
Citation: Xu, X.; Wang, H.;

Bennett, D.A.; Zhang, Q.-Y.; Wang, G.;

Zhang, H.-Y. Systems Genetic

Identification of

Mitochondrion-Associated

Alzheimer’s Disease Genes and

Implications for Disease Risk

Prediction. Biomedicines 2022, 10,

1782. https://doi.org/10.3390/

biomedicines10081782

Academic Editor: Carmela Matrone

Received: 26 June 2022

Accepted: 22 July 2022

Published: 24 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Systems Genetic Identification of Mitochondrion-Associated
Alzheimer’s Disease Genes and Implications for Disease
Risk Prediction
Xuan Xu 1 , Hui Wang 2,3 , David A. Bennett 4,5, Qing-Ye Zhang 1 , Gang Wang 6 and Hong-Yu Zhang 1,*

1 Hubei Key Laboratory of Agricultural Bioinformaics, College of Informatics,
Huazhong Agricultural University, Wuhan 430070, China; xxpinky@webmail.hzau.edu.cn (X.X.);
zqy@mail.hzau.edu.cn (Q.-Y.Z.)

2 Department of Pathology and Laboratory Medicine, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA; hui.wang@pennmedicine.upenn.edu

3 Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA 19104, USA

4 Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA;
david_a_bennett@rush.edu

5 Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
6 Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan 430070, China;

wanggang2020@webmail.hzau.edu.cn
* Correspondence: zhy630@mail.hzau.edu.cn; Tel.: +86-27-8728-0877

Abstract: Cumulative evidence has revealed the association between mitochondrial dysfunction
and Alzheimer’s disease (AD). Because the number of mitochondrial genes is very limited, the
mitochondrial pathogenesis of AD must involve certain nuclear genes. In this study, we employed
systems genetic methods to identify mitochondrion-associated nuclear genes that may participate in
the pathogenesis of AD. First, we performed a mitochondrial genome-wide association study (MiWAS,
n = 809) to identify mitochondrial single-nucleotide polymorphisms (MT-SNPs) associated with AD.
Then, epistasis analysis was performed to examine interacting SNPs between the mitochondrial and
nuclear genomes. Weighted co-expression network analysis (WGCNA) was applied to transcriptomic
data from the same sample (n = 743) to identify AD-related gene modules, which were further
enriched by mitochondrion-associated genes. Using hub genes derived from these modules, random
forest models were constructed to predict AD risk in four independent datasets (n = 743, n = 542,
n = 161, and n = 540). In total, 9 potentially significant MT-SNPs and 14,340 nominally significant
MT-nuclear interactive SNPs were identified for AD, which were validated by functional analysis.
A total of 6 mitochondrion-related modules involved in AD pathogenesis were found by WGCNA,
from which 91 hub genes were screened and used to build AD risk prediction models. For the four
independent datasets, these models perform better than those derived from AD genes identified
by genome-wide association studies (GWASs) or differential expression analysis (DeLong’s test,
p < 0.05). Overall, through systems genetics analyses, mitochondrion-associated SNPs/genes with
potential roles in AD pathogenesis were identified and preliminarily validated, illustrating the power
of mitochondrial genetics in AD pathogenesis elucidation and risk prediction.

Keywords: Alzheimer’s disease; mitochondria; association studies in genetics; epistasis; weighted
gene co-expression network analysis

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease. It is esti-
mated that more than 44 million people worldwide have dementia [1], and genome-wide
association studies (GWASs) have identified many loci associated with AD. Recently, multi-
ple large-scale GWASs have shown approximately 40 risk loci related to Aβ, tau, immunity
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and lipid processing [2,3]. Although understanding of the pathogenesis of AD has been
progressing for decades, the mechanisms that lead to damage and cognitive defects re-
main elusive. Thus far, theories of AD etiology include amyloid, tau, and mitochondrial
hypotheses [4]. Mitochondrial abnormalities are associated with loss of energy production
and synapses, axon transport defects, and cognitive decline [5,6]. Moreover, mitochondrial
involvement in AD is supported by neuroimaging features, such as decreased brain glucose
and oxygen metabolism and various biological findings, such as altered mitochondrial
morphology, impaired respiratory chain function, and mutations in mitochondrial DNA
(mtDNA), support this association. In addition, neuronal mitochondrial dysfunction and
AD pathology exacerbate each other in a recursive cycle of self-propagation [7]. Therefore,
it is of great interest and significance to identify mitochondrion-associated AD disease
genes to improve risk prediction in AD pathogenesis.

Mitochondria contain their own small genome of maternal origin that comprises
37 genes encoding: 13 polypeptides, 22 tRNAs, and the small/large rRNA subunits. Due to
the limited number of mitochondrial genes, mitochondrial pathogenesis is likely associated
with select nuclear genes. Indeed, mitochondrial diseases can be caused by mutations
of mtDNA or nuclear genes that encode mitochondrial proteins [8]. Furthermore, signal
communication between mitochondria and the nucleus is important for maintaining the
homeostasis of the cellular environment [9]. Although interactive mechanisms underlying
mitochondrial and nuclear genes largely remain unknown, they may be responsible
in part for the slow development of mitochondrion-targeted therapy [10]. To address
these issues, we conducted mitochondrial-nuclear genome-wide epistasis analyses, which
is a powerful method to infer gene interactions and to provide deeper insights into
mitochondrial pathogenesis. To generate a broader view of mitochondrion-based AD
pathogenesis in terms of biomolecular networks, a weighted gene co-expression network
analysis (WGCNA) was also performed to explore the relationships between different
gene sets (modules) and AD clinical features. WGCNA has been successfully applied for
various diseases to identify key modules or centrally connected hub genes as potential
biomarkers or therapeutic targets [11,12]. Finally, hub genes were screened from WGCNA-
derived modules and used to build AD risk prediction models with four independent
datasets. Overall, these models exhibited significantly better performance and robustness
in predicting AD risk, than those derived from AD genes identified by GWAS or differential
expression analysis.

