fig. 3a). Interestingly, as in the correlation studies, when the donors were segregated
into mild- and severe-AIM groups, the mean frequencies of total IAV-M1 or EBV-BM
tetramer� cells were 2.3- and 2.4-fold significantly greater, respectively, in severe-AIM
than in mild-AIM patients (Fig. 3b). Although the mean frequency of total EBV-BR
tetramer� cells was higher in the severe-AIM group, the difference did not reach
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statistical significance, mostly likely because of great variation in frequency, as some
severe-AIM patients had a percentage of EBV-BR tetramer� cells as low as 0.4%.
Differences in frequencies between patient groups were not detected in the convales-
cent phase 6 to 12 months after the acute phase of AIM (Fig. 3b). This was most likely
due to a significant 2.6- and 3.7-fold decrease in the mean frequency of IAV-M1 and
EBV-BM tetramer� cells, respectively, in severe-AIM patients from the acute to the
convalescent phase of infection (Fig. 3b). In mild-AIM patients, the expansion of all
three epitope-specific responses during the acute phase was so moderate that it did
not differ from that in the convalescent phase.

There also was a selective significant 3-fold greater mean peak frequency of
cross-reactive IAV-M1�EBV-BM tetramer� cells in severe-AIM patients than in mild-AIM
patients, while the frequencies of the other two cross-reactive populations, IAV-
M1�EBV-BR and EBV-BM�EBV-BR tetramer� cells, were similarly increased in both
patient groups (Fig. 3c). As mentioned above, in young CMV-seropositive donors during

FIG 3 PBMCs in patients with severe AIM had a greater mean frequency of total IAV-M1, EBV-BM, and IAV-M1�EBV-BM
tetramer� CD8 T cells than mild-AIM patients (when analyzed ex vivo). (a) All AIM patients had a significantly higher mean peak
frequency of total IAV-M1-, EBV-BM-, and EBV-BR-specific tetramer� CD8 T cells than healthy persistently infected EBV-
seropositive donors (HD-SP). (b) When patients were categorized into two groups on the basis of disease severity (see Materials
and Methods), severe-AIM patients had a significantly higher mean peak frequency of total IAV-M1 and EBV-BM tetramer�

cells, but not EBV-BR, directly ex vivo in their PBMCs than mild-AIM patients (n � 8 to 22 donors per group). The ex vivo mean
frequency of total IAV-M1 and EBV-BM tetramer� cells significantly decreased from the peak to the convalescent (conv) phase
in the severe-AIM group (n � 6 to 12 donors per group). (c) The mean peak frequency of IAV-M1�EBV-BM tetramer� cells in
severe-AIM patients was higher than that in mild-AIM patients but not that in the other two cross-reactive populations. (d) In
CMV-seropositive donors, CMV pp65 tetramer� CD8 T cells were lower in AIM patients than in HD-SP and higher in the
convalescent phase than the peak CD8 T-cell responses during AIM (AIM patients, n � 11; convalescent [Conv.] AIM patients,
n � 8; HD-SP, n � 11). (e) There was no significant difference in the mean peak or convalescent-phase EBV load (measured
as the genome copy number [log] per 106 B cells) between severe- and mild-AIM patients. The Student t test was used to
compare two groups, and one-way ANOVA with Sidak’s multiple-comparison test was used to compare more than two.
Severe-AIM groups, red; mild-AIM groups, blue. *, P � 0.05; **, P � 0.01.
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AIM, there was no increase in CMV pp65 tetramer� CD8 cells (Fig. 3d), which were
generally not cross-reactive with EBV lytic epitopes, as assessed by double tetramer
binding. In fact, CMV pp65 tetramer� cells were diluted out by the EBV-specific
response, resulting in a significantly lower frequency in the acute phase of AIM than in
the convalescent phase or in HD-SP. As in the multivariate correlation analyses, when
the donors were separated into mild- and severe-AIM groups, there was no significant
difference in the mean EBV load measured as the genome copy number in B cells
during the acute or convalescent phase (Fig. 3e). These results further support the
proposed selective link between IAV-M1 and EBV-BM cross-reactive T cells and AIM
severity. In subsequent studies, we examined whether the TCR repertoire and associ-
ated functional responses in this cross-reactive population could mechanistically ac-
count for the difference in disease severity between mild- and severe-AIM patients.

Directly ex vivo in PBMCs, mild- and severe-AIM patients were shown to use different
TCR V� repertoires in their total cross-reactive IAV-M1 tetramer� cells, suggesting that
the particular TCR repertoire played a role in disease severity, as these memory T cells
were present in each donor prior to acute EBV infection. TCR repertoires of IAV-M1
tetramer� cells in HD-SP and even young EBV-seronegative donors prior to infection
with EBV are similar, with distinct characteristics. Studies have shown that they exhibit
“focused diversity” in that they are highly diverse, differing between individuals, but
strongly focused on TCR V�19 use and particular CDR3 motifs (5, 58). Therefore, if
IAV-M1-specific TCR repertoires changed during AIM, this would be consistent with
selective expansion of cross-reactive TCR repertoires rather than bystander activation of
all IAV-M1 memory cells. Also, if the IAV-M1 TCR repertoire differed between mild- and
severe-AIM patients, this would also suggest that they had different IAV-M1 TCR
repertoires cross-reactive with EBV prior to being infected with EBV. This would be
consistent with different IAV-M1 cross-reactive TCR repertoires driving different disease
severities during AIM rather than EBV infection just activating IAV-M1 cross-reactive
cells randomly. Therefore, we next questioned whether the IAV-M1-specific TCR reper-
toires of the three donor groups differed. This was determined by direct costaining with
IAV-M1 tetramer and V�-specific monoclonal antibodies (MAbs) on ex vivo sorted CD8
T cells from fresh PBMCs. Using the Simpson diversity index (SDI) (59), we found that
AIM patients (mean SDI, 0.7 � 0.09; n � 19) had significantly more diverse IAV-M1-
specific TCR V� repertoires than HD-SP (mean SDI, 0.2 � 0.08; n � 8) (P � 0.0001,
Student t test) (Fig. 4a). The TCR V� repertoire of IAV-M1-specific T cells differed
between AIM patients and HD-SP. Consistent with previous reports (58, 60), TCR V�19,
the most commonly used IAV-M1-specific TCR V� type in HD-SP (56.5% � 5.6%, n �

18), significantly decreased in AIM patients (20.4% � 5.2%, n � 18, P � 0.0001) (Fig. 4b,
graph i). IAV-M1-specific TCR repertoires included multiple V� families, and V� use
varied between HD-SP and AIM patients, as AIM patients preferentially used V�20, -9,
-2, and -29 during the acute phase of infection (Fig. 4b, part ii). The IAV-M1-specific TCR
V� repertoire also significantly differed between mild- and severe-AIM patients. Severe-
AIM patients (n � 12) preferentially used many V� types, including V�20, -9, -28, -27,
-6.2, and -4.1, but they only used V�4.1 significantly more than the mild-AIM patients.
The mild-AIM patients (n � 8) also used multiple V� types but preferentially used V�29
and V�2 more than severe-AIM patients did during infection (Fig. 4c). Since severe- and
mild-AIM patients had unique IAV-M1-specific TCR V� use, we questioned whether the
use of a particular TCR V� type directly correlated with AIM severity. Indeed, there was
a direct correlation between IAV-M1-specific TCR V�4.1 use and the peak frequency of
atypical T lymphocytes, heralding severity of disease (Fig. 4d, part i). There was an
inverse correlation between IAV-M1-specific TCR V�2 use and the peak frequency of
atypical T lymphocytes (Fig. 4d, part ii). Thus, the cross-reactive IAV-M1 TCR repertoire
differed between mild- and severe-AIM patients, and in fact, disease severity correlated
with specific TCR V� use within the cross-reactive IAV-M1-specific cells in AIM patients.
These results are strongly supportive of the concept that the cross-reactive IAV-M1 TCR
repertoire that exists in an individual prior to EBV infection determines disease severity
during AIM.
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Differences in the functionality of IAV/EBV cross-reactive CD8 T cells in differ-
ent donor groups determined by combining tetramer staining and ICS in short-
term in vitro culture. There is evidence that tetramer staining does not always
correlate with functional responses to peptide (61). Recent studies suggest that te-
tramer staining may underestimate the frequencies of antigen-specific cells (43, 44).
Therefore, it was important to also conduct functional studies, such as measurement of
proliferation or cytokine production in response to stimulation with each ligand (33,
48, 49). Studies have also suggested that TCR use may be linked to particular T-cell
functions (62). We have previously observed that the CD8 T-cell populations that
expand in vitro in short-term cultures reflect the characteristics, both the TCR repertoire
and the activation state, of the in vivo cells within a donor (5, 43, 48, 49, 60). We thus
questioned whether the cross-reactive TCR repertoires under study were associated
with qualitative differences in functional responses, such as proliferation or cytokine

FIG 4 During AIM, patients with mild or severe disease have selected different TCR V� families in the expanding cross-reactive
IAV-M1 tetramer� cells (analyzed directly ex vivo in PBMCs). This suggests that each group had different cross-reactive TCR
repertoires prior to acute EBV infection, with differential effects on disease severity. (a) Directly ex vivo sorted CD8 T cells from
PBMCs were costained with IAV-M1 tetramer and V�-specific MAbs. Both severe-AIM (n � 11) and mild-AIM (n � 8) patients
had more diverse IAV-M1-specific TCR V� family use than HD-SP (n � 8), as calculated by the SDI (see Materials and Methods).
(b, part i) Decreased use of commonly used V�19 in the IAV-M1-specific TCR repertoire in AIM patients compared to that in
HD-SP. (b, part ii) The V� repertoire of IAV-M1-specific T cells differed between AIM patients (n � 19) and HD-SP (n � 18), with
increased use of V�20, -9, -2, and -29, which are more often associated with EBV-BM responses. (c) IAV-M1-specific TCR V�
repertoires differed between mild- and severe-AIM patients. Severe-AIM patients (n � 11) preferentially used V�4.1, while
mild-AIM patients (n � 8) preferentially used V�2 and V�29. (d, part i) Disease severity correlated directly with specific TCR V�
use in AIM patients, suggesting that it plays a role in the mediation of disease severity. There was a direct correlation between
the frequency of IAV-M1-specific TCR V�4.1 use and the peak frequency of atypical T lymphocytes during AIM. (d, part ii) There
was an inverse correlation between the frequency of IAV-M1-specific TCR V�2 use and the peak frequency of atypical T
lymphocytes. The TCR V� frequency of each donor is based on the mean of the first four visits (to enhance reproducibility),
except for V�4.1, where it is based on the mean of all visits. The Student t test was used to compare two groups, and one-way
ANOVA with Sidak’s multiple-comparison test was used to compare more than two groups.
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production upon interaction with either ligand in vitro. To study the qualitative
differences and assess their functional profiles, we questioned whether these cross-
reactive IAV-M1 tetramer� cells would proliferate in IAV-M1-, EBV-BM-, and EBV-BR-
stimulated short-term cultures and whether they produced either IFN-� or MIP-1� in
response to a peptide pulse. By combining cognate tetramer staining (tetramer spec-
ificity is the same as the stimulating peptide of the culture) with intracellular cytokine
staining (ICS), we were able to determine if tetramer� cells were making cytokines
when pulsed with cross-reactive peptides (these are all other peptides except the
peptide used to stimulate the culture, which can induce cytokines). Figure 5 shows
examples of these combined tetramer-cytokine staining patterns of representative
donors. Two types of cross-reactivity were observed, and the amount of each type of
cross-reactivity present in any culture varied between donors. First, there could be a
population of CD8 T cells with stronger, more obvious cross-reactivity where cognate
tetramer� cells made cytokines in response to a cross-reactive peptide pulse. The
second population was evidence of weaker functional cross-reactivity, where CD8 T
cells that had proliferated in response to the stimulating (cognate) peptide in culture
did not bind the cognate tetramer but did make cytokines in response to cross-reactive
peptide pulsing. We observed some differences between the representative donors
from the three patient groups. The severe-AIM patient had the greatest frequency of
cross-reactive IFN-�-producing cells and the greatest number of different functionally
cross-reactive populations between the EBV epitopes and IAV-M1 in all three cultures,
resulting in IFN-� production. This included the stronger cross-reactivity type, with four
different cognate tetramer� populations making IFN-� upon a cross-reactive peptide
pulse (IAV-M1 tet�/EBV-BM pulse, IAV-M1 tet�/EBV-BR pulse, EBV-BR tet�/IAV-M1
pulse, and EBV-BR tet�/EBV-BM pulse) (Fig. 5a). It also included the weaker cross-
reactivity type with five different non-tetramer� populations making IFN-� in response

