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Abstract: The expression profile of microRNA (miRNA) in uterine leiomyoma (UL) cells is different
from that in normal uterine myometrial (UM) cells. The effect of UL cells on uterine receptivity might
vary according to their ability to distort the uterine endometrial cavity. However, the variation
in miRNA expression profiles between endometrial cavity-distorting leiomyoma (ECDL) and
endometrial cavity non-distorting leiomyoma (ECNDL) cells remains unknown. This study aimed to
elucidate whether the expression profile of miRNAs in ECDL cells is dissimilar to that of ECNDL
cells in uterus. Pelviscopic myomectomy was performed to obtain tissue samples of UL and their
corresponding normal UM tissues (matched) from patients with UL (n = 26), among whom women
with ECNDL and ECDL numbered 15 and 11, respectively. The relative expression of hsa-miR-15b,
-29a, -29b, -29c, -197, and -200c as well as the candidate target genes in UL cells was compared to those
in the matched UM cells using qRT-PCR to assess their ability to cause ECD. The spatial expression
of miRNAs and target genes in the UL tissues was analyzed using in situ hybridization. Target gene
expression was analyzed using qPCR after transfection with the mimics and inhibitors of miRNAs
in UL cells. The relative expression level of miR-15b was upregulated, and the relative expression
levels of miR-29a, -29b, -29c, -197, and -200c were downregulated in UL cells compared to those
in UM cells. The relative expression levels of progesterone receptor, estrogen receptor, and matrix
metalloproteinases (MMPs) were upregulated in UL cells compared to those in UM cells. The relative
expression levels of miR-29c and -200c were downregulated, and the relative expression levels of
estrogen receptor, MMPs and tissue inhibitors of metalloproteinases (TIMPs) were upregulated in
ECDL cells compared to those in ECNDL cells. The expression profile of miRNAs in UL cells varied
with respect to the occurrence or absence of endometrial cavity distortion. The biochemical properties
of UL might be regulated by miRNAs in order to alter their effect on structural homeostasis of
the uterus.
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1. Introduction

Uterine leiomyomas (ULs) are the most common benign tumors of the female reproductive tract
in humans [1]. Although most ULs do not exhibit symptoms, symptomatic tumors cause chronic pelvic
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pain, abnormal uterine bleeding, and infertility owing to uterine factor [2]. In particular, ULs that
cause anatomical disruption of the normal uterine endometrial structure might affect the implantation
and development of embryos [3,4]. A few studies reported an improvement in the pregnancy outcome
after surgically treating ULs with endometrial cavity distortion (ECD) using myomectomy [5,6].

MicroRNAs (miRNAs) are non-coding RNA molecules that are endogenously produced and
post-transcriptionally regulate gene expression by inhibiting translation or cleaving the complementary
target messenger RNAs (mRNAs) [7]. miRNAs were found to play important roles in intracellular
signaling, apoptosis, metabolism, organogenesis, and embryonic development [8–16]. Several recent
studies implicated the potential regulatory functions of a few specific miRNAs in order to elucidate
the pathogenesis of UL. These studies compared the expression levels of specific miRNAs in uterine
myometrium (UM) and UL tissues [17–19]. However, the variation in miRNA expression profile of
UL tissue according to accompanying ECD remains unknown, although its clinical implication could
be significant.

This study aimed to evaluate the variation between the miRNA expression profiles in UL tissues
of patients with ECD and endometrial cavity non-distortion (ECND) using UM tissues as matched
controls. To elucidate the regulatory function of miRNAs on the candidate target genes, analogues of
miRNAs were transfected into UL cells under in vitro culture conditions.

2. Results

2.1. Characteristics of the Patients and Uterine Leiomyoma (UL) Tissues

Significant variations in patient characteristics such as age, UL size, and main symptoms were not
observed between the subjects with ECDL and ECNDL (Table 1). Both types of UL tissues exhibited
similar distribution with respect to grade of hardness (Table 2).

Table 1. Comparison of clinical characteristics.

Characteristics Endometrial Cavity-Non-Distorting
Leiomyoma (n = 15)

Endometrial Cavity-Distorting
Leiomyoma (n = 11)

Age (years) 32.5 ± 3.2 31.7 ± 4.3
Size of leiomyoma (maximal diameter, cm) 4.2 ± 1.3 4.5 ± 0.9

Chief complaints
Dysmenorrhea 7/15 (46.7%) 8/11 (72.7%)
Menorrhagia 9/15 (60.0%) 9/11 (81.8%)

Infertility 15/15 (100%) 11/11 (100%)

p > 0.05 in all.