The entire workflow of our analyses is illustrated in Figure 1.
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Figure 1. The workflow of analysis and validation procedures. Abbreviations: AD, Alzheimer’s dis-
ease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; DEG, differentially expressed gene; SNP, 
single nucleotide polymorphism; MAGE, microarray and gene expression; MiWAS, mitochondrial 
genome-wide association study; MT, mitochondria; WGCNA, weighted co-expression network 
analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 

2. Materials and Methods 
2.1. Study Subjects 

Genomic and transcriptomic data from the Alzheimer’s Disease Neuroimaging Initi-
ative (ADNI) [13] were used to identify modules and hub genes associated with mitochon-
drial function in AD. To evaluate the predictive performance of the hub genes, three ad-
ditional independent datasets were used: the Religious Orders Study and Rush Memory 
and Aging Project (ROSMAP), GSE5281, and AlzData. ROSMAP are ongoing longitudinal 
clinical-pathologic cohort studies of ageing and dementia [14]. GSE5281 contains 161 brain 
samples with gene expression profiles based on Affymetrix Human Genome U133 Plus 
2.0 Array (~55,000 transcripts). These samples cover 6 brain regions with approximately 
14 biological replicates per brain region, as follows: (1) the entorhinal cortex, (2) the hip-
pocampus, (3) the medial temporal gyrus, (4) the posterior cingulate, (5) the superior 
frontal gyrus, and (6) the primary visual cortex [15]. AlzData collects a large amount of 

Figure 1. The workflow of analysis and validation procedures. Abbreviations: AD, Alzheimer’s
disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; DEG, differentially expressed gene;
SNP, single nucleotide polymorphism; MAGE, microarray and gene expression; MiWAS, mitochon-
drial genome-wide association study; MT, mitochondria; WGCNA, weighted co-expression network
analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

2. Materials and Methods
2.1. Study Subjects

Genomic and transcriptomic data from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [13] were used to identify modules and hub genes associated with mito-
chondrial function in AD. To evaluate the predictive performance of the hub genes, three
additional independent datasets were used: the Religious Orders Study and Rush Memory
and Aging Project (ROSMAP), GSE5281, and AlzData. ROSMAP are ongoing longitudinal
clinical-pathologic cohort studies of ageing and dementia [14]. GSE5281 contains 161 brain
samples with gene expression profiles based on Affymetrix Human Genome U133 Plus 2.0
Array (~55,000 transcripts). These samples cover 6 brain regions with approximately 14 bio-
logical replicates per brain region, as follows: (1) the entorhinal cortex, (2) the hippocampus,
(3) the medial temporal gyrus, (4) the posterior cingulate, (5) the superior frontal gyrus,
and (6) the primary visual cortex [15]. AlzData collects a large amount of high-throughput
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data for public access [16]. It provides cross-platform normalized brain gene expression
profiling, including 269 AD and 271 controls from 4 brain regions (EC, the entorhinal cortex;
HP, the hippocampus; TC, the temporal cortex; FC, the frontal cortex).

The use of ADNI samples followed the data use agreement at ADNI (https://adni.
loni.usc.edu/data-samples/access-data/#access_data, accessed on 23 July 2022). Data from
ROSMAP were obtained under a data use agreement with Rush University Medical Center
(RUMC). ROS and MAP were approved by the Institutional Review Board of RUMC. All
participants provided written informed consent, signed an Anatomic Gift Act, and signed
a repository consent allowing their data to be shared. The characteristics of the ADNI,
ROSMAP, GSE5281, and AlzData study participants are summarized in Table 1.

Table 1. Characteristics of study participants from ADNI mitochondrial genome cohort (n = 809),
ROSMAP (n = 542), GSE5281 (n = 161), and AlzData (n = 540).

ADNI AD (n = 175) ND (n = 634) Diff (p) *

Sex (F/M) 70 F, 105 M 293 F, 341 M 0.15
Age, y (SD) 73.95(7.66) 73.04 (6.90) 0.13

ROSMAP AD (n = 220) ND (n = 322) Diff (p) *

Sex (F/M) 147 F, 73 M 128 F, 194 M <0.0001
Age, y (SD) 88(3.51) 85.5 (5.00) <0.0001

GSE5281 AD (n = 87) ND (n = 74) Diff (p) *

Sex (F/M) 37 F, 50 M 21 F, 53 M 0.07
Age, y (SD) 79.8 (6.91) 79.5 (8.92) 0.8

AlzData (EC) AD (n = 39) ND (n = 39) Diff (p) *

Sex (F/M) 18 F, 21 M 17 F, 22 M 1.00
Age, y (SD) 82.4 (7.38) 78 (11.1) 0.04

AlzData (HP) AD (n = 74) ND (n = 66) Diff (p) *

Sex (F/M) 45 F, 29 M 23 F, 43 M 0.002
Age, y (SD) 83.1 (9.44) 80.2 (9.68) 0.07

AlzData (TC) AD (n = 52) ND (n = 39) Diff (p) *

Sex (F/M) 14 F, 20 M * 18 F, 21 M* 0.81
Age, y (SD) 83.1 (9.44) 80.2 (9.68) 0.07

AlzData (FC) AD (n = 104) ND (n = 128) Diff (p) *

Sex (F/M) 44 F, 46 M * 55 F, 65 M * 0.68
Age, y (SD) 84.7 (7.53) 81.7 (10.60) 0.01

Abbreviations: ROSMAP, the Religious Orders Study/the Rush Memory and Aging Project; ADNI, Alzheimer’s
Disease Neuroimaging Initiative; AD, Alzheimer’s disease; ND, no dementia; Diff, statistical difference between
AD and ND; EC, Entorhinal Cortex; HP, Hippocampus; TC, Temporal Cortex; FC, Frontal Cortex; F, female; M,
male; SD, standard deviation. * Missing values exist.* p values are calculated by Fisher’s exact tests (for sex) or
two-sample t-tests (for age at death, age at AD, and age).

2.2. Genotyping and Quality Control

The whole mitochondrial genome variant dataset was called from whole genome
sequence (WGS) data, including 809 complete and annotated mitochondrial genomes from
ADNI. Burrows-Wheeler Aligner (BWA) [17] and Genome Analysis Toolkit (GATK) [18] were
used for genome assembly and mutation detection [19]. MITOMAP [20] and Phy-Mer [21]
were used for genome annotation [22]. Vcftools [23] was employed to convert ADNI
mitochondrial genome variant VCF files into PLINK format. The dataset contains 1604 MT-
SNPs. PLINK 1.9 [24] was applied for quality control (QC) and to perform logistic regression
to identify susceptibility MT-SNPs associated with AD risk. MT-SNPs were excluded
based on the following QC procedures: (1) call rate > 95%; and (2) minor allele frequency
(MAF) < 1%. As mitochondrial variation is inherited maternally, the mitochondrial genome
does not follow Hardy–Weinberg equilibrium and is not subject to the same threshold as

https://adni.loni.usc.edu/data-samples/access-data/#access_data
https://adni.loni.usc.edu/data-samples/access-data/#access_data
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nuclear SNPs [25]. Ultimately, 180 MT-SNPs passed the filtering and QC processes, and
candidate MT-SNPs were obtained using a p threshold of 0.05.

