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Criticality is considered a dynamic signature of healthy brain activity that can be measured on the short-term timescale with neural
avalanches and long-term timescale with long-range temporal correlation (LRTC). It is unclear how the brain dynamics change in
adult moyamoya disease (MMD). We used BOLD-fMRI for LRTC analysis from 16 hemorrhagic (Hyp) and 34 ischemic (Iyp)
patients and 25 healthy controls. Afterwards, they were examined by EEG recordings in the eyes-closed (EC), eyes-open (EO), and
working memory (WM) states. The EEG data of 11 Hyp, and 13 Iy patients and 21 healthy controls were in good quality for
analysis. Regarding the 4 metrics of neural avalanches (e.g., size (), duration (f3), x value, and branching parameter (o)), both
MMD subtypes exhibited subcritical states in the EC state. When switching to the WM state, Hy;p remained inactive, while
Iymp surpassed controls and became supercritical (p < 0.05). Regarding LRTC, the amplitude envelope in the EC state was more
analogous to random noise in the MMD patients than in controls. During state transitions, LRTC decreased sharply in the
controls but remained chaotic in the MMD individuals (p < 0.05). The spatial LRTC reduction distribution based on both EEG
and fMRI in the EC state implied that, compared with controls, the two MMD subtypes might exhibit mutually independent but
partially overlapping patterns. The regions showing decreased LRTC in both EEG and fMRI were the left supplemental motor
area of Hy;,p and right pre-/postcentral gyrus and right inferior temporal gyrus of I p. This study not only sheds light on the
decayed critical dynamics of MMD in both the resting and task states for the first time but also proposes several EEG and fMRI
features to identify its two subtypes.

1. Introduction ral activities and cognitive impairment [2-4]. The MMD is
the only known chronic cerebrovascular disease with both
hemorrhagic (Hyyp) and ischemic (Iyp) clinical out-
comes [5, 6]. Besides the general pathophysiology men-

tioned above in common, the two clinical subtypes are

Moyamoya disease (MMD) is a chronic cerebrovascular
disease characterized by progressive stenosis and occlusion
of the terminal portion of the bilateral internal carotid

arteries and their main branches. The vascular pathology
leads to widespread and continuous cerebral hypoperfu-
sion and gradual formation of compensation from collat-
erals as a response [1]. The blood supply of neuron
activities is often disrupted, followed by less regional neu-

suspected to exhibit different but unknown processes,
which are proved to be irrelevant with cerebral infarct or
hematoma [3, 7-9]. However, their morphological and
hemodynamic differences are difficult to be discerned
and rarely reported [6, 9].
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Healthy brain networks in the resting state are generally
characterized by well-balanced excitatory and inhibitory
synaptic activities [10]. These balanced brain states may
sit in a dynamic state close to the criticality. Neural net-
works in a critical state have been found to be efficient
for information transmission and other functions [11,
12]. Such critical dynamics are associated with a sustained
neural activity that exhibits scale-free avalanche distribution
[13]. Cognitive tasks may shift the brain activity from the
critical point to a supercritical state by activating some brain
regions and suppressing others [14]. The critical dynamics
can be characterized quantitatively on two timescales: neural
avalanches in the short term (milliseconds) and long-range
temporal correlation (LRTC) in the long term (seconds to
hours) [15]. During a neuronal avalanche, spontaneous acti-
vation of one neuronal group can trigger consecutive activa-
tions of other neuronal groups within just a few milliseconds,
propagating cascading waves of activity. This phenomenon
has been revealed by multiple neuroimaging modalities, such
as electroencephalography (EEG) and fMRI in healthy sub-
jects [16-18]. Additionally, brains in disease states such as
unconsciousness and schizophrenia exhibit faded critical
dynamics [19, 20].

LRTC is another notable measurement to evaluate the
critical dynamics of the neuronal system [21, 22]. Although
neural oscillations present themselves with large variability
in both frequency and amplitude, their fluctuations reflect a
tendency toward self-organized criticality [23]. The oscilla-
tory activity at any time is influenced by previous activities,
and the LRTC is built up though local interactions. Such
oscillations, reflecting short-term and long-term interactions,
are observed to exist throughout the entire system. Recent
studies have shown that healthy brains in the resting state
are associated with a relatively large value of LRTC, while
decreased LRTC has been reported in various diseased brain
states such as a major depressive disorder and Alzheimer’s
disease [24, 25].

Clinically, rapid and accurate differential diagnosis
between acute ischemia and hemorrhage is crucial for early
medical and interventional treatment but the optimal time
window of treatment is often missed because of its high reli-
ance on a CT or MR scan. The MMD is expected as the
promising disease template to develop a more rapid and
accurate differential diagnostic tool. According to one pub-
lished fMRI study of ours, a dynamic measurement of
entropy was proposed as an index of the critical dynamics
to describe quantitatively the spatiotemporal changes of neu-
ral communication in adult MMD [26]. It found that critical
dynamics faded not only in the diseased brain but also with
disease progression. Therefore, this study was performed to
examine two issues as the first of its kind. One is to explore
the faded critical dynamics of MMD in both the resting and
task states directly through a combination of EEG (high tem-
poral resolution) and fMRI (high spatial resolution). The
other is to investigate whether the two subtypes with a similar
extent of cognitive impairment exhibit different neuronal
dynamics and generate several features for future rapid and
bedside identification of acute cerebral ischemia and
hemorrhage.
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2. Materials and Methods

