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Simple Summary: As an invasive pest in China, the moth Tuta absoluta has spread extremely quickly,
and now causes serious harm to the Chinese tomato industry. Understanding gut microbial diversity
and composition can potentially identify the adaptive potential of introduced species. In this study,
we found there were no significant differences in microbial diversity among three geographical
populations, and the gut microbial compositions were similar among the Spanish, Xinjiang and
Yunnan geographical populations.

Abstract: Microorganisms in the guts of insects enhance the adaptability of their hosts with different
lifestyles, or those that live in different habitats. Tuta absoluta is an invasive pest that is a serious
threat to tomato production in China. It has quickly spread and colonized Xinjiang, Yunnan and
other provinces and regions. We used Illumina HiSeq next generation sequencing of the 16S rRNA
gene to study and analyze the composition and diversity of the gut microbiota of three geographical
populations of T. absoluta. At the phylum level, the most common bacteria in T. absoluta across all
three geographical populations were Proteobacteria and Firmicutes. An uncultured bacterium in
the Enterobacteriaceae was the dominant bacterial genus in the T. absoluta gut microbiotas. There
were no significant differences in alpha diversity metrics among the Spanish, Yunnan and Xinjiang
populations. The structures of the gut microbiota of the three populations were similar based on
PCoA and NMDS results. The results confirmed that the microbial structures of T. absoluta from
different regions were similar.

Keywords: Tuta absoluta; gut microbiota; geographical populations

1. Introduction

The abundant and diverse gut microbial communities of insects are often adapted to
their host gut environment, with some even developing coevolutionary associations with
their hosts via sophisticated symbiotic interactions [1–3]. Insect guts provide habitats for mi-
crobes which, in turn, can influence many aspects of the hosts’ biology. The main functions
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of the gut microbiota in insects include nutrition acquisition, food digestion, immunity, and
defense detoxification, as well as promoting growth, development, and breeding [4–6].

Phytophagous lepidopterans, including butterflies and moths, are among the most
widespread and diverse taxa of insects on Earth, including approximately 160,000 described
species in 47 superfamilies [7]. Many of them are major agricultural pests that feed either
externally on leaf tissue (macrolepidopterans), or internally on the mesophyll layer of the
stem or leaf (microlepidopterans) [8]. Gut microbiota may aid in the digestion and uptake
of nutrients from plants [9,10]. Hence, the gut microbiota of herbivorous lepidopterans
has received increasing interest and study, especially through the use of next-generation
sequencing technologies [3,11–13].

Lepidopteran insect guts generally contain abundant microorganisms [14,15]. Several
studies have investigated the intestinal bacterial communities of lepidopterans, such as
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) [16–18], Spodoptera littoralis (Boisd.)
(Lep.: Noctuidae) [19], Spodoptera litura Fab. (Lep.: Noctuidae) [20], Spodoptera exigua
(Hübner) (Lep.: Noctuidae) [21], Spodoptera frugiperda (J.E. Smith) (Lep.: Noctuidae) [22,23],
Plutella xylostella (L.) (Lep.: Yponomeutidae) [24–26], Plodia interpunctella (Hübner) (Lep.:
Pyralidae) [27], Grapholita molesta (Busck) (Lep.: Tortricidae), Cydia pomonella (Linnaeus)
(Lep.: Tortricidae) [28], and Antheraea assamensis (Lep.: Saturniidae) [29]. Meanwhile,
gut microbiota of these insects are significantly affected by developmental stage [19,21],
food/host plant type [26–28,30–32], geographical location [23,29], environment [12,33], and
pathogen invasion [18]. Even though the microbiota of several distinct feeding guilds,
including foliage feeder and fruit borer, have been explored, little is known about that of
lepidopteran leaf miners.

Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is an invasive species and destruc-
tive pest worldwide [34]. Its larvae not only mine into and feed within the leaves of host
plants, but also penetrate host fruits and axillary buds of young stems [35]. T. absoluta
originated in Peru, and was only reported from South American countries prior to 2006,
when it was introduced to Spain through the importation of tomato fruits [34,36]. Then,
this pest quickly spread in Europe, Africa, and Asia at 800 km per year with the trade of
agricultural products [35]. By 2020, this pest had spread to 110 countries and regions [37].
Recently, the T. absoluta has invaded and established itself in China [38], spreading to
Xinjiang, Yunnan, and other provinces [39]. Based on genetic population analyses, this
pest could have been introduced from two different pathways: a southwest pathway from
Myanmar into Yunnan Province, and a northwest pathway from Kazakhstan into Xinjiang
Province [39]. T. absoluta, as a destructive invasive pest worldwide, has attracted consid-
erable attention from many entomologists all over the world. However, no studies have
focused on the environmental adaptability of the gut microbes in T. absoluta adults thus far.
In addition, it is not clear whether the microbiota of adult insects influence their invasion
potential or plant pest potential.

In this study, we examined the composition and diversity of bacterial communities
from the guts of female T. absoluta from three different geographical populations using
the Illumina HiSeq sequencing of bacterial 16S rRNA gene PCR amplicons. The goals
of this work were to provide a reference for analyzing the sources of three geographical
populations of T. absoluta (two from China and one from Spain) and estimate Wolbachia
infections in T. absoluta populations. These results will aid the bettering our understanding
of the adaptation of a lepidopteran leaf miner pest to different geographical environments.

2. Materials and Methods
2.1. Sample Collection

Adults of T. absoluta were collected from Yunnan and Xinjiang, China, and Barcelona,
Spain, from December 2019 to July 2020 (Table 1). The transport of the Spanish population
into China met the legislative and security requirements of the two countries. The intestinal
contents of approximately 20 insects from each geographical population were treated as
one replicate; five replicates were prepared for each population. A sufficient number of
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freshly emerged female adults of T. absoluta were selected from each geographic group.
The insects were surface sterilized with 75% alcohol 3 times for 1 min each and washed
with sterile water more than 5 times. The complete gut tract was excised, and the midgut
and hindgut were separated, placed in 1.5 mL centrifuge tubes with sterile water, and then
stored in the laboratory at −80 ◦C for later use.

Table 1. Sampling locations and dates for the populations of Tuta absoluta.

Population No. Guts Location (Collection Date) Longitude and Latitude Crop

Xinjiang 17

Yili, Xinjiang, China; XJ (July 2020) 81.7978, 43.1985 Tomato, field
18
18
20
20

Yunnan 17

Yuxi, Yunan, China; YN (June 2020) 102.5388, 24.3602 Tomato, field
18
20
19
20

Spain 18

Barcelona, Spain; SP (December 2019) 2.3806, 41.5655 Tomato, field
18
19
21
20

2.2. DNA Extraction and Sequencing

DNA was extracted from approximately 20 intestinal contents (per replicate) of T.
absoluta using a TGuide S96 Magnetic Soil/Stool DNA Kit (TIANGEN, Beijing, China)
according to the manufacturer’s protocol. The V3 + V4 region of 16S rDNA was am-
plified with the specific primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) [40]. The PCR conditions were as follows: 95 ◦C for
5 min, followed by 25 cycles of 95 ◦C for 30 s, 50 ◦C for 30 s and 72 ◦C for 40 s, and a final
extension at 72 ◦C for 7 min. PCR products were purified using VAHTSTM DNA clean
beads (Vazyme, Nanjing, China) as a template by Solexa PCR with 98 ◦C for 30 s, followed
by 10 cycles of 98 ◦C for 10 s, 65 ◦C for 30 s and 72 ◦C for 30 s, and a final extension at 72 ◦C
for 5 min. Then, the Solexa PCR products were used to construct libraries by Biomarker
Technologies Company (Beijing, China).