Autosomal genotype data were obtained from among ADNI Omni2.5M microarray
SNP data, which has a total of 812 samples with 2,379,855 SNPs, including the 809 samples
for mitochondrial genome data. We performed QC using PLINK 1.9 following common
procedures [26]. We filtered out SNPs and individuals based on the following criteria:
(1) individual and SNP missingness > 0.02; (2) inconsistencies in assigned and genetic
sex of subjects (sex discrepancy); (3) MAF < 0.05; (4) deviations from Hardy–Weinberg
equilibrium (HWE) (p < 1 × 10−6); (5) high or low heterozygosity rates (who deviate
±3 SD from the sample heterozygosity mean rate); (6) relatedness above the threshold
(pi-hat > 0.2); and (7) ethnic outliers. Linkage disequilibrium (LD) between SNPs was
filtered using the default threshold (r2 = 0.2).

2.3. Mitochondrial Genome-Wide Association Study

We performed a mitochondrial genome-wide association study (MiWAS) to identify
MT-SNPs that affect AD risk in ADNI. A logistic regression model was constructed to
detect the association between SNPs and AD status (AD vs. no dementia (mild cognitive
impairment (MCI)+ cognitive normal (CN))) while controlling for age, sex, and the first
5 principal components (PCs) calculated from the nuclear SNPs with a p value less than
0.05. EIGENSTRAT [27] was used for principal component analysis.

2.4. Epistasis Screening

For the ADNI mitochondrial genome, PLINK and INTERSNP [28] were used to assess
AD-associated epistasis between the mitochondrial and the nuclear genomes. PLINK was
first applied to merge the 790 samples that passed QC and shared by the mitochondrial
and autosomal datasets. INTERSNP epistasis calculations were performed using the
genotypic model containing both additive and dominant effects for 790 AD/no dementia
(n = 173 vs. 617) and 543 AD/MCI (n = 173 vs. 370) individuals. Sex, age (determined by
the date of examination in ADNI), and the top five PCs derived among the autosomal SNPs
were included in the model as covariates. We deleted MT-nuclear SNP pairs with less than
three observed in the cells of the MT-SNP × SNP contingency table, as they may lead to
false results. Only MT-nuclear SNP pairs with a cell size greater than 3 or equal to 0 in each
cell of the 3 × 3 genotype matrix were retained for further analysis [29]. After filtering,
705,030 valid tests were performed. Therefore, we applied the Bonferroni procedure to
assign a rather conservative p threshold of 7.09 × 10−8 for INTERSNP calculations.

2.5. Microarray Data Processing and Differentially Expressed Gene Analysis

The gene expression profile of the blood samples was provided by Bristol-Myers
Squibb (BMS), including 743 participants after QC. A NanoDrop and PerkinElmer LabChip
GX were used to evaluate the quantity and the quality of the extracted RNA. Affymetrix
Human Genome U219 Array (Affymetrix, Inc., Santa Clara, CA, USA), which contains
530,467 probes for 49,293 transcripts was used for expression profiling. The probe set
was annotated with the R package “hgu219.db”. All probes were mapped and annotated
according to the human genome (GRCh37/hg19).

Uniquely mapped probes with no mismatches were removed. The robust multiarray
average (RMA) algorithm was applied to normalize the expression matrix. Then, low-
expressed genes were removed, and probes with expression greater than 3 in 10% (~74) of
the total samples were retained (density-based filter). After correcting for background (sex,
age, education level, batch, RIN), the “limma” R package was used to conduct DEG analysis
between different diagnostic statuses (AD vs. no dementia, AD vs. MCI, MCI vs. CN,
AD vs. CN). Statistical analysis of microarray data was performed using the function
“lmFit” to fit the linear models by weighted or generalized least squares, and the function
“eBayes” to generate statistical significance values.
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2.6. Weighted Co-Expression Network Analysis

The WGCNA R package was used to perform co-expression network analysis with
the normalized ADNI matrix [30]. Two outlier samples were removed before analysis.
Then, the adjacency matrix was constructed with each entry corresponding to the Pear-
son’s correlation coefficient (PCC) between each pair of genes. Next, an appropriate soft
threshold of eight was selected to construct a scale-free co-expression network from the
adjacency matrix. Subsequently, modules were obtained via adaptive branch pruning of hi-
erarchical clustering dendrograms. Branches were merged with a threshold of dissimilarity
coefficient <0.2, and 30 modules were obtained.

2.7. Identification of Key Modules and Hub Genes

As statistical interactions do not necessarily indicate a biological interaction [31], mito-
chondrial genes were included to uncover additional genes that biologically interact with
mitochondria. Therefore, modules involved in mitochondrial function in AD were identi-
fied using the following criteria: first, genes located in mitochondria or with an epistatic
effect with mitochondrial genes were enriched in the module; and second, AD-related traits
correlated highly with the module. Gene subcellular location information was obtained
from the COMPARTMENTS database [32], a web resource updated weekly that integrates
evidence on protein subcellular localization. This evidence is derived from a manual lit-
erature review, high-throughput screening, automatic text mining, and sequence-based
prediction methods. A gene with a score greater than three from the knowledge channel
was selected as a reliable mitochondrion localized gene [32]. Epistatic genes were those at
the intersection of two INTERSNP calculations, as mentioned above.

After identifying mitochondrial gene-enriched modules, module eigengenes (MEs)
were characterized by the first PC of the module expression level. Using the correlation
between Mes and sample features to estimate module-feature relationships effectively
identifies relevant modules. To further evaluate the correlation strength, we calculated the
module significance (MS), which is defined as the average absolute gene significance (GS)
of all genes in the module. GS is measured as the log10 conversion of the p value (logP) in
linear regression between gene expression and phenotypic information. Modules with the
highest MS score among all modules are those most associated with the phenotype and are
selected for further analysis.