2.1. Participants. This study was approved by the Institu-
tional Review Board in our hospital and conducted in accor-
dance with the Helsinki declaration. Informed consent was
signed by all the subjects of this study. From March 2017 to
August 2018, 50 adult patients with MMD (16 H;,p and
34 Ip) were recruited. The inclusion criteria were as fol-
lows: (1) Chinese nationality, right handed, and age of over
18 years; (2) diagnosis through digital subtraction angiogra-
phy, with a Suzuki grade of IIT or IV [1]; (3) no evidence of
infarct and hematoma larger than 8 mm in the maximum
dimension on structural brain images [2, 27, 28]; (4) physical
ability to undergo cognitive testing and EEG tasks; (5) no
severe systemic or other cerebrovascular diseases; and (6)
no medical history of neurosurgery. Twenty-five healthy sub-
jects with no cerebrovascular or mental diseases were
enrolled as controls. The Mini-Mental State Examination
(MMSE) was adopted for the neuropsychological evaluation
of global cognitive states.

2.2. Data Acquisition and Preprocessing. EEG data were
acquired at a sampling rate of 1000Hz in a sound-
attenuated room by using a 64-channel actiCHamp Brain
Products recording system (Brain Products GmbH Inc,
Munich, Germany). The impedance of all channels was
below 10KQ. The experimental paradigm was presented in
E-Prime 2.0, and preprocessing was performed using the
MATLAB R2017b software plug-in EEGLAB 14.0.0. Data
were filtered to the frequency range of 0.5-100 Hz. Then,
the interference at a frequency of 50 Hz was removed using
a notch filter. Independent component analysis and the
ADJUST toolbox were used to remove the components of
eyeblink and cardio ballistic artifacts. EEG recording was
started with a 5-minute eyes-closed (EC) resting state, a 5-
minute eyes-open (EO) resting state, and then 30 trials of a
delayed-response working memory (WM) task for around
20 minutes and ended with a procedure composed of a 5-
minute EC and a 5-minute EO resting state to examine the
consistency of the data recording quality (Supplementary
Figure S2). Ultimately, the EEG data from 24 patients (11
Hywp and 13 Iyp) and 21 healthy controls were selected
for good quality.

All MRI data were collected using a 3.0 Tesla scanner (GE
Healthcare, GE Asian Hub, Shanghai, China) with a 32-
channel intraoperative head coil. The fMRI data were
acquired using gradient echo-planar imaging with the follow-
ing parameters: 3.2 mm slice thickness, 2000 ms repetition
time, 30 ms echo time, 90° flip angle, 220 x 220 mm? field of
view, 64 X 64 matrix size, and 3.438 x 3.438 x 3.2 mm? voxel
size. Each scan lasted for 8 min and collected 240 volumes.
Preprocessing was performed using the SPMI2 (https://
www.fil.ion.ucl.ac.uk/spm) and DPARSF [29]. Volumes were
corrected for slice timing and head motion, and subjects were
excluded if their head movement exceeded 3mm or 3
degrees. Here, we used the Friston 24-parameter model [30]
to regress out the head motion effects from the realigned data
(i.e., 6 head motion parameters, 6 head motion parameters
on the time point before, and the 12 corresponding squared
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items) that were based on recent reports that higher-order
models demonstrated benefits in removing head motion
effects [31]. We also obtained the mean framewise displace-
ment (FD) derived from Jenkinson’s relative root mean
square algorithm [32] for each participant to assess the effects
of head motion on group-level statistics. After spatial
normalization (Montreal Neurological Institute space),
resampling (3 mm isotropic voxels), and spatial smoothing
(4mm, full-width, half-maximum Gaussian kernel), vol-
umes were preprocessed using the linear trend subtraction
and temporal filtering (0.01-0.08 Hz). In addition, the sig-
nals from the cerebrospinal fluid and white matter were
regressed out to reduce the effect of nonneuronal BOLD
fluctuation [33].

2.3. Short-Term Timescales of Critical Dynamics:
Neuronal Avalanches

2.3.1. Transfer of EEG Data from Amplitude to Mean
Frequency. The time sequence of each channel was translated
from amplitude to mean frequency by the short-term Fourier
transform (Figures 1(a) and 1(b)). The mean frequency of
each 1-sec epoch was calculated as

_SPU XS "
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with a 2ms time shift in each channel, where f and P rep-
resent the frequency and power of the power spectrum of
the signal, respectively. The average baseline of each chan-
nel was replaced with the group ensemble average of the
channel to avoid noise interference caused by individual
difference perturbations. Given that the EEG amplitude is
mainly dominated by the low-frequency component of syn-
chronized slow oscillations and some high-frequency activi-
ties are submerged in the slow-wave activities with high
amplitudes, the EEG frequency may be a better sequence
for reflecting the intensity of the neural activity rate.