2.3. Bioinformatics Analysis

After sequencing, the original data were spliced by FLASH [41] (version 1.2.7). The raw
reads obtained by sequencing were filtered by using Trimmomatic [42] (version 0.33), and
then Cutadapt [43] (version 1.9.1) was employed to identify and remove primer sequences,
thus obtaining clean reads without primer sequences. The clean reads were spliced using
USEARCH [44] (version 10.0), and then the spliced data were filtered according to the
length range of different regions. The identification and removal of chimeras were carried
out by UCHIME [45] (version 8.1), and the final effective reads were generated. Then, the
average length, GC content, Q20 (%) [quality value (>20)/the total bases], Q30 (%) [quality
value (>30)/the total bases], and effective ratio [effective reads/raw reads] were calculated.
The high-quality sequences with 97% or greater similarities were identified as operational
taxonomic units (OTUs) by USEARCH [44] (version 10.0). Since Wolbachia is an intracellular,
maternally transmitted endosymbiont, the OTU sequences were screened and analyzed to
remove Wolbachia sequences.

2.4. Diversity Analyses

The ACE, Chao1, Shannon and Simpson indices were evaluated using QIIME2 [46] and
were analyzed with one-way analysis of variance (ANOVA) at a 0.05 level of significance
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by using IBM SPSS Statistics 26. For beta diversity analysis, the binary Jaccard algorithm
was used to calculate the distance between samples. Beta diversity was analyzed by
principal coordinate analysis [47] (PCoA) and nonmetric multidimensional scaling [48]
(NMDS). Analysis of similarities (ANOSIM) was performed with the vegan package in the
R environment.

2.5. Phylogenetic Analysis of Wolbachia

To compare Wolbachia infections in T. absoluta species and other insect species, a
phylogenetic tree was constructed using the maximum likelihood (ML) method in MEGA
(version 7.0) (https://www.megasoftware.net/ accessed on 24 November 2021). Bootstrap
analysis was performed with 1000 replicates. The 16S rRNA gene of Wolbachia from
T. absoluta was obtained by Biomarker Technologies Company (Beijing, China). The other
sequences were downloaded from GenBank.

3. Results
3.1. Sequencing Quality (OTU) and Venn Analyses

A total of 1,207,610 pairs of reads were obtained from 15 samples. After quality
control and the splicing of double-terminal reads, a total of 1,193,147 clean reads were
generated, and a minimum of 78,827 and an average of 79,543 clean reads were generated
for each sample. The sequences were clustered into OTUs with a 97% identity, and a total
of 1083 OTUs were obtained after removing Wolbachia (Figure 1A).
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Figure 1. The results of OTU and Venn analyses of T. absoluta from different geographical populations.
Abbreviations: SP, Spain; XJ, Xinjiang; YN, Yunnan. (A) Statistics on the OTU number in each sample.
(B) Venn diagram of OTUs.

Figure 1 shows that 1060, 987 and 964 OTUs were obtained from three geographical
populations of Spain (SP), Xinjiang (XJ) and Yunnan (YN), respectively (Figure 1A). Among
these OTUs, 880 OTUs were shared among the gut microbiotas of the three geographical
populations. There were 25 and 10 OTUs specific to the Spanish (SP) and Yunnan (YN)
populations, respectively (Figure 1B).

3.2. Bacterial Alpha Diversity of the Gut Microbiota of T. absoluta

The ACE index, Chao1 index, Shannon index and Simpson index were used to further
analyze species diversity and richness. As shown in Figure 2, among the three groups,
the Spanish population exhibited the highest Shannon and Simpson indices, while the
lowest values were observed in the Xinjiang population. However, there were no sig-
nificant differences in microbial diversity (PShannon = 0.142; PSimpson = 0.156). The ACE
and Chao1 microbial richness indices were also not significantly different between the

https://www.megasoftware.net/
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geographical populations (PACE = 0.419; PChao1 = 0.370). The species richness of the Spanish
population species richness appeared to be higher than that of the Xinjiang population and
Yunnan population.
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3.3. Analysis of the Composition and Structure of the Gut Microbiota in T. absoluta from Different
Geographical Populations