Hub genes are highly connected nodes that involve many interactions, and the hub
gene in a module may be more important than other genes in the entire network. To identify
hub genes in the selected modules, the following three statistics are defined for each gene in
WGCNA: (1) connectivity, the degree of connectivity of a gene in the co-expression network
is defined as the number of edges connected to the gene; (2) module membership (MM),
the MM value can be obtained by analyzing the correlation between the expression of the
gene and the first PC of the module (module eigengene); (3) based on GS and MM, the
association of each gene with the specified trait and identified genes that have high gene
significance and are members of important modules at the same time are selected using the
“networkScreening” function. Based on the above three indicators, the following criteria
were used to screen for hub genes: GS greater than the mean value of the total GSs within
the module, MM > 0.8, and networkScreening.q.weighted < 0.01.

2.8. Functional Enrichment Analysis of Key Modules

Key modules were extracted from the network, and enrichment analysis was per-
formed to further explore the functions of each module. The “clusterProfiler” [33] R pack-
age was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses. Enrichment results of GO biological
process (BP), molecular function (MF), cell component (CC), and KEGG pathway were
obtained using p < 0.05 and q < 0.2 as the significance threshold.
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2.9. Construction and Evaluation of the Predictive Model

Among the hub genes in key modules, we selected those that were also DEGs in
the ADNI gene expression profile to construct the prediction model. Age and sex were
added as covariates. All statistical analyses were performed in R (4.0.2). Three additional
independent datasets (ROSMAP, GSE5281, and AlzData) were used for the construction
and the evaluation of the model. Considering the number of hub genes, the model was
constructed by the random forest algorithm of the “caret” R package, and accuracy was
assessed with 10-fold cross validation (10 CV). Afterwards, the “pROC” R package was em-
ployed to evaluate and to verify the predictive performance. Associated statistics (including
accuracy, sensitivity, and specificity, etc.) were calculated to analyze the prediction results.
The importance of variables was based on the model with the highest area under curve
(AUC). Furthermore, we conducted survival analysis on the model predictive ability of
each dataset by using the “survival” and “survminer” R packages. Samples with predicted
values greater than the average level were classified into high-risk groups; otherwise, they
were classified into low-risk groups.

3. Results
3.1. Mitochondrial Genome-Wide Association Study

First, we conducted MiWAS to examine the effects of 1604 MT-SNPs on AD risk
in 809 ADNI individuals. Under the logistic regression model, nine MT-SNPs reached
statistical significance with a nominal p-value < 0.05 (Table S1). Six of them were located
in the mitochondrial control region (m.114C > T, m.152T > C, m.295C > T, m.310T > C,
m.462C > T, m.482T > C), which is the main regulatory element for mitochondrial DNA
replication and transcription (Figure 2A). A recent study showed that the regulatory factor
of the binding sites in the mtDNA control region may be altered in presbycusis, affecting
mtDNA gene expression and copy number. Moreover, these variants have potential as
diagnostic markers for individuals at a high risk of developing presbycusis [34].

Furthermore, significant loci were annotated based on the mutation information in
MITOMAP [35] (Table S1). Five MT-SNPs (m.114C > T, m.295C > T, m.310C > T, m.462C > T,
m.3394T > C) are related to a variety of diseases, such as schizophrenia, bipolar disorder,
low VO2max response, glaucoma, and Leber hereditary optic neuropathy (LHON). In
particular, MT-ND1 (m.3394T > C, OR = 2.026, p = 0.034), MT-CO1(m.6371T > C, OR = 2.380,
p = 0.015) and MT- ND5 (m.13966A > G, OR = 2.211, p = 0.019) are strikingly elevated
in circulating extracellular vesicles (Evs) of MCI and AD patients relative to CN Evs.
These mitochondrial genes are involved in encoding critical components of oxidative
phosphorylation (OXPHOS). OXPHOS dysfunction can produce ROS and oxidative stress,
leading to ageing and neuronal cell death in the AD brain [36]. It has been proposed that
these mt-RNAs in plasma Evs can serve as diagnostic and prognostic biomarkers for MCI
and AD [37].

3.2. Mitochondrial Epistasis Screening

After QC and LD filtering, 790 individuals with 151,497 SNPs were retained for
ADNI. Under a conservative Bonferroni-adjusted p value (p < 7.09 × 10−8), m.152T > C
(MT-CR) and rs244433 (chr5: 166370007A > G, closest gene: TENM2) presented the only
significant genetic interaction (p = 6.35 × 10−8) identified in the AD/no dementia con-
trast group. TENM2 (Teneurin Transmembrane Protein 2) is involved in neural devel-
opment, regulating the establishment of proper connectivity within the nervous system
(according to the GeneCards database). The link between TENM2 and AD is supported
by a recent genome-wide diverse meta-analysis [3]. In our study, TENM2 was found to
have a tendency of differential expression in the AD vs. no dementia control group in
the GSE5281 dataset (logFC = −0.747, adj.p = 0.00366). This result was confirmed us-
ing single-cell data from various AD and no dementia samples in the scREAD dataset
(https://bmbls.bmi.osumc.edu/scread/, accessed on 23 July 2022). The most significant
difference in TENM2 gene expression was found in excitatory neurons. By querying the
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GWAS Catalog database (https://www.ebi.ac.uk/gwas/home, accessed on 23 July 2022),
the most significant variations linked to TENM2 are rs6863407, rs35263578, rs2336895,
rs4044321, and rs13186288. These variations/risk alleles are related to diseases/phenotypes
including gamma-glutamyl transferase, externalizing behavior, smoking initiation, and
major depressive disorder. Detailed information can be found in Tables S2 and S3.