2.3.2. Overthreshold Event Detection and Neuronal Avalanche
Extraction. For each channel, the threshold for events was
defined as the mean value + 1 SD (standard deviation) of
the EC state averaged overall controls. It is noted that for fre-
quency events, 1 SD fluctuation above the mean frequency
rate is strong enough to be a burst event (two and three SD
were also tested, but the events were very sparse). The func-
tion “findpeaks” in MATLAB 2015b was used to find the
peaks higher than the threshold (with a duration over
20ms), which were defined as the events. Neuronal ava-
lanches were defined as continuous time bins with at least
one event in each channel, beginning and ending with
event-free time bins. The time bin used was 16 ms (although
the conclusion held true with other time bins from 4 to
20 ms). Binarized data were used for event detection.

2.3.3. Calculation of the Avalanche Size () and Duration
(B). As shown in Figures 1(c) and 1(d), we first obtained
the probability density function (PDF) of the avalanche
size (number of events) and duration (number of time

bins) and then fitted it to the power law distribution P,
(x)=C,x* using maximum likelihood estimation to
obtain the slope, denoted by the size («) and duration (f3)
[34, 35]. The exponent was estimated by calculating L(« |
x) =[]~,P,(x;), which means that the best-fitting expo-
nent was calculated by maximizing the log-likelihood
function. The higher absolute value of the power law
exponent means the steeper fitted power law curve and
indicates the higher probability of small size and duration
avalanche [18]. Since the large size and duration avalanche
means a rather large range and longer time of neuronal
dynamics, the comparison of these parameters between
the MMD and controls can be utilized to reflect the aber-
rant neuronal dynamics of MMD.

2.3.4. Calculation of the x Value. The k value was used to
estimate how far the system was from criticality. This non-
parametric measure quantifies the difference in the subjects’
cumulative density function (CDF) from the standard critical
reference CDF with a power law exponent of 1.5 (Figure 1(e))
[11, 36]:
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The value of this parameter at approximately 1 indicates
a critical state of the system, while values above or below 1
indicate the super- or subcritical states, respectively.

2.3.5. Calculation of the Branching Parameter (o). The
branching parameter ¢ is defined as the average number of
subsequent events triggered by a single preceding event in
an avalanche [34]. Thus, it was first calculated by averaging
the ratio of the numbers of events in the second bin of
an avalanche to the number of events in the first bin
and then averaging all avalanches of a subject’s time series:

1 Ii 2nd bin of k'th avalanche

Nu i events (lst bin of k'th avalanche)

(3)

o=

where N is the total number of cascades in the time series
and # is the number of the events in a certain time bin.
For the single-bin cascades, the branching parameter is
equal to 0. Therefore, the branching parameter of each
cascade can vary over a wide range and the number of
the cascades must be at least 700 in this study.

2.4. Long-Term Timescales of Critical Dynamics: LRTC

2.4.1. LRTC Based on EEG Data. Detrended fluctuation
analysis was used to calculate the Hurst exponent of LRTC
[37, 38]. The EEG data were bandpass filtered (finite
impulse response filter) to the delta (1-4Hz), theta (4-
8Hz), alpha (8-12Hz), beta (12-25Hz), and gamma
(25-100 Hz) bands using a filter order of 2/minimum fre-
quency of the band. Given a consecutive time series y(t),
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FIGURE 1: Definition and evaluation of events and avalanches in the three groups. (a) An example showing a 60-second span of EEG
amplitude data from a subject and the corresponding mean frequency. (b) Segmenting data with four avalanches as examples. A
cascade was defined as continuous events as time bins end with no-event time bins. The number of events in the avalanche defined
the avalanche size. The number of time bins was defined as the duration. The avalanche sizes in the figure were 3, 8, 9, and 5; the
durations were 2, 2, 3, and 1, respectively. (c—e) The probability density distribution (PDF) and cumulative probability density
distribution (CDF) of the avalanche size («) and duration (f) in the EC state for each of the three groups.

the first step was to subtract the mean signal and obtain
the cumulative sum of the signal:

x(t)= Y (k) = (), (4)

where <, > denotes the time average. Then, the signal was
divided into a set of time windows W of the same length
L with 50% overlap. For each window in W, the linear
trend was removed using the least-squares method. Then,
we computed the average root-mean-square fluctuation,
F(L), of all the time windows in W with an identical
length L. The time window length was logarithmically
spaced with a lower bound of 4 samples and an upper
bound of 10% of the signal length [38]. According to
our timescale in this work, we used 29 different window
lengths L ranging from 100 samples to 10000 samples
(0.1~10s). The Hurst exponent H was defined as the
coefficient of the linear regression of the sequence {R(#n)/
S(n)} plotted on a log-log scale. For a scale-free signal F
(L) oc L, in the case of 0<H <1, the time series was
correlated. When H ranged from 0.5 to 1, the signal was
considered to exhibit positive autocorrelation, while H =
0.5 indicated an uncorrelated signal.