FIG 5 Representative examples of tetramer and intracellular cytokine costaining of CD8 T cells in short-term cultures suggesting that severe-AIM patients have
the strongest functional cross-reactive responses. IAV-M1, EBV-BM, and EBV-BR peptide-stimulated short-term in vitro cultures generated from sorted CD8 T cells
of representative severe-AIM (E-1302) (a) and mild-AIM (E-1392) (b) patients and an HD-SP (D-002) (c) were costained with cognate (same as the
culture-stimulating peptide) tetramer and pulsed with cognate, cross-reactive, and control peptides (EBV latent epitope-specific peptide EBV-EBNA3A509 – 604 and
self-peptide tyrosinase369 –377). IFN-� (i) and MIP-1� (ii) production was determined. The symbol # indicates that a cognate peptide pulse can result in such
strong ligation of the TCR that it downregulates the TCR and thus the tetramer binding is hampered. (a) Representative severe-AIM patient who had more
cross-reactive cytokine-producing cells (IFN-�� or MIP-1��) in all three cultures. IAV-M1 tetramer� cells (in IAV-M1 culture) produced both IFN-� and MIP-1�
in response to an EBV-BM peptide pulse, and EBV-BR tetramer� cells (in EBV-BR culture) produced both IFN-� and MIP-1� in response to an IAV-M1 peptide
pulse. (b) In the mild-AIM patient, there was generally a much lower frequency of cross-reactive responses and only IAV-M1 tetramer� cells produced both IFN-�
and MIP-1� in response to an EBV-BM peptide pulse. In the mild-AIM patient, the EBV-BR culture had a weaker type of cross-reactivity, as an IAV-M1 peptide
pulse resulted in IFN-� and MIP-1� production in cells that were not BR tetramer�. (c) The HD-SP had even lower frequencies of cross-reactive responses than
the mild-AIM patient, and they were predominantly of the weaker type.
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to a cross-reactive peptide pulse (IAV-M1 culture/EBV-BR pulse, EBV-BM culture/IAV-M1
pulse, EBV-BM culture/EBV-BR pulse, EBV-BR culture/IAV-M1 pulse, and EBV-BR culture/
EBV-BM pulse). The cross-reactive peptide pulses induced MIP-1� production even
more often than IFN-� (Fig. 5a), consistent with the fact that it is easier to induce MIP-1b
with lower-avidity interactions (48). The representative mild-AIM patient and the HD-SP
predominantly produced MIP-1� more than IFN-� upon a cross-reactive peptide pulse
and had more of the weaker type of cross-reactivity. This might suggest that the
difference in the IAV-M1 memory cross-reactive TCR repertoire prior to EBV infection in
the two AIM patient groups (Fig. 4) results in the expansion of stronger affinity highly
functional cross-reactive responses in the severe-AIM group upon EBV infection than in
the mild-AIM group. Examination of functional cross-reactivity in these same samples
by directly gating on the cognate tetramer� cells and showing an overlay of IFN-� or
MIP-1� histogram values for each peptide stimulation also demonstrated that the
severe-AIM patient had a greater number of functionally cross-reactive responses
between IAV-M1 and EBV-BM and -BR than the mild-AIM patient or HD-SP (Fig. S4). The
histogram data also show that of the eight peptides tested, the cross-reactive responses
were largely restricted to the IAV-M1, EBV-BM, and EBV-BR peptides, indicating high
selectivity in this process. Overall, these representative data from each of the three
patient groups suggest that there was greater proliferation of functionally cross-
reactive cells, in particular IFN-�-producing cells, in AIM patients than in HD-SP and
more in severe-AIM patients than in mild-AIM patients. This conclusion is further
supported by a statistical analysis of all of the subjects tested, as demonstrated below.
In the next two sections, we summarize our systematic statistical analyses of the
qualitative functional differences in both cell proliferation and cytokine production in
the cross-reactive and cognate populations among all three donor groups that may
help account for the differences in disease severity. However, using tetramer staining
combined with ICS assays has certain drawbacks, as the peptide pulse in the ICS can
lead to downmodulation of the TCR (e.g., Fig. 5a, IAV-M1 cognate tetramer with IAV-M1
pulse) and thus dramatically decrease tetramer binding and confound interpretation of
the data. Therefore, to actually determine if there were significant functional differences
in proliferation of the cross-reactive and cognate responses in the three patient groups
in the different cell cultures, we examined tetramer frequency without peptide pulsing in
the short-term in vitro cultures. To determine if there were significant functional
differences in cytokine production of the cross-reactive and cognate responses in the
three patient groups in the different cell cultures, we quantified the number of cells
producing cytokines in response to cognate and a cross-reactive peptide pulse (without
tetramer) and determined the frequencies of double-cytokine producers (IFN-�� MIP-
1��) and single-cytokine producers (MIP-1��).

Summary analyses of cross-reactive CD8 T-cell proliferation by tetramer fre-
quency: unique profiles in donor groups with severe-AIM patients having the
greatest proliferation of IAV/EBV cross-reactive CD8 T cells in vitro. We examined
if the proliferative capacity of the cognate (same peptide used to grow the culture) and
cross-reactive CD8 T cells differed among the three different donor groups by deter-
mining the cognate and cross-reactive tetramer frequency profiles in IAV-M1, EBV-BM,
and EBV-BR peptide-stimulated short-term cultures. The proliferation of IAV-M1-, EBV-
BM-, and EBV-BR-specific cells in each culture was determined by costaining with pairs
of tetramers (representative tetramer staining in cultures Fig. S2b). As previously
reported (48), in the tetramer costaining studies, we observed two types of cross-
reactive cells, those that costained with two tetramers and those that stained with only
one tetramer but expanded in vitro in response to the cross-reactive peptide (also see
Fig. S2b). In each culture, we determined the tetramer frequency of cognate (same as
the culture) (Fig. 6a and b) and cross-reactive cells that were either single tetramer�

(Fig. 6a and b; Fig. S5a) or double tetramer� (Fig. 6c and d; Fig. S5b). The cognate
EBV-BM cells in vitro proliferated as well in AIM patients as in HD-SP, while cognate
EBV-BR and IAV-M1 did not proliferate as well in severe-AIM patients as in HD-SP.
Instead, the cross-reactive IAV-M1 responses dominated in culture, particularly in cells
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FIG 6 Severe-AIM patients have the greatest proliferation of IAV/EBV cross-reactive CD8 T cells in short-term in vitro cultures. In addition, each patient group
maintains unique identifiable cognate and cross-reactive CD8 T-cell proliferation profiles upon peptide stimulation in short-term in vitro cultures, which are
representative of their in vivo CD8 T-cell repertoires. The proliferation of IAV-M1-, EBV-BM-, and EBV-BR-specific cells in each culture was determined by

(Continued on next page)
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derived from severe-AIM patients. The cognate EBV-BR-specific cells may be in a more
functionally exhausted state in vivo, thus proliferating poorly in vitro in severe-AIM
patients. Each donor group had a unique profile of cognate and single cross-reactive
IAV/EBV-specific CD8 T-cell proliferation, as demonstrated in the heat map display with
multivariate analyses (Fig. 6b; Fig. S5).

There was also an increased expansion of IAV/EBV double tetramer� cross-reactive
cells in severe-AIM patients (Fig. 6c and d). There was a significantly higher frequency
of three cross-reactive populations, IAV-M1�EBV-BM tet� cells in BM-stimulated cul-
tures and IAV-M1�EBV-BR tet� cells in both IAV-M1- and EBV-BR-stimulated cultures, in
severe-AIM patients than in mild-AIM patients or HD-SP. Severe-AIM patients had a
unique specific profile of double tetramer� cross-reactive IAV/EBV-specific CD8 T-cell
proliferation, as demonstrated in a heat map display with multivariate analyses (Fig. 6d;
Fig. S5b). Altogether, these results support the concept that in severe AIM there is a
unique IAV-M1 TCR repertoire that is highly cross-reactive with EBV-BM, resulting in
enhanced proliferation upon acute EBV infection.

Summary analyses of cross-reactive CD8 T-cell cytokine production: severe-
AIM patients have the greatest frequency of functional IFN-�-producing cross-
reactive cells in vitro. To determine if there were significant functional differences in
cytokine production of the cross-reactive responses in the three patient groups, we
examined the short-term in vitro cultures by using peptide pulsing in an ICS and
quantified double-cytokine producers (IFN-�� MIP-1��) and single-cytokine producers
(MIP-1��).