In addition, 54,942 (AD/no dementia) and 38,643 (AD/MCI) MT-nuclear SNP interac-
tions met the criteria of a cell size either more than three or equal to zero and a nominal p
threshold of 0.05. Among them, there were 14,340 MT-nuclear SNP interactions replicated
in the two contrast groups (Figure 2B, Table S4). A total of 11,098 SNPs with exact autosomal
location information were selected for further analysis by mapping to GRCh37/hg19. These
SNPs correspond to 1650 genes, 102 of which are subcellularly located in mitochondria. The
top three enriched GO BP terms for the corresponding genes of candidate interactions were
axonogenesis (GO:0007409, p = 2.94 × 10−11), regulation of small GTPase mediated signal
transduction (GO:0051056, p = 5.28 × 10−8), and regulation of cell morphogenesis involved
in differentiation (GO:0010769, p = 4.80 × 10−8). Involvement of synaptic plasticity and
axonogenesis markers is highly specific to both tau and AD traits. Overexpression of
4RON human tau in neuroblastoma cells reportedly recruits neurodegeneration-related
mitochondria and axonogenesis-related proteins into exosome secretion pathways through
different mechanisms [38]. Overall, the results suggest that these SNPs may interact with
MT-SNPs associated with AD.
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Figure 2. MiWAS result and epistasis screening. (A) Mitochondrial solar plot of MiWAS result. Nine
MT-SNPs with a nominal p-value < 0.05 were considered statistically significant associates with
AD risk (Table S1). Six of them are located in the control region of the mitochondria. (B) Epistasis
screening of nine MT-SNPs significantly related to AD risk. A total of 54,942 (AD/no dementia)
and 38,643 (AD/MCI) MT-nuclear SNP interactions met the criteria of a cell size either more than 3
or equal to 0 and a nominal p threshold of 0.05. Among them, there were 14,340 MT-nuclear SNP
interactions replicated in the 2 contrast groups (Table S4).

https://www.ebi.ac.uk/gwas/home
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3.3. Identification of Differentially Expressed Genes

To remove low-expression genes, 14,057 probes were filtered, and 35,329 probes
were obtained (mapped to 15,508 corresponding genes). After correcting for background
and under the threshold of p < 0.05, there were 2226 DEGs (3068 probes, AD vs. no
dementia) (Table S5), 1505 DEGs (1921 probes, AD vs. MCI) (Table S6), 986 DEGs (1148
probes, MCI vs. CN) (Table S7), and 2,659 DEGs (3822 probes, AD vs. CN) (Table S8). To
comprehensively screen hub genes, these DEGs were integrated for subsequent analyses.
The top 10 DEGs €n the four groups are shown in Figure S1. In addition, there were 34 DEGs
under the threshold of adj.p < 0.05. These genes with significantly different expression
levels were used for subsequent model predictive ability comparison.

3.4. Weighted Gene Co-Expression Network Analysis and Detection of Key Modules

To identify gene clusters with different co-expression patterns, which may be re-
lated to AD pathologies, gene co-expression network analysis was performed with the
WGCNA R package. As a result, 30 modules were obtained after module merging
(Figure 3A–C). Subsequently, correlations between different modules and AD-related
traits were evaluated by calculating the module significance for each module-trait corre-
lation (Mini-mental State Examination (MMSE), ABETA, TAU, PTAU, AGE, PTETHCAT
(ethnicity), PTGENDER (sex), PTRACCAT (race), DIAGNOSIS (CN, MCI, AD), DX (no
dementia, AD), APOE2, APOE4). The strongest correlations between modules and traits
were as follows: lightsteelblue1—MMSE/AGE (R = 0.103/−0.285 and p = 0.005/<0.001);
pink—ABETA (R = 0.082 and p = 0.003); thistle2—TAU/PTAU (R = 0.094/0.099 and
p = 0.011/0.007); violet—AGE (R = 0.272 and p < 0.001); plum1—PTGENDER (R = 0.99
and p = 0); darkgreen—DX (R = 0.127 and p < 0.001); and cyan—APOE4 (R = 0.075 and
p = 0.041) (Figure 3D).
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Figure 3. The workflow for WGCNA and identification of key modules. (A) Analysis of the scale-free
fit index and the mean connectivity for various soft-thresholding powers (β). The approximate scale-
free topology can be attained at β = 8. (B) Cluster analysis of samples to detect outliers. (C) Cluster
dendrogram: Each color represents one specific co-expression module, and black branches represent
genes. (D) Heatmaps of the correlation between eigengene and AD-related traits (MMSE, ABETA,
TAU, PTAU, AGE, PTETHCAT (ethnicity), PTGENDER (sex), PTRACCAT (race), DIAGNOSIS (CN,
MCI, AD), DX (no dementia, AD), APOE2, APOE4). Each row corresponds to a module eigengene,
and each column corresponds to a clinical AD trait. Each cell contains the corresponding correlation
and p-value.

Furthermore, 1,474 mitochondrion-located genes were enriched in 11 modules (hy-
pergeometric test, p < 0.05), and 15 modules were enriched by 11,098 SNPs obtained by
mitochondrial epistasis screenings (hypergeometric test, p < 0.05, false discovery rate (FDR)
q < 0.05) (Table S9). Among these mitochondrion-relevant gene-enriched modules, six
were selected for subsequent analyses and showed the strongest associations with AD-
related traits (lightsteelblue1-MMSE/APOE2, pink-ABETA, thistle2-PTAU, violet-AGE,
darkgreen-DX, and cyan-APOE4) (Figure 3D and Table S9).

3.5. Functional Enrichment Analysis of Key Modules

GO and KEGG analyses were then performed to explore the functions for the genes
clustered in the six modules. The KEGG pathway enrichment results demonstrated the
genes in the lightsteelblue1 module to be primarily enriched in pathways associated with
the NF-kB signaling pathway, necroptosis, and apoptosis, among others. The results of
GO BP analysis indicated that genes in the lightsteelblue1 module primarily regulate T
cell differentiation and mitochondrial depolarization. According to GO BP and KEGG
terms, the darkgreen module showed significant enrichment in many immune responses,
such as B cell activation, the antigen receptor-mediated signaling pathway, and the B cell
receptor signaling pathway. Genes in the thistle2 module were enriched in several bio-
logical processes of the nervous system, including calcium ion homeostasis and axon and
neuron projection regeneration. Furthermore, KEGG and GO BP MF enrichment results
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demonstrated that the pink module was significantly associated with ubiquitin mediated
proteolysis and oxygen transport or metabolic processes, which are all closely associated
with accumulation of amyloid Aβ, oxidative stress, and other pathological processes of
AD. Detailed information about the top 10 terms of each category for the six modules is
presented in Figures S2 and S3, and Table S10.