Table 2. Comparison of tissue hardness.

Tissue Hardness * 1+ 2+ 3+ Total

Endometrial cavity-non-distorting leiomyoma (n) 2 6 7 15
Endometrial cavity-distorting leiomyoma (n) 3 5 3 11

* 1+ indentation left by an indenter for over 10 min. 2+ indentation left by an indenter within 10 min.
3+ no indentation left by an indenter. Chi-square analysis, p > 0.05.

2.2. The Expression Profiles of miRNAs in UL Cells

The relative expression level of miR-15b (1.509-fold, p = 0.044) was upregulated and the relative
expression level of miR-29a (0.671-fold, p = 0.008), miR-29b (0.639-fold, p < 0.001), miR-29c (0.479-fold,
p < 0.001), miR-197 (0.751-fold, p = 0.005), and miR-200c (0.581-fold, p < 0.001) were downregulated in
UL cells compared to in matched UM cells (Figure 1). The result of in situ hybridization to visualize
miRNA expression demonstrated that miR-15b was localized in the UL tissue (Figure 2).
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Figure 2. Detection of miRNA expression in human uterine leiomyoma tissue using in situ
hybridization. (A) Observation of leiomyoma tissue (H&E staining, ×100). (B) Leiomyoma positive
and negative control (Fast red staining, ×200). (C) Evaluation of miR-15b expression in leiomyoma
tissue using miR-15b in situ hybridization (green, ×200).

2.3. The Expression Levels of Candidate Target Genes in UL Cells

The relative expression levels of progesterone receptor α (P-Rcα, 1.518-fold, p = 0.034),
progesterone receptor β (P-Rcβ, 1.257-fold, p = 0.040), estrogen receptor α (E-Rcα, 1.704-fold, p < 0.001),
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estrogen receptor β (E-Rcβ, 1.951-fold, p < 0.001), matrix metalloproteinase-1 (MMP-1, 1.750-fold,
p < 0.001), MMP-2 (1.336-fold, p = 0.025), and MMP-9 (1.367-fold, p = 0.037) were upregulated in
UL cells compared to in matched UM cells (Figure 3). The results of immunofluorescence staining
exhibited co-localization of miR-15b with E-Rcα and -Rcβ (Figure 4).
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Figure 4. Analyses of target gene expression in myoma tissue. (A) Co-localization of miR-15b with
estrogen receptor α. (B) Co-localization of miR-15b with progesterone receptor β.

2.4. The Expression Levels of Candidate Target Genes after miRNA Transfection into UL Cells

After transfection of miR-15b mimic into UL cells that were cultured in vitro, the relative
expression levels of P-Rcα (2.736-fold, p = 0.020), P-Rcβ (4.011-fold, p = 0.009), E-Rcβ (3.265-fold,
p = 0.019), MMP-2 (1.610-fold, p = 0.020), and MMP-9 (5.587-fold, p = 0.005) were upregulated compared
to in control UL cells. After treatment with miR-15b inhibitor in UL cells, the relative expression levels
of P-Rcα (0.025-fold, p = 0.002), P-Rcβ (0.304-fold, p = 0.031), E-Rcα (0.052-fold, p = 0.006), E-Rcβ
(0.004-fold, p = 0.001), MMP-1 (0.163-fold, p = 0.003), MMP-2 (0.008-fold, p = 0.001), and MMP-9
(0.001-fold, p < 0.001) were downregulated compared to in control UL cells (Figure 5).
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After transfection of miR-29c mimic into UL cells, the relative expression levels of P-Rcα
(0.372-fold, p = 0.008), P-Rcβ (0.289-fold, p = 0.016), E-Rcα (0.122-fold, p = 0.008), E-Rcβ (0.004-fold,
p = 0.001), MMP-1 (0.594-fold, p = 0.043), MMP-2 (0.001-fold, p = 0.014), MMP-9 (0.060-fold, p < 0.001),
tissue inhibitor of metalloproteinases-1 (TIMP-1, 0.005-fold, p < 0.001), and TIMP-2 (<0.001-fold,
p < 0.001) were downregulated compared to in control UL cells. After treatment with miR-29c inhibitor
in UL cells, the relative expression levels of P-Rcα (4.195-fold, p = 0.005), E-Rcα (1.940-fold, p = 0.010),
E-Rcβ (2.203-fold, p = 0.003), and MMP-1 (20.271-fold, p < 0.001) were upregulated compared to in
control UL cells.