2.4.2. LRTC Based on fMRI Data. The voxel-wise Hurst
exponent was adopted to evaluate the LRTC of fMRI data
through the classical rescaled range (R/S) analysis [39].
The BOLD signal time series was divided into multiple
shorter time series (length, 7). The number of subtime series
was M, and N = M x n was the length of the full-time series.
For the subtime series of length n, X, = {X,,,1, X, ***» X, |»

where m=1,2,3,---, M, we calculated the rescaled range
R(n)/S(n):

R(n) 1 &R,
S(n) Mﬂ;l Smn’ ©)

The R, is the difference between the extremes of sub-
time series X,,. Cd (Xm) is the cumulative deviation from
i to k of the subtime series:

k
Cd(X,,) = Z(Xmi -X,), (6)

1

where 1<k<mn. R,, is the difference between the maxi-
mum and minimum of Cd (X,,) and minimum:

k k
R,, = [max Y (X~ X,,) - min Y (X, - X,,) |-

1<k<n Py 1<k<n Pt

The S, is the standard deviation of subtime series X,,:

S = 1 /%Z (X~ X, (8)

Calculating all the subtime series, we obtained the
sequence {R(n)/S(n)} corresponding to the sequence {n},
where n was all the possible values of the subtime series
length.

2.5. Statistical Analysis. For EEG data analysis, one-way
ANOVA was used and all the pairwise comparisons were
assessed using Tukey-Kramer’s multiple comparison
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TaBLE 1: Demographic features of the 3 groups.

Index Hyvp Tymp Controls FIy* value (p value)

fMRI cohort

Subjects, n 16 25 /

Age (years) 4231+7.87 4041 +£9.71 413241138 0.815 (0.309)

Male (%) 6 (37.5) 16 (47.1) 12 (48.0) 0.509 (0.775)

Education (years) 9.06 +5.13 9.38 £3.99 8.96 +4.37 0.729 (0.694)

MMSE 22.75+4.86 25.44 +3.82 28.2+1.71 22.076 (<0.001)

EEG cohort

Subjects, n 11 21 /

Age (years) 40.91 +9.58 41.23 +14.60 43.38+£9.06 0.326 (0.858)

Male (%) 4(36.4) 5 (38.5) 12 (57.1) 2.057 (0.357)

Education (years) 8.84+2.60 8.72+2.45 8.33+2.39 0.408 (0.815)

MMSE 24.92+1.44 24.82+1.17 25.16 £2.39 2.305 (0.316)

WM accuracy 0.773 £0.217 0.759 + 0.150 0.827 £ 0.146 0.670 (0.7165)

Hyp: hemorrhagic moyamoya disease; Iyjp: ischemic moyamoya disease; MMSE: Mini-Mental State Examination.

method. For fMRI data analysis, one-sample ¢-tests were first
performed on individual Hurst exponent maps for each
group in a voxel-wise manner and to explore the within-
group LRTC patterns using Rest version 1.8 (Z>3.48 for
voxel-wise p <0.001 and cluster-wise p <0.05, corrected
through Gaussian random field theory) [40]. Afterwards,
the averaged whole-brain Hurst exponent values were gener-
ated and compared among the three groups using the one-
way ANOVA. Then, two-sample t-tests were performed
between each pair of subgroups on individual Hurst expo-
nent maps (Z > 3.29 for voxel-wise p <0.001 and cluster-
wise p < 0.05).

3. Results

3.1. Clinical Information. Table 1 shows the clinical informa-
tion of the involved subjects. The demographic differences
among the three groups were not significant (p > 0.05). How-
ever, the mean MMSE score of the healthy controls was sig-
nificantly higher than that of the patient groups (p < 0.001).
Among the subjects who were selected for the EEG analysis,
differences of the demographics and cognitive and task per-
formances among the three groups were not significant
(p>0.05).

3.2. Faded Critical Dynamics of Neuronal Avalanches

3.2.1. Cascade Size () and Duration (). Figure 2 indicates
that the three groups exhibited significant differences in both
a (EC, F=14.11, p=2.6 x107>; EO, F=68.06, p=2.75x
10713; and WM, F=5.07, p=0.0115) and 3 (EC, F=9.88,
p=0.0004; EO, F=10.37, p=0.0003; and WM, F=5.08,
p=0.0114). In the subgroup analysis, Hyyp and Iynp
exhibited significant differences in « in the EO
(@ =1.51+0.01, a;=1.47+0.005, p=1.03x10") and
WM (@, =1.48+0.01, & =1.42+0.01, p=0.0082) states

and in f3 in the WM state (8, = 1.90 + 0.04, 3, = 1.77 + 0.03,
p =0.0088). The control and I, groups showed significant
differences in both « (2, =2.08+0.02, &; =1.68 £ 0.02, p =
3.35x107°) and B (B =2.08+0.02, f;=2.31+0.04, p=
5.23x107*) in the EC state. Additionally, the control and
Hywp groups exhibited significant differences in « in both
the EC (&, =2.08 £0.02, &y =1.63 £0.02, p=0.0059) and
EO (a-=1.46+0.007,a;=1.51+0.01, p=9.57x107'7)
states and in B in the EO state (B.=1.85+0.01,
B =2.00+0.04,p=1.53x107").