The microbial community composition of T. absoluta gut samples at the phylum, family,
and genus level are shown in Figure 3. At the phylum level, the dominant gut bacteria of
T. absoluta from the Spanish, Xinjiang, and Yunnan populations were members of Proteobac-
teria followed by Firmicutes, Bacteroidetes, Acidobacteria, Actinobacteria, Verrucomicrobia,
Cyanobacteria, Chloroflexi, Gemmatimonadetes, and Nitrospirae (Figure 3A). At the fam-
ily level, Enterobacteriaceae and Muribaculaceae were dominant in the Spanish, Xinjiang,
and Yunnan populations (Figure 3B). When we kept sequences in Wolbachia, they accounted
for 11.92% from Spain (SP), 4.77% from Xinjiang (XJ), and 10.59% from Yunnan (YN) in
the genus level, respectively (Figure S1). However, Wolbachia is an endosymbiont, and
we removed Wolbachia from the composition of the gut microbiota analysis. As shown in
Figure 3C, an uncultured bacterium in the Enterobacteriaceae was the dominant genus
of the gut microbial community in the three populations. The next most dominant was
uncultured_bacterium_f _Muribaculaceae. The compositions and structures of the gut micro-
biota of T. absoluta from different geographical populations were similar.
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of the top 10 bacteria at the genus level.

3.4. The Bacterial Community Composition of the Gut Microbiota of T. absoluta

The dots separated by shorter distances shared higher similarity in the coordinate
system (Figure 4A,B). PCoA and NMDS based on the binary Jaccard algorithm revealed
that the compositions and structures of the gut microbiota in T. absoluta from Spanish,
Yunnan, and Xinjiang populations overlapped, indicating that the microbial communities
were very similar to each other. There was no significant difference in the gut microbiota
among the three geographical populations of T. absoluta at the OTU level based on ANOSIM
analysis (P = 0.397 for PCoA, P = 0.378 for NMDS).

3.5. Phylogenetic Analysis of Wolbachia

We constructed a phylogenetic tree of 24 Wolbachia sequences by using the ML method
to analyze the evolutionary relationships of Wolbachia from T. absoluta and other arthropod
hosts (Figure 5), and all sequences were divided into two supergroups (A and B). T. absoluta
in this research were a member of Wolbachia supergroup B.
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Helicoverpa armigera (EU753172); Corcyra cephalonica (EU753167); Mamestra brassicae (EU753175);
Plutella xylostella (EU753169); Spodoptera exigua (EU753173); Papaipema sciata (KJ125432); Speyeria idalia
(KJ125433); Hesperia ottoe (KJ125435); Trichogramma deion (L02888); Myzus persicae (MG707970);
Neonympha mitchellii mitchellii (KJ125431); Phengaris arion (KM517520); Aphis gossypii (MG707918);
Drosophila melanogaster (AB360385); Ephestia kuehniella (AB360384); Bemisia tabaci (OK042302);
Hypolimnas bolina jacintha (AB085178.1); Cnaphalocrocis medinalis (HQ336509); Brontispa longissimi
(L02888); Spodoptera litura (KC915389); and Bactrocera dorsalis (MK860779).

4. Discussion

T. absoluta is a destructive pest of tomato worldwide. In the present study, the composi-
tion and diversity of the gut bacteria of T. absoluta from three different geographical regions
were studied to promote further research on whether these bacteria influence invasion
potential or pest status. The results revealed abundant and diverse bacteria in the gut of
T. absoluta.

Alpha diversity reflects the species richness and diversity of a single sample [49].
Based on the alpha diversity metrics, there were no significant differences among the three
geographical populations. Our result was consistent with the findings of some previous
research. Ugwu et al. [23] found no significant differences in the microbial diversity
and species richness of different geographical populations of Spodoptera frugiperda. In
contrast, Gandotra et al. [29] reported that Antheraea assamensis from the Titabar region
had a significantly higher Shannon–Wiener diversity index than that in the other regions.
Bacterial diversity (Shannon index) varied significantly between Holotrichia parallela larvae
from different locations [50].