After transfection of miR-197 mimic into UL cells, the relative expression levels of P-Rcβ
(0.109-fold, p < 0.001), E-Rcβ (0.001-fold, p < 0.001), MMP-1 (0.004-fold, p < 0.001), MMP-2 (0.014-fold,
p = 0.002), MMP-9 (0.065-fold, p < 0.001), TIMP-1 (0.412-fold, p = 0.028), and TIMP-2 (0.336-fold,
p = 0.002) were downregulated compared to in control UL cells. After treatment with miR-197
inhibitor in UL cells, the relative expression levels of P-Rcα (14.324-fold, p = 0.008), MMP-1 (15.127-fold,
p = 0.018), MMP-2 (20.512-fold, p = 0.004), MMP-9 (1.691-fold, p = 0.035), and TIMP-2 (5.522-fold,
p < 0.001) were upregulated compared to in control UL cells.

After transfection of miR-200c mimic into UL cells, the relative expression levels of P-Rcα
(0.024-fold, p = 0.009), P-Rcβ (0.003-fold, p < 0.001), E-Rcα (0.513-fold, p = 0.020), E-Rcβ (0.603-fold,
p = 0.021), MMP-1 (0.265-fold, p = 0.002), and MMP-2 (0.800-fold, p = 0.037) were downregulated
compared to in control UL cells. After treatment with miR-200c inhibitor in UL cells, the relative
expression levels of E-Rcα (16.070-fold, p = 0.008), E-Rcβ (8.697-fold, p = 0.002), MMP-1 (43.130-fold,
p = 0.010), MMP-2 (10.308-fold, p = 0.002), and MMP-9 (2.820-fold, p = 0.022) were upregulated
compared to in control UL cells.
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2.5. The Expression Levels of miRNAs and Candidate Target Genes Associated to Endometrial Cavity
Distortion (ECD)

The relative expression levels of miR-29c (0.240 ± 0.095-fold vs. 0.650 ± 0.277-fold, p < 0.001)
and miR-200c (0.357 ± 0.156-fold vs. 0.745 ± 0.408-fold, p = 0.002) were downregulated in ECDL cells
compared to in ECNDL cells (Figure 6).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 13 
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Figure 6. The comparison of relative miRNA expression in endometrial cavity-distorting and
endometrial cavity-non-distorting leiomyoma cells compared to uterine myometrial cells (* p > 0.05).

The relative expression levels of E-Rcβ (2.380 ± 1.042-fold vs. 1.636 ± 0.496-fold, p = 0.028),
MMP-1 (2.139 ± 0.710-fold vs. 1.465 ± 0.381-fold, p = 0.008), and TIMP-2 (1.197 ± 0.245-fold vs.
0.770 ± 0.459-fold, p = 0.004) were upregulated in ECDL cells compared to in ECNDL cells (Figure 7).
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and endometrial cavity-non-distorting leiomyoma cells compared to uterine myometrial cells
(* p > 0.05).

3. Discussion

ULs are the most common benign tumors of the uterus among women of reproductive
age [20]. ULs might affect conception and pregnancy maintenance owing to the occurrence of
ECD, and numerous treatment options have been employed, including surgery and in vitro
fertilization [21–26]. The role of microRNA has been suggested in the development of leiomyoma as
well as pregnancy-related complications [27–30]. The present study aimed to evaluate the profile of
miRNA expression in UL cells with respect to their ability to cause the distortion of endometrial cavity.
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This study demonstrated the upregulated expression level of miR-15b and downregulated
expression levels of miR-29a, -29b, -29c, -197, and -200c in UL cells compared to in the matched
normal UM cells. In addition to qPCR, which suggested an upregulation of miR-15b levels, in situ
hybridization was performed to detect its localization in UL tissues. These results were consistent with
those of previous studies [18,31–33]. Several investigators reported that the marked upregulation in
miR-15b expression levels in UL cells might modulate numerous cellular biological processes such as
cell proliferation, division, apoptosis, migration, invasion, metabolism, stress, angiogenesis, and drug
resistance [34–36]. The miR-29 family is related to the accumulation and remodeling of the extracellular
matrix (ECM) [18,37], which is believed to be crucial during the pathophysiology of ULs. miR-197 and
-200 are known to regulate cell proliferation and suppress tumor development [32,38,39].