Cross-reactive CD8 T cells proliferated and produced cytokines in response to
cognate and cross-reactive peptide pulses with unique functional patterns in each
patient group. In particular, the ratio of double-cytokine (IFN-�� MIP-1��) to single-
cytokine (MIP-1��) producers differed between the groups. In the severe-AIM group,
both the IAV-M1 and EBV-BM short-term cultures had significantly more double-
cytokine-producing (IFN-�� MIP-1��) cells than single-cytokine-producing (MIP-1��)
cells in response to the cognate peptide pulse than the mild-AIM and HD-SP groups
(Fig. 7a). This suggests that severe-AIM patients have more EBV-BM- and IAV-M1-
responding cells in vivo that have differentiated into IFN-�-producing cells than mild-
AIM patients or HD-SP. In contrast, in the severe- and mild-AIM groups, the EBV-BR
short-term cultures had significantly fewer IFN-�-producing cells in response to EBV-BR
peptide than in the HD-SP group (Fig. 7a), further suggesting that these EBV-BR-specific
cells might be partially functionally exhausted. Each donor group has a highly unique
profile of cognate and cross-reactive IAV/EBV-specific IFN-�� (Fig. 7b) and/or MIP1��

(Fig. 7c) CD8 T cells, as demonstrated in a heat map display with multivariate analyses
(Fig. S6).

Altogether, these functional studies demonstrate that each donor group had unique
functional characteristics in each cognate and cross-reactive response, suggesting that

FIG 6 Legend (Continued)
costaining with pairs of tetramers (7 to 18 donors per group). In each culture, we determined the tetramer frequency of cognate (same as the culture) (a and
b) and cross-reactive cells that were either single tetramer� (a and b) or double tetramer� (c and d). (a) Increased expansion of single tetramer� cross-reactive
cells in EBV-BM- and IAV-M1-stimulated cultures of cells from severe-AIM patients. There was significantly increased expansion of IAV-M1 tetramer� cells in
BM-stimulated cultures of cells from severe-AIM patients versus those from mild-AIM patients or HD-SP. Within the severe-AIM group, the cognate IAV-M1 tet�

frequency is lower than that in the mild-AIM group; instead, this group has a significantly increased frequency of cross-reactive IAV-M1 tet� cells that grew in
response to EBV-BM stimulation. Within the severe-AIM group, the cognate EBV-BR tet� frequency is lower than that in mild-AIM patients; instead, this group
has a significantly increased cross-reactive EBV-BR tet� frequency in the IAV-M1-stimulated culture. Control cultures included short-term cultures with CMV pp65
or tyrosinase peptide or T2 cells (antigen-presenting cells) alone without a peptide, where the double tetramer frequencies were �0.1%, as indicated by the
symbol �. (b) Each donor group has unique profiles of cognate and cross-reactive IAV/EBV-specific CD8 T-cell proliferation that are highly significantly different
from each other, as demonstrated in a heat map display with multivariate analyses. (c) Increased expansion of IAV/EBV double tetramer� cross-reactive cells
in severe (sev)-AIM patients. There were significantly higher frequencies of IAV-M1�EBV-BM tet� cells in an EBV-BM-stimulated culture and IAV-M1�EBV-BR
tet� cells in both IAV-M1- and EBV-BR-stimulated cultures of cells from severe-AIM patients than in those of cells from mild-AIM patients or HD-SP. (The mean
of all double tetramer� frequencies pairing IAV-M1, EBV-BM, and EBV-BR tet� with control tyrosinase tet� was �0.1; the mean of all double tetramer�

frequencies in control CMV pp65-, tyrosinase-, and no-peptide-stimulated cultures was �0.1.) (d) Severe-AIM patients have a unique profile of double tetramer�

cross-reactive IAV/EBV-specific CD8 T-cell proliferation, as demonstrated in a heat map display with multivariate analyses. The Student t test was used to
compare two groups, one-way ANOVA with Sidak’s multiple-comparison test was used to compare more than two groups, and multivariate analyses were done
by two-way ANOVA with Tukey’s multiple-comparison test with adjustment for multiple comparisons. Details of the highly significant but complex multivariate
statistical analyses for the heat maps (b and d) are shown in Fig. S5.
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FIG 7 Cells from the severe-AIM, mild-AIM, and HD-SP groups each maintain a unique cognate and cross-reactive CD8 T-cell cytokine
profile upon peptide stimulation in short-term in vitro cultures. Summary analyses of the cytokine profiles of IAV-M1, EBV-BM, and EBV-BR
peptide-stimulated short-term cultures of cells from severe (sev)- and mild-AIM patients and HD-SP show significant differences in their
functional responses to cognate (same as the culture peptide) and cross-reactive peptides (5 to 10 donors per group). The cytokine
production of IAV-M1-, EBV-BM-, and EBV-BR-specific cells in each culture was determined by stimulation with each of the peptides in an
intracellular cytokine assay and determination of the frequency of either double-cytokine-producing (IFN� � MIP1��) cells (a and b) or
MIP-1�-only-producing (MIP1��) cells (a and c). (a) Greater expansion of functional IFN-�� cross-reactive responses in severe-AIM patients
versus mild-AIM patients in IAV-M1- and EBV-BM-stimulated rather than EBV-BR-stimulated short-term cultures. There was a significantly
higher frequency of cognate IAV-M1 or cognate EBV-BM IFN-� versus MIP-1�-only-producing cells in severe-AIM patients than in mild-AIM
patients or HD-SP. There was a significantly lower frequency of cognate EBV-BR IFN-�� cells in severe-AIM and mild-AIM patients than in
HD-SP. In both patient groups, cross-reactive peptides induce significantly more MIP-1� than IFN-�, except upon an IAV-M1 pulse of either
EBV-BM or EBV-BR cultures from severe-AIM patients. Also, an IAV-M1 pulse of EBV-BR cultures resulted in greater IFN-� production by
mild-AIM patients than by severe-AIM patients. Control cultures included short-term cultures with CMV pp65 or tyrosinase peptide (not
shown), where the frequencies of IFN-�� cells were �0.1%, as indicated by the symbol �. *, P � 0.05; **, P � 0.01. (b) Each donor group
has a unique profile of cognate and cross-reactive IAV/EBV-specific IFN-�� CD8 T cells, as demonstrated in a heat map display with
multivariate analyses. A cognate EBV-BM peptide pulse induced the greatest frequency of IFN-�� cells in all donors groups. In severe- and
mild-AIM patients, it was significantly higher than all other populations, including cognate EBV-BR and IAV-M1, while in HD-SP, there were
equal frequencies of cognate EBV-BR IFN-�� cells. A cognate IAV-M1 pulse in all donor groups induced the next greatest frequency of
IFN-�� cells. A cognate EBV-BR peptide pulse induced the greatest frequency of IFN-�� in HD-SP. However, in both severe- and mild-AIM
patients, the cognate EBV-BR IFN-�� cell level was so low that it was not significantly different from that of any other condition, including
tyrosinase peptide pulse controls, except that it was significantly less than cognates EBV-BM and IAV-M1 in severe AIM and only cognate
EBV-BM in mild AIM. (c) Each donor group has a unique profile of cognate and cross-reactive IAV/EBV-specific MIP-1�� CD8 T cells, as
demonstrated in a heat map display with multivariate analyses. In severe-AIM patients, a cross-reactive EBV-BM and EBV-BR peptide pulse
of IAV-M1 cultures induces the greatest frequency of MIP-1�� cells, significantly greater than cognate IAV-M1 and greater than their
counterparts in HD-SP. In mild-AIM patients, the cognate IAV-M1 and EBV-BM peptide pulse induced the greatest number of MIP-1�� cells.
In HD-SP, the cognate EBV-BM peptide pulse induced the greatest number of MIP-1�� cells in comparison to all other conditions and
significantly more than cognate EBV-BM in severe-AIM patients. The Student t test was used to compare two groups, one-way ANOVA with