3.6. Identification of Hub Genes

Based on the criteria described above, hub genes in six mitochondrial/AD trait-related
modules were screened out (lightsteelblue1-MMSE/APOE2: 3, pink-ABETA: 170, thistle2-
PTAU: 1, violet-AGE: 3, darkgreen-DX: 31, and cyan-APOE4: 51). Through comparison
with DEGs, 91 hub genes and DEGs were selected for further analyses (Table S11). There
were 16 genes at the intersection of these hub genes and epistatic genes from our previous
screening (ACSL1, AFF3, APP, BACH2, BCL11A, DCAF12, DOCK5, NEDD4L, OSBP2,
PSMF1, PTPRE, RASSF2, SIRPA, SLC6A6, ST6GAL1, TNS1). In addition, 10 genes were
found at the intersection of hub genes and genes located in the mitochondria from the
COMPARTMENTS database (APP, TRAK2, BCL2L1, LGALS3, ABHD5, MXD1, ACSL1,
STAP1, GLRX5, SNCA). These hub genes had only one intersection with the well-known
AD pathogenic genes (PICALM) [2] (Table S12).

3.7. Construction and Evaluation of the Predictive Model

To explore the relationship between hub genes and AD risk, the random forest algo-
rithm was applied to the 743 ADNI cohort to establish a predictive model. In addition, the
predictive power of the hub genes was compared between ADNI DEGs and the recognized
AD pathogenic genes [2] (Table S12). APOE is the most important genetic factor of AD
and accounts for approximately 5–9% of heritability [39]; thus, the prediction efficiency of
hub genes was compared with recognized pathogenic genes other than APOE. ROC curves
showed that the AUC of hub genes (Hub Genes AUC: 0.623) was significantly higher than
that of AD pathogenic genes and AD pathogenic genes excluding APOE (Sig Genes AUC:
0.541, Sig~APOE AUC: 0.528; DeLong’s test, p = 0.02/0.008) (Figure 4A). There was no
significant difference in AUC between hub genes and ADNI DEGs (adj.p < 0.05) (DEGs
AUC: 0.634; DeLong’s test, p = 0.9).

The prediction power of hub genes was verified in three other independent brain
sample datasets. Among 542 subjects in ROSMAP, the AUC of hub genes was 0.737 (Hub
Genes AUC: 0.737). However, the AUC of AD pathogenic genes was only approximately
0.65 (Sig Genes AUC: 0.646, Sig~APOE AUC: 0.659; DeLong’s test, p = 0.01/0.03), and DEGs
had a minimum AUC of 0.561, which was significantly lower than that of the hub genes
(DeLong’s test, p = 4 × 10−4) (Figure 4B). For 161 AD and normal aged brain samples in
GSE5281, the AUC for hub genes was greater than 0.9 (Hub Genes AUC: 0.922). Although
the AUC of the hub genes was higher than that of the AD pathogenic genes, it did not show
a significant improvement due to the limited samples, (Sig Genes AUC: 0.889, Sig~APOE
AUC: 0.899; DeLong’s test, p = 0.3/0.4). However, the AUC of hub genes was significantly
improved compared to that of the DEGs (DEGs AUC: 0.922; DeLong’s test, p = 0.002)
(Figure 4C).

Regarding integrated data from AlzData in four brain regions, the lowest AUC was
0.610 (for the FC region) because the expression values of 2/3 of the hub genes in this region
were missing. For the other three brain regions, HP, EC, and TC, AUC values reached 0.757,
0.788, and 0.808, respectively (Figure 5A).

Furthermore, Kaplan–Meier survival curves illustrated that individuals in the high-risk
group had a significantly earlier age of AD onset, as found for all ADNI, ROSMAP, GSE5281,
and AlzData datasets (Log-rank test, p < 0.0001 (excluding AlzData_TC p = 0.0006))
(Figures 4D–F and 5B–E).
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Figure 4. Construction and evaluation of AD predictive models in different independent datasets
(ADNI, ROSMAP, GSE5281). Random forest algorithm was applied on the three different cohorts to
establish AD predictive models through 10-fold CV (ADNI (A), ROSMAP (B), GSE5281 (C)). DeLong’s
tests were used to compare the difference between ROC curves. Kaplan–Meier survival curves were
used to estimate the accuracy of the hub genes signature on predicting survival. Individuals were
well stratified by their risk predictions, and individuals in the high-risk group had a significantly
earlier age of AD onset, as found for all ADNI (D), ROSMAP (E), GSE5281 (F) datasets (Log-rank test,
p < 0.0001).
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Figure 5. Construction and evaluation of AD predictive models based on AlzData. (A) Performance
of predictive models based on AlzData. Due to the lack of expression values of approximately 2/3
hub genes, the FC region had the lowest AUC (0.610). For the other three regions, HP, EC, and TC,
AUC values reached 0.757, 0.788, and 0.808, respectively. Kaplan–Meier survival curves showed that
individuals in the high-risk group exhibited a significantly earlier age of AD onset in EC (B), HP (C),
TC (D), and FC (E) (Log-rank test, p < 0.0001 (excluding AlzData_TC p = 0.0006)). Abbreviations: EC,
Entorhinal Cortex; HP, Hippocampus; TC, Temporal Cortex; FC, Frontal Cortex.

3.8. Identification of Critical Genes

To determine the overall importance of hub genes, the gene importance of the random
forest models in the above-mentioned seven different datasets were integrated (Figure S4).
The top 10 hub genes were RTN3, RASSF2, TCL1A, BCL11A, RANBP10, REPS2, VCAN,
TMCC3, EPB41, and NEDD4L, which may play critical roles in the pathologies of AD
through interaction with mitochondrial genes or participation in mitochondrion-related
biological processes. Indeed, eight of them are supported by literature evidence related to
mitochondria, and seven genes are reported to be related to AD (Table 2).

AlzData was used to further characterize and confirm the expression patterns of
these 10 critical genes. Indeed, we found that these genes have significant up- or down-
regulated patterns (FDR < 0.05) in different areas of the brain, except for EPB41. For
example, RTN3 showed significant down-regulation in EC, HP, and TC, with TC being the
most significant (log2 FC = −0.83, FDR = 0.0003). Similarly, NEDD4L displayed significant
down-regulation in the TC region (log2 FC = −0.48, FDR = 0.0001). In contrast, we observed
a significant upregulation of VCAN, TMCC3, and SLC14A1 in TCs (log2 FC = 0.7/0.51/1.4,
FDR = 0.001/0.002/0.0003, respectively) (Table S13).
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Table 2. Summary information of top 10 critical genes.

Gene Describe Compartment * GO BP * BioSystems Pathway *
AD

Literature
(PMID)

MT
Literature
(PMID)

RTN3 Reticulon 3 plasma membrane;
endoplasmic reticulum

GO:0006915;
GO:0016032;

GO:0071786; etc.