3.2.2. Deviations from Criticality with x and the Branching
Parameter of 0. The three groups exhibited significant differ-
ences in both x (EC, F = 15.51,p=1.18 x 107> EO, F = 66.34
,p=4.02x 10", and WM, F =5.85, p =0.0063) and o (EC,
F=23.01, p=2.84x107; EO, F=11.35, p=0.0001; and
WM, F=5.33, p=0.0094) in all three states. H,;,, and
Iyvp showed significant differences in x in the EO
(k= 0.97 +0.006, % =0.99+0.003, p=1.26x10°) and
WM (% =0.99 £0.007, ; =1.03 £ 0.008, p =0.0044) states
and in o in the WM state (0y=1.14+0.045,
0;=1.32+0.04, p=0.0027). The control and I, groups
showed significant differences in both x (k- =0.95+0.004,
% =0.91+0.005, p=2.03x107°) and ¢ (G.=0.96+0.21,
6;=0.70 £ 0.005, p=1.43 x 107°) in the EC state. Addition-
ally, the control and H;, showed significant differences in
x in both the EC (k. = 0.95 + 0.004, k; = 0.93 % 0.006, p =
0.0022) and EO (k,=1.01+0.004, kg =0.97+0.006,
p=9.57x10""%) statess and in o in both the EC
(60=0.96+0.21, 6;; =0.74 £ 0.03, p=4.42x 10°) and EO
(60=1.1940.02, 5;;=1.04+0.02, p=1.13x107%) states.
The results kept the same tendency when utilizing a different
parameter to calculate.

3.2.3. State Transition. The three groups exhibited a simi-
lar transition tendency between different states in all
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Ficurk 2: Differences in critical dynamics among the three groups in both the resting and working memory states. Rows (a-c) show the
differences in neuronal avalanches among the three groups in the EC, EO, and WM states, respectively. Row (d) exhibits how critical
dynamics transfer from different states in the three groups. * indicates p < 0.05, while * * indicates p < 0.01.

parameters (Figure 2(d)). For example, considering «, both
subtypes of MMD presented with larger values than con-
trols in the EC state, implying a subcritical state. Similarly,
MMD exhibited less activity than controls when switching
to the EO state. Interestingly, when changing into the WM
state, the Hy,p group remained inactive but the Iy,
group exhibited supercritical dynamics that were even
more active than those of the controls.

3.3. Faded Critical Dynamics of LRTC

3.3.1. LRTC Based on EEG Data. The alpha band signal was
taken for Hurst exponent analysis. Figure 3(a) indicates that
the amplitude envelopes of the MMD groups were more
analogous to the random noise than the control amplitude
envelope was (the EC state, with a central-parietal channel
as an example). The averaged Hurst exponents of the
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F1GURE 3: Hurst exponent mapping of the three groups with reference to the alpha band signal. In order to characterize the EEG amplitude
dynamics of alpha oscillation, the data were bandpass filtered from 8 to 13 Hz and the amplitude envelope of the oscillations was extracted
using the Hilbert transform. (a) Shows the amplitude envelope of the three groups in the EC state. The controls exhibit a regular
oscillation, while the patients tend to present with a more random and rapidly changing amplitude. (b) Shows the fluctuation function of
different time bin lengths from 1 to 10 seconds; the slope is defined as the Hurst exponent and represents the long-range temporal
correlation. Regarding the slope, the white noise is equal to 0.5, while the controls reached 0.87. (c) The Hurst exponents of the three
groups were mapped in the resting and WM states and are presented in rows 1 to 3. (d) The channels marked with red circles are those
that show significant differences among the three groups in the EC, EO, and WM states, respectively. (e) The mean Hurst exponent value
of the generated channels in Figure 3(d) was calculated and compared among the three groups. * indicates p < 0.05.

Hyvp and Iyp groups were approximately 0.63 and 0.70,
respectively, while that of the controls was 0.87 (Figure 3(b)).

The Hurst exponents of all the recording channels were
calculated and mapped in Figure 3(c). Then, channels with
significant differences in Hurst exponents among the three
groups were mapped (Figure 3(d), Supplementary Table S1,
ANOVA, p <0.05). Afterwards, the mean Hurst exponent
value of the generated channels was calculated and
compared among the three groups (Figure 3(e)). In the EC
state, the control group exhibited significantly higher values
(H-=0.85+0.02) in these channels than either Hypp
(Hy =0.78 £0.02, p=0.0089) or Iyyp (H;=0.76+0.02,
p=0.005). In the EO state, more channels presented a
significant group difference and the I, showed a
significantly higher value (H;=0.76+0.01) than the
controls (H.=0.66 +0.02) in these channels (p =0.0062).
Furthermore, even more channels showed significant
group differences in Hurst exponents in the WM state
and the controls showed significantly lower values (H =
0.66 +0.02) than the Hypp group (Hy, =0.76 £0.02, p=
0.0019) or the I ;p group (H;=0.74 +0.02, p =0.0080).

When switching from the EC to EO state, 18 channels
had significant Hurst exponent changes in the I p group
compared to the control group (Figures 4(a), p < 0.05). Inter-
estingly, the Hurst exponents of these 18 channels all
decreased in the controls, while the I, group exhibited a

chaotic pattern of change in these channels. In comparison,
only 4 channels showed significant changes in the Hyp
group compared to controls (Figure 4(b), p < 0.05). Similarly,
the Hurst exponents of these 4 channels all decreased in the
controls, while the Hy, also showed a chaotic changing
pattern in these channels. When switching from the EC to
WM state, 27 channels in the I,p and 28 channels in the
Hyp showed significant changes in their Hurst exponents
compared to those in the controls (Figures 4(c) and 4(d), p
< 0.05). Similarly, all these channels exhibited a large decline
in Hurst exponents in the controls, while presenting with no
regular pattern of change in either I, or Hypyp-