(Continued on next page)
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these responses may have been triggered differently by the same ligands in vivo; one
way that this could occur is if the TCR repertoires for EBV and IAV epitopes differed in
these donor groups. Our TCR repertoire data (Fig. 4) suggest that this is the case for the
cross-reactive IAV-M1 TCR repertoire. The cross-reactive memory IAV-M1 TCR repertoire
that an individual has available to be activated early immediately upon EBV infection
long before the new naive EBV epitope-specific response fully arises differs between
donors (43, 53) and may well determine the functional profile of these cells upon
exposure to EBV antigens. Thus, the greater expansion of functional IFN-�-producing
cross-reactive responses in severe-AIM patients versus mild-AIM patients in IAV-M1-
and EBV-BM-stimulated, but not EBV-BR-stimulated, short-term cultures demonstrates a
strong functional cross-reactivity to EBV-BM and IAV-MI and is consistent with the idea
that this particular cross-reactivity plays a role in the mediation of AIM severity.

DISCUSSION

In these systematic studies, multiple complementary methods demonstrated that
selective CD8 cross-reactive TCR repertoires (Fig. 4) between an individual’s memory
responses to IAV-M1 and the early antigen EBV-BM played a role in the modification of
antigen-specific CD8 T-cell frequencies and functions and disease severity during the
acute phase of EBV infection. Increases in the frequencies and absolute total numbers
of IAV-M1, EBV-BM, IAV-M1�EBV-BM, and EBV-BR but not CMV pp65 tetramer� cells
were observed during AIM. However, total IAV-M1 and IAV-M1�EBV-BM cross-reactive
CD8 T-cell frequencies were the only tetramer� responses ex vivo in PBMCs that
strongly directly correlated with AIM severity and that were predictive of severe disease
by relative-risk analysis (Fig. 1, 2). The fact that total IAV-M1 and IAV-M1�EBV-BM
cross-reactive CD8 T-cell frequencies correlated with each other suggests that the
majority of the IAV-M1 tetramer� cells present during AIM may be cross-reactive with
EBV-BM (Fig. 2). When AIM patients were stratified into groups based on AIM severity,
i.e., the mean peak frequencies in donors visiting the clinic at different times, only total
IAV-M1, IAV-M1�EBV-BM and total EBV-BM tetramer� CD8 T-cell counts were signifi-
cantly higher in severe versus mild cases of AIM. In contrast, the mean peak frequencies
of the other early EBV antigen, total EBV-BR, or cross-reactive IAV-M1�EBV-BR and
EBV-BM�EBV-BR or CMV pp65 tetramer� CD8 T cells did not differ between mild- and
severe-AIM patients (Fig. 3). The fact that these cross-reactive memory IAV-M1 te-
tramer� cells, which were already present at a high frequency in the donor prior to EBV
infection ready to be activated immediately upon virus exposure, had unique TCR
repertoires depending on whether the donor had mild or severe disease strongly
suggests that these cells play a role in the mediation of disease severity. We show that
there were higher numbers of IAV-M1 tetramer� CD8 T cells cross-reactive with EBV-BM
not only directly ex vivo in PBMCs (Fig. 1 to 3) but also in short-term cultures (Fig. 5 to
7). The short-term cultures further helped demonstrate that the three donor groups
(severe AIM, mild AIM, and HD-SP) also had multiple qualitatively significantly different
functional responses to EBV-BM and EBV-BR, as well as to cross-reactive IAV-M1 ligand.
For instance, in severe-AIM versus mild-AIM patients, there was a greater proliferation
of functional IFN-�-producing (31, 33, 63) cross-reactive cells in IAV-M1 and EBV-BM
than in EBV-BR-stimulated cultures (Fig. 5 to 7). Altogether, these results support the
concept that cross-reactive CD8 memory T-cell responses with unique TCR repertoires
and altered functional capacity play a role in determining disease severity during EBV
infection and contribute to the induction of AIM.

By far, the strongest evidence that the cross-reactive IAV-M1 memory responses
determine disease severity comes from an examination of the TCR repertoire use of this

FIG 7 Legend (Continued)
Sidak’s multiple-comparison test was used to compare more than two groups, and multivariate analyses were performed by two-way
ANOVA with Tukey’s multiple-comparison test. *, P � 0.05; **, P � 0.01; ***, P � 0.001 (P values are adjusted for multiple comparisons).
All of the multiple important significant and nonsignificant differences in these graphs are shown in Fig. S6 to highlight differences
between the patient groups.
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population in mild- and severe-AIM patients. This study uniquely correlates the severity
of a human viral disease, AIM, with T-cell repertoire use, in this case, the cross-reactive
IAV-M1-specific TCR repertoire. The IAV-M1 memory TCR repertoire during AIM was
completely different from that in HD-SP, as it is being driven to expand in response to
cross-reactive ligands on EBV rather than its original ligand IAV-M1, most likely pre-
dominantly by EBV-BM. The cross-reactive IAV-M1 repertoire in AIM patients was much
more polyclonal than in HD-SP, and it used V� types that are commonly associated with
EBV-BM, such as V�20, -9, -2, and -29 (44, 60), instead of the classic V�19 associated
with IAV-M1 in HD-SP (Fig. 4) (5, 43, 64). What is most striking is that mild-AIM patients
used different V� families, such as V�2 and -29, in their IAV-M1 response, and in fact,
there was an inverse correlation between V�2 use and AIM severity. Since each
individual has a different memory TCR repertoire in response to IAV-M1 at the clonal
level, a phenomenon known as private specificity, each person has a different IAV-
specific memory cross-reactive TCR repertoire with distinct subsets that may respond to
EBV-BM. Our results suggest that those individuals who had more IAV-M1 V�2 clones
cross-reactive to EBV-BM were more likely to have the mildest form of AIM. Those
individuals who had the most IAV-M1 V�4.1 memory clones cross-reactive to EBV-BM
had the most severe form of AIM, with a direct correlation between the frequency of
V�4.1 use and AIM severity. This is certainly not consistent with a random activation of
all IAV-M1 memory populations equally in both groups, such as that which might be
expected if the viral load and virus-induced cytokines just drove the activation of all
memory cells or even all cross-reactive memory cells. These results strongly suggest
that the particular cross-reactive memory IAV-M1 TCR repertoire each individual had
before being infected with EBV determined whether the patients developed mild or
severe AIM. We have previously demonstrated that if responses are of lower avidity, as
in this case, where the peptide sequences are fairly dissimilar, then this is more likely
to activate a low expansion of a polyclonal population rather than a highly expanding
narrow repertoire, which occurs in high-affinity often more protective cross-reactive
responses (29, 60). For instance, we have observed that there is a unique high-avidity
oligoclonal TCR repertoire in IAV-M1 memory cells cross-reactive with EBV-BM in the
rare 5% of middle-aged individuals who never become infected with EBV (5). Disease
etiology and diagnosis by TCR repertoire analysis are beginning to gain more attention
as technology improves (47). Differences in virus-specific versus cross-reactive
alphaherpesvirus-specific CD8 TCR repertoires have been described (65), and TCR
repertoires are being linked to disease (47). For instance, using high-throughput
sequencing of patients with MS, a disease associated with AIM, the TCR repertoire of
cerebrospinal fluid was found to be distinct from that of blood and enriched in
EBV-reactive CD8 T cells (66). Newly defined analytic tools, TCRdist and TCRdiv (reper-
toire distance and diversity measurements) (44), and the GLIPH algorithm (45) have
been developed and may be very useful in identifying potential ligands that have been
difficult to identify by using public features of the TCR repertoire that are common to
donors with a particular disease like mycobacterial infection, tumors, or autoimmunity.