In candidate target gene analysis, we found that the gene expression of hormonal receptors and
regulators of ECM was upregulated in UL cells compared to in UM cells. Consistent with our results,
previous studies reported the upregulated expression of these genes in UL tissues compared to in the
matched UM tissues [40–42]. In our study, immunofluorescence analysis and transfection experiments
using miRNA analogues suggested that these miRNAs might not only regulate genes that modulate the
composition of ECM such as MMPs and TIMPs, but might also play a role in the alteration of hormonal
activities via modifying the gene expression of estrogen and progesterone receptors. Consistent with
our results, a few previous reports suggested that these miRNAs affect the receptivity of estrogen and
progesterone receptors [43–47]. Our results suggest that miRNAs might play a role in the development
of ULs via the regulation of the hormonal micro-environment and composition of ECM.

In our results, ECDL cells exhibited a dissimilar miRNA expression profile to ECNDL cells.
Although both types of UL cells exhibited downregulated expression levels of miR-29b and -200c
compared to those in matched UM cells, ECDL cells manifested a greater downregulation of the
expression levels of these miRNAs compared to in ECNDL cells. Even though a significant variation
in the expression levels of most of the target genes was not observed, the expression levels of E-Rcβ,
MMP-1, and TIMP-2 were upregulated in ECDL cells compared to in ECNDL cells. These results
suggest that miR-29b and -200c might regulate the expression of E-Rcβ, MMP-1, and TIMP-2 in UL cells
and they might play a discriminatory role during ECD process in the uterus (Supplementary Figure S1).
Previous studies reported that these genes were upregulated in UL cells compared to in matched UM
cells [48–50]. A previous report demonstrated a significant variation in the expression levels of MMP-1
in UL cells compared to in UM cells depending on their size [50]. Corroborating these previous studies,
our results suggest that ECDLs might exhibit varied composition profiles, miRNA regulation, and
resultant growth pattern, with a contrary growing vector compared to ECNDLs (Figure 8). However,
caution should be taken when interpreting our data since they could not fully explain the causality of
miRs with regard to the growth direction of UL, although their association was suggested.
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ULs might disrupt the anatomical structure of the normal uterus. Particularly, ECDLs might affect
the endometrial receptivity, which in turn affects the embryo implantation and pregnancy maintenance.
However, the etiology of ULs remains unknown. Furthermore, to the best of our knowledge, previous
studies did not report on the profile of miRNAs in UL cells with respect to their ability to cause ECD.
Present results implicate that the ability of UL cells to structurally deform the endometrial cavity
might vary with respect to their miRNA expression profiles, even if they manifested a similar size
and location in the uterine matrix. The regulation of a miRNA profile that induces UL cells to distort
the uterine anatomical structure might be applied as a novel therapeutic strategy for ULs. However,
further study is necessary to understand the mechanism by which UL cells acquire the ability to distort
the normal uterine structure.

4. Materials and Methods

4.1. Sample Collection

In this study, women (n = 26) with single intramural UL were recruited after acquiring their
consent. Pre-operative ultrasonography was performed to detect endometrial cavity-non-distorting
leiomyoma (ECNDL, n = 15) and endometrial cavity-distorting leiomyoma (ECDL, n = 11) cases among
these women. Sufficient amount of UL tissue along with adjacent normal UM tissue was collected
from each patient by performing laparoscopic myomectomy and processed to obtain pathological
confirmation. During the three months prior to surgery, gonadotropin-releasing hormone (GnRH)
analogues and hormones such as estrogen and progestin were not used by the patients. This study
was approved by the Institutional Review Board (KUGH17183-001 as of 7 September 2017).

4.2. Measurement of Hardness of Uterine Leiomyoma (UL) Tissues

After UL tissue collection, hardness of each UL tissue was assessed by assigning non-parametric
grade based on the area measurement of an indentation created by a Hegar dilator (No. 8) with
a constant force applied for 30 s. The hardness grading was as follows: 1+ indentation diameter
> 8 mm; 2+ indentation diameter ≤ 8 mm; 3+ no indentation.

4.3. RNA Isolation from Uterine Leiomyoma (UL) and Uterine Myometrium (UM) Tissues

Total RNA was isolated from each UL tissue and its corresponding (matched) UM tissue. Briefly,
the tissues were washed with pre-warmed Hank’s balanced salt solution (HBSS: Invitrogen, Grand
Island, NY, USA) and cut into 1 x 1 mm2 pieces using a surgical blade (No. 11: Feather safety razor,
Osaka, Japan). Tissue pieces were collected into 5-mL microtubes and incubated with Trizol (Invitrogen)
for 15 min at room temperature. During incubation, tissues were resuspended using constant pipetting
and total RNA isolation was performed according to the manufacturer’s protocol.