In addition, the microbial community structure relationships among the Spanish (SP),
Yunnan (YN), and Xinjiang (XJ) populations were similar, which could have two explana-
tions. First, tomato is the preferred host plant in the different geographical populations
of T. absoluta. The T. absoluta diet is narrow, with a preference for tomato (fresh market
and cherry tomatoes) over other solanaceous plants in China [39]. In addition, studies
of microbial communities of Aphis gossyphii from different plants and regions in China
uncovered no significant correlation between the geographical distance between sampling
sites and the Bray–Curtis differences of symbiotic or secondary symbiotic communities,
and determined that host plants may have influenced the composition of the associated
symbionts [51]. Moreover, Ugwu et al. [29] revealed that Spodoptera frugiperda from different
geographical regions did not differ in the larval gut microbiome. However, Gong et al. [52]
suggested that environmental variability can influence the gut microbiota of the two fruit
moth pests. The object of our study was the gut microbiota of adults from different ge-
ographical populations. Because the lepidopteran larvae consume large kinds of host
plants during development their guts may contain many undigested host plants. Further
studies will examine more species of host plants and different environments to analyze
the adaptability of the larvae of T. absolute gut microbiota. The second reason may be that
the three geographical populations have the same origin. As a newly emerging invasive
pest, T. absoluta was first detected only a few months apart in the Xinjiang and Yunnan
provinces [38]. Zhang et al. [39] speculated that neither of these provinces was the source
of the introduction to the other province. Based on the microbiome results, we propose
that Yunnan and Xinjiang populations could have originated from the Spanish population.
Further research will be combined with genetic studies to test this hypothesis about the
origin of T. absoluta.

The gut microbiota of T. absoluta was dominated by Proteobacteria and Firmicutes
at the phylum level, similar to the results of previous studies on lepidopteran insects,
including Spodoptera littoralis [19], Helicoverpa armigera [16], Plutella xylostella (L.) [24,53],
Brithys crini [54], and Spodoptera frugiperda [55]. A comparison of the gut bacteria of
30 species of lepidopterans revealed that the most dominant phylum was Proteobacte-
ria [56]. In this study, family Enterobacteriaceae, a member of the Proteobacteria, was
dominant in all geographical populations. Enterobacteriaceae are widely distributed in
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insects and have an important function. An increased abundance of Enterobacteriaceae can
significantly reduce the mortality of host insects, thus extending host insect longevity [57].
Enterobacteriaceae can also aid in insects’ nitrogen and carbon metabolism [58–60], re-
sistance to pathogenic bacteria and parasites [61], and courtship and reproduction [28].
Interestingly, the microbial richness of the Xinjiang (XJ) population was lower than that of
the Spanish (SP) population and the Yunnan (YN) population at the family level, except
for Enterobacteriaceae. We speculate that metabolic versatility can help insects adapt to
unfavorable environments. This hypothesis can be tested with additional in-depth research
in this area.

Wolbachia is found in many arthropods, especially insects [62]. Approximately 80%
of lepidopteran insects are infected by Wolbachia [63]. As a facultative endosymbiont,
Wolbachia has become one of the most widely studied endosymbionts due to its wide
distribution and multiple regulatory effects on the host. Furthermore, Wolbachia induces
the reproductive manipulation of hosts, including cytoplasmic incompatibility (CI), male
killing, feminization, and parthenogenesis [64]. Most Wolbachia infecting lepidopteran
insects belong to supergroup A or B, and most of them belong to supergroup B [65,66]. In
the current study, the Wolbachia detected in the three different geographical populations of
T. absoluta appeared to belong to supergroup B, which was consistent with previous results
in a Brazilian population and Iranian and Turkish populations [67,68].

T. absoluta is an invasive pest worldwide and has been found to have parthenogen-
esis [69,70]. This may be related to the symbiosis of T. absoluta with a specific strain of
Wolbachia [67]. However, the parthenogenesis of the population of T. absoluta in Brazil is
independent of infection by Wolbachia [67]. To date, parthenogenesis has not been found
for T. absoluta in China, a newly invaded country. We do not know whether the presence
of Wolbachia in T. absoluta is responsible for this reproductive behavior. Further studies
with the application of molecular and genetic techniques and enhanced international
collaboration will help answer this question.

5. Conclusions

In summary, our results showed the diversity and composition of the T. absoluta gut
microbiota from different regions. We confirmed that Proteobacteria and Firmicutes were
the dominant bacteria at the phylum level. We also found that the gut microbial structures
of T. absoluta populations from different regions were similar. Our results may shed light
on the invasiveness and adaptability of T. absoluta from the perspective of gut microbiota.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/insects13030252/s1, Figure S1: Species distribution in all samples when kept
Wolbachia in analysis.
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