How, then, can different TCR repertoires influence disease outcome? Our findings
are consistent with TCR activation to function differently by cross-reactive and cognate
ligands. Previous studies (48, 49, 67) have shown that the TCR/CD3 complex is one of
the most sophisticated immunologic signaling molecules and is capable of scalable
signaling by recruiting at least 10 different immunoreceptor tyrosine-based activation
motifs that control different signaling pathways (68, 69). The CD8 molecule has also
been shown to be important for modulation of the TCR-MHC peptide interaction and
subsequent signaling. CD8 has been shown to be particularly crucial in the activation
of cross-reactive responses (70, 71). In severe-AIM patients, there was much stronger
IFN-� production by IAV-M1- and EBV-BM-specific cells than by cells with other spec-
ificities (Fig. 5 and 6). In contrast, the EBV-BR response appeared to be partially
exhausted, as these T cells proliferated less and made less IFN-� than those from HD-SP
(Fig. 5 and 6). This is consistent with data that demonstrate that there is differential
expression of PD1, an exhaustion marker, based on the specific TCR use of EBV-BR-
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specific cells (72). Perhaps the equally prevalent cross-reactive IAV-M1�EBV-BR te-
tramer� cells in severe-AIM EBV-BR cultures have lower avidity for EBV-BR than non-
cross-reactive EBV-BR-specific cells do and are thus less likely to be exhausted. In mouse
models of heterologous immunity, IFN-� has been a major player in the mediation of
severe immunopathology in the lung and in fat (17, 26, 33). We have previously
reported that T-cell exhaustion is a mechanism that successfully prevents severe morbidity
and death due to a large dose of an overly aggressive persistent virus, lymphocytic
choriomeningitis virus (LCMV) clone 13 (73). Perhaps the fact that a large part of the
EBV-BR response becomes exhausted explains why it may not directly correlate with
the severity of immunopathology.

These studies also provide further evidence that tetramer and cytokine frequency
measurements are two different methods to determine the sizes of antigen-specific
responses and that, depending on the patient group and the antigen, they do not
always correlate. For instance, in the IAV-M1 culture of the HD-SP group, there was a
3-fold higher frequency of IAV-M1 tetramer� cells (50%) (Fig. 6a) than double-cytokine
producers in response to an IAV-M1 pulse (15%) (Fig. 7a). In contrast, in the cross-
reactive responses of the severe-AIM group in the EBV-BM culture, there was an 11-fold
greater frequency of cells producing MIP-1� in response to an IAV-M1 pulse (18% with
the background subtracted) (Fig. 7a) than in the parallel IAV-M1 tetramer staining
(1.6%) (Fig. 6a). This is consistent with more recent TCR sequencing data showing that
tetramers may not always bind all of the predicted antigen-specific T cells (44, 45).

Hypothetically, the presence of cross-reactive IAV-M1 memory cells may alter the
normal balance between EBV immune evasion strategies that normally would lead to
delayed activation of CD8 responses resulting in silent persistent infection of B cells.
High frequencies of cross-reactive IAV-M1 resident memory CD8 T cells in the tonsils of
AIM patients may become activated early in EBV infection and may be the only CD8
T-cell response available for 3 to 4 weeks, before new naive EBV-specific CD8 T cells are
activated. Unfortunately, thus far, it has not been possible to study this 4-week window
between EBV exposure and the development of AIM. Perhaps their presence prevents
EBV from immunosuppressing the tonsillar environment, where the virus normally
moves silently from the tonsillar epithelium into B cells. This is thought to occur
normally in the majority of individuals infected asymptomatically with EBV. EBV induces
host IL-10, encodes a viral IL-10 homologue, and is a weak inducer of type 1 IFN (3, 12,
74). The coincident presence of activated cross-reactive IAV-M1 memory cells and
EBV-induced immunosuppression may lead to dysregulated immune responses by way
of early IFN-� responses that occur during that 4-week window after EBV exposure and
before the development of new naive EBV-specific CD8 T-cell responses and AIM, which
leads to their overactivation.

Most likely there are other factors that may contribute to AIM induction and severity.
For instance, in mild-AIM patients, there could be cross-reactive TCR repertoires that are
beneficial, as suggested by the inverse correlation of some V� types with disease
severity (Fig. 4). There are some hints in these studies that perhaps IAV-M1 and EBV-BR
cross-reactivity may be beneficial to some patients and actually help keep disease
severity milder. Also, there is a weak correlation with the viral load and AIM severity and
a significantly increased relative risk if the viral load is extremely heavy (�4.5 log10). A
heavier viral load for a protracted period of time could contribute to driving these
altered immune responses in all AIM patients. However, unlike the cross-reactive
IAV-M1 tetramer� frequency, this factor is not consistent in all mild-AIM patients, as
some mild-AIM patients have extremely heavy viral loads.

Unfortunately, studies of humans are not amenable to direct cause-and-effect
testing of our hypothesis that cross-reactive CD8 memory T cells can mediate disease
severity during viral infections. However, we have directly tested these theories in our
mouse models multiple times by using many techniques, including cross-reactive
memory CD8 T-cell adoptive transfer (49, 51). Thus far, in mouse studies, we have never
found the viral load to correlate directly with the severity of pathology (50). In fact, in
LCMV-immune mice infected with vaccinia virus, the viral load is almost always lighter
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than that in naive controls (17, 31, 49–51). However, depending on the private
specificity of the cross-reactive memory CD8 TCR repertoire, some mice develop severe
fatty necrosis of their abdominal fat. Adoptive-transfer experiments showed that all
three recipients of one immune donor would have the same outcome whether it was
no pathology or different levels of fatty necrosis. CD8 depletion studies and anti-IFN-�
antibody treatment demonstrated that both of these factors were important in the
mediation of the severity of this pathology. Our present findings are highly similar to
those of our studies with IAV-immune mice challenged intranasally with LCMV, where
the mice develop very severe lung pathology similar to that seen in the 1918 influenza
pandemic (33). In that model, there is an increased viral load and low-affinity, low-
frequency memory CD8 T cells cross-reactive to LCMV and IAV that directly mediate the
severe lung pathology via excess IFN-�. These cross-reactive responses were at such
low frequency that the causal relationship needed to be shown by correlating their
preinfection frequency with the subsequent severity of lung pathology, by blocking by
the peptide tolerization technique, or by preventing pathology by immunizing mice
with IAV mutants lacking the cross-reactive epitopes (33). Pathology could also be
prevented by using anti-IFN-� antibody. These studies suggest that early activation of
low-affinity cross-reactive cells that do not expand dramatically, such as was seen here
in AIM, can completely alter the immune response to the new pathogen, leading
to immunopathology. In contrast, generally dominant high-affinity cross-reactive
responses are more likely to lead to more oligoclonal TCR repertoires that are more
protective, as we have seen in middle-aged EBV-seronegative donors (5, 24, 29).