Pathways of neurodegeneration-multiple disease
(Alzheimer disease);

Transmission across Chemical Synapses
(Neuronal System)

23827971;
29356939;

28733667; etc.

32048886;
17191123;

17031492; etc.

RASSF2 Ras Association Domain
Family Member 2 nucleus

GO:0001501;
GO:0001503;

GO:0006468; etc.
Hippo signaling pathway-multiple species —— 22674380; etc.

TCL1A TCL1 Family AKT
Coactivator A nucleus

GO:0007275;
GO:0008284;

GO:0010918; etc.
PI3K/Akt Signaling ——

26041471;
10983986;

30282833; etc.

BCL11A BAF Chromatin Remodeling
Complex Subunit BCL11A nucleus

GO:0000122;
GO:0006357;

GO:0010976; etc.
—— 30180184;

33911114; etc.
33091040;

27838552; etc.

RANBP10 RAN Binding Protein 10 cytosol GO:0005515;
GO:0031267

Signaling events mediated by Hepatocyte
Growth Factor Receptor (c-Met)

28659384;
28744327; etc. ——

REPS2 RALBP1 Associated Eps
Domain Containing 2 cytosol

GO:0006897;
GO:0007173;

GO:0016197; etc.
EGF/EGFR Signaling Pathway 32597797; etc. ——

VCAN Versican extracellular
GO:0001501;
GO:0007417;

GO:0007155; etc.

Direct p53 effectors;
Regulation of Wnt-mediated beta catenin
signaling and target gene transcription;

Spinal Cord Injury

7793988;
29752348;

28724990; etc.

30622695;
29060675; etc.

TMCC3 Transmembrane And
Coiled-Coil Domain Family 3 Endoplasmic; reticulum —— —— —— ——

EPB41 Erythrocyte Membrane
Protein Band 4.1

plasma membrane;
nucleus; cytosol

GO:0007049;
GO:0008360;

GO:0030036; etc.

Syndecan-2-mediated signaling events;
Neuronal System

22815752;
24718034; etc. ——

NEDD4L NEDD4 Like E3 Ubiquitin
Protein Ligase

Nucleus;
cytosol

GO:0000122;
GO:0000209;

GO:0003254; etc.

Neurotrophic factor-mediated Trk
receptor signaling;

Ubiquitin mediated proteolysis
TGF-beta Signaling Pathway

32140098;
27686364;

28377502; etc.

31959741;
32140098; etc.

Abbreviations: AD, Alzheimer’s disease; MT, mitochondria. * Basic information comes from https://www.genecards.org, accessed on 23 July 2022.

https://www.genecards.org
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4. Discussion

We first performed a mitochondrial genome-wide association analysis of AD. Under
a p threshold of 0.05, 9 potential MT-SNPs related to AD risk were detected. Previous
studies support many of the MT-SNPs identified by our analysis, including m.114C > T,
m.295C > T, m.310C > T, m.462C > T, and m.3394T > C. In particular, m.114C > T and
m.3394T > C have been confirmed to be related to a variety of mental diseases including
AD (Table S1). Then, we screened epistatic loci between the mitochondrial genome and
the nuclear genome. We obtained 14,340 MT-nuclear SNP interactions under a p threshold
of 0.05 of which 11,098 SNPs with accurate autosomal location information were used for
subsequent analyses (Table S4).

Furthermore, through analysis of ADNI gene expression data, we found DEGs in
four contrast groups under the threshold of p < 0.05 (Tables S5 and S8, Figure S1), reflecting
the RNA expression changes in AD blood samples. The top-hit up-regulated genes in the
AD vs. CN contrast group, such as CREB5 (cAMP responsive element binding protein 5),
MAPK14 (mitogen-activated protein kinase 14), and CD63 (CD63 molecule), are similar to
the results of a recent genome-wide transcriptome analysis [40].

WGCNA was used to construct a co-expression network and to detect gene modules
in the normalized matrix. As a result, 30 modules were obtained after module merging
(Figure 3A–C). Afterward, correlations between the modules and AD-related traits were
determined (Figure 3D). Among them, 11 modules were enriched with 1474 mitochondrion-
located genes; 15 modules were enriched with 11,098 autosomal SNPs with potential
interactions with 9 AD-related MT-SNPs (Table S9). Based on the above findings, we
selected for further investigation the six modules that had the strongest association with
AD-related traits and that were simultaneously enriched by mitochondrion-related genes
(lightsteelblue1-MMSE/APOE2, pink-ABETA, thistle2-PTAU, violet-AGE, darkgreen-DX,
and cyan-APOE4).

GO and KEGG pathway analyses are key to understanding disease mechanisms.
In addition to direct enrichment of many neurological-related biological processes in
the thistle2 module, many other modules also showed enriched terms related to AD
pathologies. For example, the GO BP results of the lightsteelblue1 module indicated that
this module is related to immune processes such as T cell differentiation and mitochondrial
depolarization, which may be linked to factors such as neuroinflammatory response and
the combination of tau and amyloid-β protein precursor (APP) that lead to the damage
of mitochondrial phagocytic function [41,42]. KEGG pathway analysis demonstrated that
the lightsteelblue1 module is enriched in the NF-κB signaling pathway, necroptosis, and
apoptosis, among others. NF-κB activity is increased in most nerve cells, such as neurons,
microglia and astrocytes, when acute or chronic neurological diseases occur [43] (Table S10,
Figures S2 and S3).