3.3.2. LRTC Based on fMRI Data. The Hurst exponent pat-
terns of the three groups are presented in Figures 5(a)-5(c).
Visual inspection indicated that in all three groups, the bilat-
eral orbital frontal gyrus (OFG) and left precuneus (PCu)
exhibited high values, while the bilateral fusiform gyrus
(FFQG), left inferior temporal gyrus(ITG), and left insular gyri
(IG) showed low values. In addition, the bilateral supplemen-
tal motor area (SMA), precentral gyrus (PreCG), and post-
central (PoCG) gyrus of the controls; the left medial
superior frontal gyrus (SFGmed) and right PCu of Hy,p
patients; and the bilateral SFGmed, dorsolateral prefrontal
gyrus (DLPFC), SMA, and right PCu of Iy patients all
exhibited high values. In addition, the bilateral caudate
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FiGure 4: Comparison of long-range temporal correlation between controls and subtypes of MMD separately under state transition.
Channels showing significant differences between controls and moyamoya subtypes in Hurst exponent changes during state transition are
marked in red in the upper panel and listed in the lower panel. I: I p; H: Hypp; DFA: detrended fluctuation analysis.
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F1GURE 5: Long-range temporal correlation patterns of the three groups. The Hurst exponent patterns of the controls (a), Hygp (b), and Inpyp
(c) are presented. The statistical threshold was set at Z > 3.48 for voxel-wise p < 0.0005. ANOV A was used to detect the difference in the mean
Hurst exponent value among the three groups (d). R: right; L: left; P: posterior; A: anterior. * indicates a significant difference in subgroup

analysis.

nucleus (CN), hippocampus (HIP), parahippocampal gyrus
(PHG), and thalamus (THA) of both controls and Iy
showed low values. Similar to the EEG results in the EC
state (Figure 3(e)), the controls exhibited the highest mean
Hurst exponent value among the three groups (Figure 5(d),
ANOVA, F=3.397, p=0.038), showing as controls (0.786
+0.018) > Iy (0.779 +0.016) > Hypyp (0.774 +0.011).
Compared with controls, significant decreases in the
Hurst exponent in the Hy;, group were found in the left
SMA, left DLPFC, left PCu, left superior parietal gyrus
(SPQ), and left middle occipital gyrus (MOG). Afterwards,
significant decreases in the Iy, group compared to con-
trols were found in the bilateral DLPFC, left SMA, right
PreCG, right PoCG, and right ITG. No regions in MMD
exhibited significantly higher Hurst exponent values than
the controls. In addition, the left PreCG exhibited a signif-
icantly lower value in H,yp than in I, but no region

showed a significant difference in the opposite direction
(Figure 6, Table 2).

Since head micromovements could introduce artefac-
tual interindividual differences in resting-state fMRI met-
rics [41, 42], we also measured the difference of head
motion among the three groups. Although the I;p
exhibited the highest FD (Welch’s ANOVA, p =0.045, Sup-
plementary Figure S5), the mean Hurst exponent was not
correlated significantly with mean FD across participants
(p>0.05, Supplementary Figure S6). The impact of head
motion on the group-level differences was then tested by
adding mean FD as a covariate, and results confirmed that
head motion was not responsible for the differences among
the three groups (Supplementary Figure S7 and Table S2).

3.3.3. LRTC Colocalization Patterns Based on EEG and fMRI
Data in the EC State. The EEG channel placement was



12 Oxidative Medicine and Cellular Longevity

Hyp V8- control Z value

Iyymp Vs- control

AY MY
) (#%)|

mmp V8- Tyivp Z value
4.0

FIGURE 6: Regional LRTC differences among the three groups. The control group exhibited significantly higher Hurst exponent values than
the Hyyp (a) and Iyyp groups (b) in regions with light-colored markers. The Iy, showed significantly higher values than the I, (c) in
regions with light-colored markers. The statistical threshold was set at z > 3.29 for a voxel-wise p threshold of 0.001.

TaBLE 2: Regional LRTC differences between each pair of the three groups.

MNI coordinates (mm)

Brain regions BA Vol (mm®) x y z Maximum Z
Hypp Vs controls

Left MOG 19/39/37 783 =30 -75 24 4.627
Left SMA 6 567 -12 -6 78 4.533
Left PCu 715 324 -15 -63 63 4.389
Left SPG 5/7 405 -18 -63 63 4.402
Left DLPFC 6 918 -15 -3 78 4311
Iyup Vs controls

Left DLPFC 6 675 -18 -6 78 5.058
Left SMA 6 459 -12 0 78 4.808
Right PoCG 4/3 540 15 =30 75 4.606
Right DLPFC 6/8 972 33 0 63 4.458
Right ITG 19/37 702 48 -69 -6 4.232
Right PreCG 4/6 405 15 =27 75 4.137