These results suggest that an individual’s history of infection, in particular, the individ-
ual’s memory TCR repertoire, may help to explain variations in human disease thought
previously to be only due to genetic differences, the physiological condition of the patient,
or the inoculation route and dose used (17, 22, 26, 31). Additional studies are needed to
clarify instances and mechanisms by which heterologous immunity may be useful or
detrimental when designing vaccines and to identify individuals potentially at risk for
infection-related pathology. However, it is possible that a recent episode of acute IAV
infection that has activated potentially cross-reactive IAV-M1-specific resident memory T
cells in the tonsils may enhance the risk of developing EBV-induced AIM. It may be that
something as simple as the annual conventional killed IAV vaccination, which generates
neutralizing antibodies but does not normally activate IAV-specific CD8 T cells, might help
prevent AIM upon EBV exposure by decreasing acute infection with IAV and thus decreas-
ing the likelihood that IAV-specific resident memory cells accumulate in the tonsil.

MATERIALS AND METHODS
Subjects. College students 18 to 30 years old who presented with symptoms of AIM participated in

this study. Primary EBV infection was confirmed by a monospot test and the detection of EBV capsid-
specific IgM in patient serum. Positive staining with HLA-A2.01� tetramers loaded with influenza virus M1
peptide was used as an indication that these individuals had been exposed to IAV in the past (48).
Patients provided up to eight blood samples (20 ml each) at entry (visit 1), 1 week (visit 2), 2 weeks (visit
3), 3 weeks (visit 4), 4 weeks (visit 5), 6 weeks (visit 6), 6 months (visit 7), and 1 year (visit 8). HLA typing
was performed by screening with HLA-A2-specific MAb (BB7.2; EBioscience) staining and FACS analysis.
Healthy, EBV-seropositive adult donors (HD-SP) �18 years old were used as controls. EBV infection was
confirmed through the detection of EBV capsid antigen-specific (VCA) IgG antibodies in donor serum.
Prior CMV infection was confirmed by CMV serology. Individual informed consent was obtained from
each subject; the University of Massachusetts Medical School Human Subject Committee approved this
study. The characteristics of our study subjects are summarized in Table S1.

Grouping of AIM patients by severity of disease. We developed a strategy to divide AIM patients
into two groups, mild and severe AIM. Clinical measurements of disease severity collected in this study
included patient-reported symptoms (malaise/fatigue, sore throat, headache, loss of appetite, myalgia,
nausea, sweats, chills), physical findings on examination (adenopathy, pharyngitis, periorbital edema,
hepatomegaly, and splenomegaly), with each symptom or sign rated on a scale of 1 to 10. Laboratory
measurements of disease severity included the percentage of atypical lymphocytes and the CD4/CD8
ratio. A quantitative disease severity rating system that combined the severity of the most frequently
observed physical finding (lymphadenopathy) with laboratory measurements of disease was calculated
by using the sum of patient scores for peak percent adenopathy (clinical score by nurse: 0 to 10 � 10),
the percentage of atypical lymphocytes on a peripheral smear, and the percent CD4/CD8 ratio in PBMCs
determined with the formula {[2 � (CD4%/CD8%)]/2} � 100. Severe-AIM patients had total scores of
�140, and mild-AIM patients had total scores of �140.
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The combined clinical and laboratory disease severity score calculated in this manner is positively
associated with the clinical disease severity score calculated by using all of the signs and symptoms in
the cohort included in this study (n � 18, Spearman rho � 0.54, P � 0.02), as well as in the larger AIM
cohort (n � 88, Spearman rho � 0.51, P � 0.001; data not shown).

PBMC isolation and short-term T-cell culture. Fresh (not frozen) PBMCs were isolated with
Ficoll-Hypaque plus (Amersham Bioscience, Uppsala, Sweden) and stained with anti-CD8 antibody-
coated microbeads (Miltenyi Biotech, Auburn, CA) in accordance with the manufacturer’s recommenda-
tions. Positive selection of CD8 lymphocytes was performed with the Miltenyi Biotech MACS system.
Short-term (3-week) CD8 T-cell cultures were set up as previously described (48). Briefly, sorted CD8
lymphocytes were plated at a 5:1 ratio with 1 �M peptide-pulsed (for �1 h), irradiated T2 cells (CRL-1992;
ATCC, Manassas, VA) that were washed free of excess peptide before being mixed with CD8 T cells. CD8
T-cell lines were fed with AIM V medium (Gibco) supplemented with 14% human AB serum (Nabi, Miami,
FL, or Gemini, Woodland, CA), 16% MLA-144 supernatant (75), 10 U/ml recombinant IL-2 (BD), 1%
L-glutamine (Gibco), 0.5% �-mercaptoethanol (Sigma, St. Louis, MO), 1% HEPES (HyClone, Logan, UT)
every 3 to 4 days and restimulated with fresh peptide-pulsed T2 cells weekly for only 3 weeks. This
culture method has been optimized so as not to skew the TCR repertoire from that present in vivo (43,
58, 60).

HLA-A2.01-restricted peptides and MHC class I tetramers/pentamers. The following peptides at
�90% purity were purchased from 21st century (Waltham, MA): EBV-BMLF1280 –288 (GLCTLVAML), EBV-
BRLF1109 –117 (YVLDHLIVV), EBV-EBNA-3A509 to 604 (SVRDRLARL), EBV-LMP-2426 – 434 (CLGGLLTMV), EBVLMP-
2329 –337 (LLWTLVVLL), CMV pp65495–503 (NLVPMVATV), IAV-M158 – 66 (GILGFVFTL), IBV-NP85�94 (KLGEFYN-
QMM), and human endogenous tyrosinase369 –377 (YMNGTMSQV). Tetramers were assembled with these
peptide sequences for EBV-BMLF1, EBV-BRLF1, IAV-M1, CMV pp65, and tyrosinase by the tetramer facility
at University of Massachusetts Medical School as previously described (48, 72). MHC class I pentamers for
IAV-M1 and EBV-BMLF1 were purchased from ProImmune (Oxford, United Kingdom).