Overall, we screened 91 hub genes from the 6 modules, which were also significant
DEGs (Table S11). APP was the only gene at the intersection of hub genes, epistatic genes,
and mitochondrial located genes. Studies have shown that accumulation of mutated APP
and Aβ in the hippocampus is responsible for abnormal mitochondrial dynamics and
defective biogenesis [44]. As defective mitochondrial homeostasis plays a pivotal role in
the pathogenesis of AD, targeting mitochondrial dysfunction by offsetting the early accu-
mulation of APP may be a promising therapeutic intervention for AD [45]. Besides, many
investigations have verified the association between APP and a mitochondrial enzyme,
amyloid binding alcohol dehydrogenase (ABAD). One study used a yeast two-hybrid
system in which ABAD interacts with Aβ and is present in the mitochondrial matrix.
Immunoprecipitation studies in the brain have shown the formation of complexes between
ABAD and Aβ in brain and mitochondrial extracts [46]. Aβ–ABAD interaction in mito-
chondria reduces enzymatic function, increases the production of reactive oxygen species
(ROS), and affects energy consumption. This process has also been proven in AD mouse
models [47,48]. Therefore, interception of the Aβ-ABAD interaction has the potential to
protect against AD pathological processes [46,49]. Additionally, 37 genes among all hub
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genes have been reported to be associated with AD, and 10 genes appear in more than 10
related literature reports (APP, SNCA, PICALM, BCL2L1, RTN3, GCA, SLC2A1, LGALS3,
FPR2, and NUMB). A total of 15 hub genes have research records related to MCI, including
4 genes with more than 10 publications (APP, GCA, PICALM, and CD22). The difference
between the above two gene sets, CD22, which is known to modulate immune system
activation, has also been discovered to be a negative regulator of microglia phagocytosis
in the brain. CD22 inhibition increases microglial phagocytosis of Aβ oligomers and ame-
liorates cognitive impairment in elderly mice [50]. According to a recent study, higher
plasma soluble CD22 (sCD22) levels are associated with accelerated cognitive deterioration.
Furthermore, plasma sCD22 levels predicted longitudinal cognitive deterioration during
7.5 years of follow-up [51]. This evidence suggests that CD22 may be an important marker
to help us identify patients who are more likely to transform from MCI to AD. In addition,
44 genes have been reported to be associated with MT of which 12 (BCL2L1, APP, SNCA,
SLC2A, NAMPT, LGALS3, ACSL1, TRAK2, GCA, GLRX5, FPR2, and ABHD5) are included
in more than 10 reports.

Moreover, KEGG pathway enrichment of these hub genes revealed some immune
processes/diseases, such as intestinal immune network for IgA production (hsa04672,
adj.p = 5.77 × 10−43), type I diabetes mellitus (hsa04940, adj.p = 1.21 × 10−42) and inflam-
matory bowel disease (hsa05321, adj.p = 7.41 × 10−42), which are related to imbalance of the
gut microbiota [52], and emerging evidence shows that AD may begin in the gut, and it is
closely related to such an imbalance [53]. Overall, our analyses suggest that mitochondrial
dysfunction may induce AD, affecting the gut microbiota.

Interestingly, the prediction results showed that the AUCs for the hub genes in the
ADNI and ROSMAP datasets were significantly higher than those for recognized AD
pathogenic genes (Table S12). When compared with ADNI DEGs (adj.p < 0.05), the AUCs
derived from hub genes in the ROSMAP and GSE5281 datasets were significantly improved,
except for ADNI gene expression data (Figure 4), showing that the hub genes identified
by systems genetics methods are more robust at predicting AD risk. This point was
further validated using the AlzData database, through which we observed accurate AD
risk prediction of hub genes in four regions of the brain (Figure 5).

To identify critical genes in the mechanism of AD and mitochondria, we obtained the
top 10 hub genes based on the synthetic importance of hub genes in all models (Table S13,
Figure S4). Most of them have been reported to be associated with AD and/or mitochondria
(Table 2). Among them, the top-ranked gene RTN3 (Reticulon 3) has been shown to be
involved in the development of neurodegenerative diseases, especially in AD (according
to the GeneCards database). RTN3 belongs to the reticulon family which interacts with
β-amyloid converting enzyme 1 (BACE1) and regulates its activity, as well as production of
Aβ [54]. In addition, RTN3 is involved in the process of mitochondrial specific autophagy,
which has been proven to be beneficial for inflammatory diseases by eliminating damaged
mitochondria and maintaining homeostasis [55]. Moreover, the transcriptional profiles of
top 10 hub genes in human brain development between different genders were explored
using BrainSpan (http://www.brainspan.org, accessed on 23 July 2022) and GenTree [56]
databases (Figure S5). It can be seen that the expression levels of these genes differ signifi-
cantly between the genders at different developmental stages. For example, the expression
levels of TCL1AM, RANBP10, and EPB41 peaked in the female subcortical region at 34 post-
conception week (PCW) and were significantly higher than those of males at the same
period. With aging, the expression levels of RASSF2, RABP10, REPS2, and TMCC3 were
higher in males than in females in the same brain tissue regions, and the disparities tended
to grow. These results may help to explore gender differences in the onset of AD.

http://www.brainspan.org
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5. Limitations

There may be some possible limitations in this study. Studies to date explaining the
association between mitochondrial genetics and AD risk have mostly used incomplete
sequence data and/or very small sample sizes [22]. In our study, we used a dataset of
809 annotated whole mitochondrial genomes. Although the sample size was increased
compared with previous studies, it may still be insufficient in genome research. This is
probably the reason most of our findings only reached a nominally significant threshold. In
addition, in order to preserve consistency in quality control and screening criteria across all
available samples, we did not include mitochondrial haplotypes or SNPs reported in other
studies that are associated with AD, which may have resulted in incomplete findings in
certain circumstances. The development of a larger dataset would facilitate research in this
important area.

Moreover, in the risk prediction models, we simply considered hub genes from six AD-
related modules that were also enriched by mitochondrion-related genes. Therefore, some
important pathogenic genes related to AD pathology, but not closely related to mitochon-
dria may have been missed. A more comprehensive assessment of AD pathogenic genes
may improve the prediction accuracy and provide a more profound understanding of the
pathological mechanism of AD.

6. Conclusions

Accumulating evidence shows that mitochondrial dysfunction contributes to the
ageing process, thereby increasing the risk of AD. Due to the limited number of mi-
tochondrial genes, certain nuclear genes must play critical roles in the mitochondrial
pathogenesis of AD. Although, the interactive mechanisms underlying mitochondrial
and nuclear genes remain elusive [57], they may be responsible for the slow develop-
ment of mitochondrial medicine. Here, through mitochondrial systems genetic analyses,
mitochondrion-associated nuclear SNPs/genes with important roles in the pathogenesis of
AD are identified and preliminarily validated. To a certain extent, our research underscores
the essential role of mitochondrial dysfunction in the pathogenesis of AD and provides new
insight into the unclear mitochondrion-relevant pathogenic mechanisms for AD. Moreover,
we reveal that mitochondrion-associated nuclear genes have important implications for
AD risk prediction and AD mitochondrial medicine.
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