Hyivp V8 Ivvp
Left PreCG 6 540 =51 3 27 4.156
The x, y, and z coordinates represent the primary peak location in the MNI space. BA: Brodmann’s area; SMA: supplementary motor area; DLPFC: dorsolateral

prefrontal gyrus; MNI: Montreal Neurological Institute; MOG: middle occipital gyrus; PCu: precuneus; SPG: superior parietal gyrus; PoCG: postcentral gyrus;
ITG: inferior temporal gyrus; PreCG: precentral gyrus.
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FIGURE 7: Neuroanatomical visualization showing the LRTC pattern colocalization on EEG and fMRI in MMD as compared to controls. The
EEG channel positions with significantly different Hurst exponents between MMD subtypes and controls are projected onto a Brodmann’s
area template based on a published atlas. For Hy;, (a), only the left BA6 overlapped with the voxel-wise fMRI pattern. For I,y (b),
only the right BA4, right BA6, and right BA19 overlapped with the fMRI pattern. The EEG channel positions are marked in orange, the
fMRI positions are marked in blue, and the overlapping areas are marked in yellow. BA: Brodmann’s area; R: right; L: left.

projected onto the cortical surface and converted to the
Talairach Stereotactic System based on a published Brod-
mann’s area (BA) atlas [43]. Afterwards, we assessed the
colocalization of regions with LRTC abnormities based
on EEG data and fMRI data in the EC state. Compared
to controls, regions with a significant Hurst exponent

decrease in the Hyyp group based on overlapping data
were found in the left SMA (BA6, Figure 7(a)). In addi-
tion, regions with a significant decrease in the Iy, group
based on overlapping data compared to controls were
found in the right PreCG and PoCG (BA4 and BA6)
and right ITG (BA19, Figure 7(b)).
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4. Discussion

The criticality theory provides a novel insight into the neuro-
nal dynamics underlying brain disorders. This study was the
first to apply multiscale critical dynamics analysis to examine
multimodal dynamical features in two moyamoya subtypes
as compared to healthy controls. The neuronal avalanches
on both fast and slow timescales were analyzed during rest
and task performance, and several critical EEG features were
derived. Both hemorrhagic and ischemic MMD exhibited
particularly low EEG frequency activity and distinct subcrit-
ical dynamics, which could be distinguished easily from those
of healthy controls. In addition, the decreased long-term
correlations revealed in both high temporal (EEG) and spa-
tial (fMRI) resolution were observed to reflect distinct neuro-
physiological processes associated with abnormal vascular
network patterns in hemorrhagic and ischemic brains.
Besides, this study provided clues for further rapid differen-
tial diagnosis between acute stroke and hemorrhage at the
very early phase by use of EEG instead of CT and MR, which
had greater advantages of rapidness, convenience, low cost,
and radiation safe. Undoubtedly, time is the brain in treat-
ment of acute ischemic stroke [44].

Previous investigations have suggested that the healthy
brain in the resting state is usually characterized by well-
balanced excitatory and inhibitory synaptic activities. These
balanced levels of excitation and inhibition drive irregular
spontaneous firing activities that exhibit scale-free avalanche
distributions in the brain. Such a scale-free state can be effec-
tively described by criticality [13]. Any input stimulus could
effectively drive the brain into a supercritical state with addi-
tional excitatory activity, while relaxed low-signal states such
as sleep can slow down the activity of the brain and shift it
into a subcritical state. We noted that both subtypes of
MMD exhibited subcritical states in the EC state and these
suppressed dynamics prevented adaptive switching of brain
function from introspective to extrospective states. This phe-
nomenon might result from serious metabolic decrease and
low neural activity rates caused by the chronic steno-
occlusive angiopathy of MMD.

When switched to the EO state, both healthy controls
and MMD presented with more neural activity and the
MMD group remained less active than the controls. How-
ever, the ischemic moyamoya brains demonstrate stronger
neural activities than hemorrhagic ones in the EO state.
When switched to the WM state, all three groups exhib-
ited more neural activities than that in the EO state, as
was expected. Interestingly, the ischemic subtype surpassed
the controls, while the hemorrhagic subtype still remained
the least active. All parameters of neuronal avalanches
exhibited similar results and were mutually verified. For
healthy subjects, this phenomenon is reasonable because
working memory is a behavioral state and requires effec-
tive neuronal activity to accomplish tasks [45]. However,
we note that patients with ischemic MMD need to main-
tain a supercritical status to achieve similar scores to
patients with hemorrhagic MMD and healthy subjects in
certain WM tasks. In addition, these EEG features of neu-
ronal avalanches during tasks may provide valuable clues
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for understanding the different neurophysiological pro-
cesses of Iy and Hypp-

For healthy brains in the EC state, spatially distributed
neuronal activity may oscillate in phase with each other and
result in high LRTC values [46-48]. Compared with controls,
the MMD group exhibited a reduced LRTC value close to 0.5
in the EC state, implying less correlated and more random
brain activity. When subjects switched to EO and WM states,
however, the LRTC value decreased sharply in the controls
but both the Iy and Hyyp groups remained chaotic.
The controls exhibited the lowest LRTC value in both the
EO and WM states. In addition, spatial patterns of LRTC dif-
ferences among the three groups were mapped based on EEG
channels in both resting and WM states and under state tran-
sition. The healthy brain breaks the overall non-task-related
dynamic balance into a set of subnetworks, such as the
default-mode network, to deal with input signals effectively
during state transition [49, 50]. However, the abnormal
LRTC values and distribution of MMD in this study imply
a completely different breakdown process for long-range
neuronal fluctuations.