Extracellular and intracellular staining. Sorted CD8 T cells isolated from fresh PBMCs directly ex
vivo or short-term-cultured CD8 T cells were plated at 106/well in U-bottom 96-well plates (Sigma-
Aldrich) and washed with staining buffer (phosphate-buffered saline, 2% fetal calf serum, 1% sodium
azide). The first tetramer was incubated at room temperature for 20 min, and the excess was washed off
before the addition of a second tetramer. In experiments where cells were costained with tetramers
and/or pentamers, and with additional MAbs for surface markers (BD), such as CD3 (clone UCHT1), CD4
(clone RPA-T4), and CD8 (clone SK1), the tetramers were washed off prior to addition, and these MAbs
were incubated for 20 min at room temperature as previously described (48). Cells stained in accordance
with the manufacturer’s protocols were either fixed with FACS lysing solution or permeabilized with
Cytofix/Cytoperm for intracellular assays. Anti-IFN-� (clone B27) and anti-MIP-1� (clone D-21-1351) MAbs
were used for ICS. All antibodies and reagents were purchased from BD. Flow cytometry was done with
LSRII (Beckman Coulter, Inc., Fullerton, CA).

EBV quantification. Genomic DNA was extracted from enriched B cells with the DNeasy kit (Qiagen,
Valencia, CA) (72, 76). Each sample was normalized to contain the DNA of a total of 106 B cells. Samples
were run in duplicate by using the recommended protocol accompanying a LightCycler EBV quantifi-
cation kit (Roche Diagnostics, Indianapolis, IN). An internal positive control was supplied with this kit.

TCR V� analysis. Sorted CD8 T cells isolated from fresh PBMCs directly ex vivo were incubated for
20 min with IAV-M1-specific tetramer, which was then washed off. An additional 20-min incubation was
performed with 24 TCR V� antibodies that cover �70% of the commonly used human V� types (IOTest
Beta Mark TCR V� Repertoire kit; Beckman Coulter, Inc., Fullerton, CA). Samples were read on an LSRII
(Beckman Coulter, Inc., Fullerton, CA). IMGT TCR gene nomenclature was used to define TCR V� types.

TCR-tetramer blocking determination. Sorted CD8 T cells isolated from fresh PBMCs directly ex vivo
or short-term-cultured CD8 T cells from AIM patients were incubated with IAV-M1-, EBV-BM-, and
EBV-BR-specific tetramers as described for extracellular staining. Since blocking of tetramer binding by
the cross-reactive tetramer was a common event, we always used the following protocol for tetramer
staining in order to accurately evaluate the frequency of cross-reactive CD8 T cells. Our panel for tetramer
staining of CD8 T cells always included (i) each epitope-specific tetramer alone (IAV-M1, EBV-BM, EBV-BR,
tyrosinase), (ii) generally non-cross-reactive control self-peptide specific tyrosinase tetramer with the
epitope-specific tetramers together (IAV-M1, EBV-BM, EBV-BR) and (iii) a combination of double tetramer
costaining with the following pairs: IAV-M1 plus EBV-BM, IAV-M1 plus EBV-BR and EBV-BM plus EBV-BR.
Stained samples were read on an LSRII (Beckman Coulter, Inc., Fullerton, CA), and the percentage of
tetramer� cells and mean fluorescent intensity (MFI) of tetramer� cells were analyzed with the FlowJo
version 9.9.3 program. The estimated tetramer-blocking level for each tetramer was calculated by the
formula (costained tetramer A MFI/alone tetramer A MFI) � (costained tetramer A%/alone tetramer
A%) � 100 (Fig. 1; Fig. S2a and b).

Statistical analyses. Statistical analyses were performed with Prism version 6 (GraphPad Software,
Inc.). The tests used included the Student t test, the linear regression test, and the nonparametric
Mann-Whitney U test. The SDI was calculated as follows: D � 	n(n � 1)/N(N � 1), where D is diversity,
n is the number of individual clonotypes, and N is the number of unique clonotypes (58). The Student
t test was used to compare two groups, and one-way ANOVA with Sidak’s or Tukey’s multiple-
comparison test was used to compare more than two groups. To display pairwise correlations between
variables of interest, we computed a correlation matrix by using the Pearson correlation coefficient. We
then graphically displayed the matrix with the corrplot R package (https://cran.r-project.org/web/
packages/corrplot/), which represents correlation values as circles with areas and color shades propor-
tional to correlation values.
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T, Olweus J. 2014. High-throughput sequencing of TCR repertoires
in multiple sclerosis reveals intrathecal enrichment of EBV-reactive
CD8� T cells. Eur J Immunol 44:3439 –3452. https://doi.org/10.1002/eji
.201444662.

67. Sloan-Lancaster J, Allen PM. 1996. Altered peptide ligand-induced partial

T-cell activation: molecular mechanisms and role in T-cell biology. Annu
Rev Immunol 14:1–27. https://doi.org/10.1146/annurev.immunol.14.1.1.

68. Guy CS, Vignali DAA. 2009. Organization of proximal signal initiation at
the TCR:CD3 complex. Immunol Rev 232:7–21. https://doi.org/10.1111/j
.1600-065X.2009.00843.x.

69. Guy CS, Vignali KM, Temirov J, Bettini ML, Overacre AE, Smeltzer M,
Zhang H, Huppa JB, Tsai YH, Lobry C, Xie J, Dempsey PJ, Crawford HC,
Aifantis I, Davis MM, Vignali DAA. 2013. Distinct TCR signaling pathways
drive proliferation and cytokine production in T cells. Nat Immunol
14:262–270. https://doi.org/10.1038/ni.2538.

70. van den Berg HA, Wooldridge L, Laugel B, Sewell AK. 2007. Coreceptor
CD8-driven modulation of T-cell antigen receptor specificity. J Theor Biol
249:395– 408. https://doi.org/10.1016/j.jtbi.2007.08.002.

71. Laugel B, Cole DK, Clement M, Wooldridge L, Price DA, Sewell AK. 2011.
The multiple roles of the CD8 coreceptor in T-cell biology: opportunities
for the selective modulation of self-reactive cytotoxic T cells. J Leukoc
Biol 90:1089 –1099. https://doi.org/10.1189/jlb.0611316.

72. Greenough TC, Campellone SC, Brody R, Jain S, Sanchez-Merino V,
Somasundaran M, Luzuriaga K. 2010. Programmed Death-1 expression
on Epstein-Barr virus specific CD8� T cells varies by stage of infection,
epitope specificity, and T-cell receptor usage. PLoS One 5:e12926.
https://doi.org/10.1371/journal.pone.0012926.

73. Cornberg M, Kenney LL, Chen AT, Waggoner SN, Kim SK, Dienes HP,
Welsh RM, Selin LK. 2013. Clonal exhaustion as a mechanism to protect
against severe immunopathology and death from an overwhelming CD8
T-cell response. Front Immunol 4:475. https://doi.org/10.3389/fimmu
.2013.00475.

74. Dunmire SK, Grimm JM, Schmeling DO, Balfour HH, Hogquist KA. 2015.
The incubation period of primary Epstein-Barr virus infection: viral dy-
namics and immunologic events. PLoS Pathog 11:e1005286. https://doi
.org/10.1371/journal.ppat.1005286.

75. Rabin H, Hopkins RF, Ruscetti FW, Neubauer RH, Brown RL, Kawakami TG.
1981. Spontaneous release of a factor with properties of T-cell growth
factor from a continuous line of primate tumor T cells. J Immunol
127:1852–1856.

76. Weiss ER, Alter G, Ogembo JG, Henderson JL, Tabak B, Bakiş Y, So-
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