4.4. qRT-PCR to Assess the Levels of miRNAs

cDNAs were synthesized from 0.5 µg of total RNA using miScript II RT Kit (Qiagen, Germantown,
MD, USA) and were used as templates for qPCR reactions. specific primers (Table 3) and cDNAs were
mixed with NCode™ Express SYBR® GreenER™ miRNA qPCR premix (Invitrogen) and amplified
under the following conditions: initial incubation for 2 min at 50 ◦C, followed by 2 min at 95 ◦C,
and then, 40 cycles of 15 s at 95 ◦C, and 60 s at 60 ◦C. All the reactions were performed in triplicates
and the Ct value was calculated based on the U6 expression, as follows.

Relativeexpression(∆/∆) = (miRexpressioninuterineleiomyomacell)/(U6expressioninuterineleiomyomacell)
(miRexpressioninuterinemyometrialcell)/(U6expressioninuterinemyometrialcell) (1)
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Table 3. Sequences of miRNAs.

miRNA Sequence

U6 gtgctcgcttcggcagcacatatac
miR-15b tagcagcacatcatggtttaca
miR-29a tagcaccatctgaaatcggtt
miR-29b tagcaccatttgaaatcagtgtt
miR-29c tagcaccatttgaaatcggt
miR-197 ttcaccaccttctccacccagc
miR-200c taatactgccgggtaatgatgga

4.5. qPCR to Assess the Levels of Candidate Target Genes

cDNAs were synthesized from 0.5 µg of total RNA using Accute RT-premix (Bioneer, Daejeon,
Korea) and were mixed with QuantiTect SYBR green PCR premix (Qiagen) and specific primers.
The amplification program included an initial step at 95 ◦C for 15 min, followed by 45 cycles
of denaturation at 95 ◦C for 15 s, annealing at 58 ◦C for 20 s, and extension at 72 ◦C for 30 s.
All the reactions were run in triplicates and the relative gene expression was normalized using
the corresponding GAPDH expression as follows. The specific primers used for qPCR are shown
in Table 4.

Relativeexpression(∆/∆) = (Geneexpressioninuterineleiomyomacell)/(GAPDHexpressioninuterineleiomyomacell)
(Geneexpressioninuterinemyometrialcell)/(GAPDHexpressioninuterinemyometrialcell) (2)

Table 4. Sequences of target genes.

Gene Forward Sequence Reverse Sequence

P-Rcα GAGCACTGGATGCTGTTGCT GGCTTAGGGCTTGGCTTTC
P-Rcβ TGGGATCTGAGATCTTCGGAG GAAGGGTCGGACTTCTGCTG
E-Rcα TACTGACCAACCTGGCAGACAG TGGACCTGATCATGGAGGGT
E-Rcβ AGTTGGCCGACAAGGAGTTG CGCACTTGGTCGAACAGG

MMP-1 ACGGATACCCCAAGGACATCT TCAGAAAGAGCATCGATATG
MMP-2 GGACACACTAAAGAAGATGCAGAAGT CGCATGGTCTCGATGGTATTC
MMP-9 CCCGGAGTGAGTTGAACCA GGATTTACATGGCACTGCC
TIMP-1 CTGCGGATACTTCCACAGGTC GCAAGAGTCCATCCTGCAGTT
TIMP-2 ATAAGCAGGCCTCCAACGC GAGCTGGACCAGTCGAAACC

P-Rcα: progesterone receptor α, P-Rcβ: progesterone receptor β, E-Rcα: estrogen receptor α, E-Rcβ: estrogen
receptor β, MMP: matrix metalloproteinase, TIMP: tissue inhibitors of metalloproteinases.