To further locate the regions with significant LRTC
abnormities in MMD, we also examined BOLD fluctuations
on fMRI due to the high spatial resolution of this modality.
The results indicate that in the EC state, the patterns of the
LRTC decreases in the two moyamoya subtypes are mutually
independent but overlap in the left DLPFC of the executive
control network and the left SMA of the salience network.
Nevertheless, all regions of these patterns are key nodes
involved in planning or direct control of movement, lan-
guage, and visual information [51]. Referring to the patho-
physiological nature of MMD, chronic stenosis/occlusion of
the anterior circulation (bilateral internal carotid arteries
and their main branches) is often followed by the collaterals
from bilateral external carotid arteries and posterior circula-
tion (bilateral vertebrobasilar arteries). Thus, the mismatch
of the anterior circulation degradation and collateral devel-
opment often results in a seemingly random and individual-
ized cerebral hypoperfusion [7, 27, 52]. However, previous
fMRI studies of MMD all revealed that patterns of functional
deterioration are not random and key nodes of brain network
such as the DLPFC, left SMA, are always involved [3, 4, 26,
28, 53]. Thus, this paper provides a crucial evidence that to
output a similar extent of cognitive impairment, the neuro-
physiological processes of the two moyamoya subtypes may
be mutually independent but overlap in some key nodes of
the brain networks. Furthermore, we wondered whether
there were potential links between spatial delay and temporal
decay of neuronal oscillations in MMD and we attempted to
trace their anatomical basis through both EEG and fMRI in
the EC state. The identified regions are believed to play key
roles in the neurophysiological processes of cognitive impair-
ment in both ischemic and hemorrhagic MMD.

This study has several limitations that must be addressed.
First, the EEG and fMRI data were not acquired at the same
time. In order to generate a more stable and reliable result,
the simultaneous EEG-fMRI technology should be used in
tuture studies. Second, the study is based on a small sample
size because completing EEG tasks is difficult for moyamoya
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patients with executive dysfunction. More patients are in
need not only to increase the statistical power but to involve
patients with Suzuki grading I-II and V-VI so as to obtain
more knowledge of disease progression. Nevertheless, this
study is the first of its kind to characterize the variability of
brain dynamics in MMD on both short-term and long-term
timescales and to show different neurophysiological features
of its hemorrhagic and ischemic subtypes.
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Supplementary Materials

Figure S1: the schematic instruction of the process of EEG
data. EEG data was preprocessed and then transferred to
mean frequency data to extract the cascade through event
detection. The cascade size and duration were qualified to
provide critical information used for clinical diagnosis. The
artifact-free data was also bandpass filtered to measure the
long-range temporal correlation altered in the patients. Fig-
ure S2: the EEG recording procedure. The EEG recording
was started with a 5-minute eyes-closed (EC), a 5-minute
eyes-open (EO) resting state, and then 30 trials of a
delayed-response working memory (WM) task for around
20 minutes and ended with a procedure composed of a 5-
minute EC and a 5-minute EO resting state to examine the
consistency of the data recording quality. Figure S3: abnor-
mal functional network connectivity mode of the three
groups (alpha band). WM: working memory. Figure S4: Dif-
ference of dynamic (left) and static (right) mean frequencies
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with nonoverlapping 10 seconds’ epoch of EEG data among
the three groups of hemorrhagic MMD, ischemic MMD,
and healthy control in the resting and working memory
states. Figure S5: differences of head motion among the three
groups. The mean framewise displacement (FD) derived
from Jenkinson’s relative root mean square (RMS) algorithm
[32] was used to measure the extent of head motion. The
Iyvp groups exhibited the highest FD (Welch’s ANOVA,
p=0.045): (I ypp(0.064 +0.035) > control(0.057 £ 0.017)
> Hyvp(0.0478 £0.014)).  Figure S6: the correlation
between head motion and Hurst exponent. Red lines indi-
cate the linear fit. Figure S7: between-group difference of
LRTC maps with the consideration of head motion effects.
A, the z-statistical difference maps of LRTC between the
healthy and hemorrhagic MMD groups; the positive value
is termed as the stronger effect in controls. The statistical
threshold is set as z>3.29 for a voxel-wise p threshold
of 0.001; the minimum cluster size for a voxel p threshold
of 0.001 and cluster p threshold of 0.05 is 24 voxels. B, the
z-statistical difference maps of LRTC between the healthy
and ischemic MMD groups; the positive value means a
stronger effect in controls. The statistical threshold is set
at z>3.29 for a voxel-wise p threshold of 0.001; the min-
imum cluster size for a voxel p threshold of 0.001 and
cluster p threshold of 0.05 is 21 voxels. C, the z-statisti-
cal difference maps of LRTC between the ischemic and
hemorrhagic MMD groups; the positive value indicates a
stronger effect in ischemic MMD. The statistical threshold
is set at z>2.97 for a voxel-wise p threshold of 0.003; the
minimum cluster size for a voxel p threshold of 0.001 and
a cluster p threshold of 0.05 is 29 voxels. R: right; L: left.
Table S1: channels with significant difference of Hurst
exponent among the three groups in all three states. Table
S2: comparison of brain regions with significant difference
in LRTC among groups with and without framewise dis-
placement covariate. (Supplementary Materials)
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