4.6. In Situ Hybridization of miRNAs

All the soluble reagents and products used in the in situ experiments were either pre-treated
with diethylpyrocarbonate (DEPC) or diluted with DEPC-water (VWR, Radnor, PA, USA) to avoid
contamination of DNA, DNase and RNase. miRCURY LNA™ control and specific probes were
purchased from Exiqon (Germantown, MD, USA). To visualize the expression of specific miRNA in
UL tissues, they were fixed in 10% formalin solution (Sigma-Aldrich, St. Louis, MO, USA) for 24 h
and cut into 2 × 2 cm2. Fixed tissues were transferred into paraffin wax and allowed to solidify to
form paraffin blocks. Solidified tissue blocks were cut to 5 µm thickness using a microtome (Leica,
Biosystems, Wetzlar, Germany) and the sections were transferred onto microslides. These slides were
dried at RT for 24 h. The prepared glass slides were deparaffinized at 60 ◦C and rehydrated prior to
their use.

During the in situ hybridization process, the prepared slides were incubated in 20 µg/mL
proteinase-K solution for 10 min at 37 ◦C and washed with phosphate-buffered saline (PBS).
A hybridization mix solution containing in situ hybridization buffer in addition to either 40 nM
miR-15b-FITC conjugated specific probes or 10 nM control probes was hybridized for 1 h at
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58 ◦C. After hybridization, the prepared slides were serially washed with saline–sodium citrate
(SSC) buffer (Invitrogen) and incubated with blocking solution (2% sheep serum) for 15 min
at room temperature. The sample slides were washed and counter stained with 5 mg/mL of
4′,6-diamidino-2-phenylindole (DAPI, Invitrogen) for 20 min at room temperature and observed
using an EVOS-FL fluorescence microscope.

The positive and negative control slides were washed and anti-Digoxin (DIG) reagent
(Roche Diagnostics, Rotkreuz, Switzerland) was applied for 1 h at room temperature. After incubation,
all the slides were washed three times using Phosphate buffered saline-Tween-20 (PBS-T, PBS containing
0.1% Tween-20) and incubated with alkaline phosphatase (AP) substrate (Vector Laboratories, Burlingame,
CA, USA) for 2 h at 30 ◦C in a humidifying chamber. To stop the reaction, AP stop solution was applied for
5 min at RT. Finally, slides were counter stained with Nuclear Fast Red (Vector Laboratories) for 10 min
at RT and observed using EVOS-FL fluorescence microscope (Thermo Fisher Scientific, Waltham,
MA, USA).

4.7. Culture of UL Cells

UL tissue pieces were treated with 1 mg/mL of collagenase type I (Invitrogen) for 1 h at 37 ◦C
in a water bath and repeatedly suspended by gentle pipetting. The digested tissues were filtered
through a 70-µm cell strainer (SPL Life Sciences, Seoul, Korea) and centrifuged at 3000 rpm. Cell pellets
were replated and the medium was replaced with fresh medium every other day. The medium
consisted of 1:1 mix of Dulbecco’s modified Eagle medium and Ham’s F-12 medium (DMEM/F12)
without phenol red, 10% fetal bovine serum (FBS), 1% insulin–transferrin–selenium (ITS), and 50 U/mL
penicillin–streptomycin. All these reagents were purchased from Invitrogen.

4.8. Transfection of Mimics or Inhibitors of miRNAs into In Vitro Cultured UL Cells

Specific miRNA mimics and inhibitors were purchased from Genolution (Seoul, Korea) according
to total miRNA sequence (available online: http://www.mirbase.org); 10 µM of each mimic or inhibitor
was transfected into cultured UL cells using Lipofectamine RNAiMAX transfection reagent (Thermo
Fisher Scientific) and the cells were harvested for RNA isolation after 48 h. UL cells transfected solely
with transfection reagent without miRNA mimics or inhibitors were used as controls.

4.9. Statistical Analysis

All the experiments were independently repeated thrice using a distinct portion of each tissue
sample. The variations were compared between UL and UM groups, and then between ECDL and
ECNDL groups. The statistical significance was determined using Student’s t-test. The variations among
the values of mean and standard deviation were compared using the Student’s t test. Non-parametric
variables were analyzed using a chi-square test. Variations were considered statistically significant if
the p value was < 0.05. All data were analyzed using the Statistical Package for the Social Sciences in
Windows software (version 12.0, SPSS Inc., Chicago, IL, USA).

5. Conclusions

In conclusion, the expression profile of miRNAs in UL cells was different from that in the matched
UM cells. Furthermore, the expression profile of miRNAs in UL cells varied with respect to their ability
to cause ECD in the uterus. The miRNA profile might regulate the biomechanical properties of ULs to
affect the structural homeostasis of the uterus. Therefore, targeting these specific miRNAs and their
target genes may assist in the treatment of UL patients.

http://www.mirbase.org
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