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High-fat diet (HFD) consumption can trigger chronic inflammation in some tissues.
However, it remains unclear if HFD induces chronic inflammation in the spleen. This
investigation aims to address the effect of HFD consumption and exercise intervention on
the level of tumor necrosis factor alpha (TNF-a) in the spleen. Rats were subjected to HFD
feeding and/or moderate-intensity treadmill running. The TNF-a levels in plasma and
spleen were detected by ELISA. The mass and total cell numbers of the spleen were
measured. In addition, the expression of TNF-a and its relevant gene mRNAs in
macrophages from the spleen were analyzed by qRT-PCR. We found that HFD
consumption did not significantly affect the mass and total cell numbers of the spleen.
However, HFD consumption significantly increased splenic TNF-a level, the expression of
TNF-a, toll-like receptor 4, and nuclear factor kB p65 mRNAs. In contrast, the expression
of nicotinic acetylcholine receptor alpha 7 subunit (a7nAChR) mRNA in macrophages was
downregulated. Additionally, exercise abolished the increase in splenic TNF-a level as well
as the abnormal expression of TNF-a and related gene mRNAs in macrophages in HFD-
fed rats. In conclusion, our results reveal that HFD consumption increases TNF-a level in
the spleen, which is along with upregulation of the expression of TLR4 and NF-kBmRNAs
as well as downregulation of the expression of a7nAChR mRNA in splenic macrophages
in rats. Exercise abolished detrimental effects of HFD on TNF-a level in the spleen and
prevented abnormal expression of these genes in the macrophages from rat spleen.

Keywords: high-fat diet, exercise, tumor necrosis factor alpha, spleen, inflammation
INTRODUCTION

Excessive consumption of a high-fat diet (HFD) has been well-known to contribute to the onset or
development of some metabolic diseases, including obesity, type 2 diabetes mellitus, and insulin
resistances (1). The mechanism responsible for detrimental effects of HFD has been studied
extensively and appears to be more complex than explanation of energy imbalance (2). Recent
studies highlight a crucial role of chronic low-grade inflammatory process in HFD-induced adverse
effects (3). It has been shown that HFD consumption not only triggers chronic low-grade
inflammation in multiple tissues, including the intestine, liver, adipose tissue, skeletal muscle,
and hypothalamus, but also alters homeostasis in these tissues (3).
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The spleen is an important immune organ where most of
immune responses initiate and is responsible for the production
of most of inflammatory cytokines in rodents and humans (4). In
addition, the spleen preserves an anti-inflammatory immune
environment and is involved in the modulation of immune
balance (4). In the context of lipopolysaccharide-induced
endotoxemia, the spleen releases newly synthesized tumor
necrosis factor alpha (TNF-a) into the liver via splenic vein; and
from there, it enters into systemic circulation, and it is also the
primary source of systemic TNF-a in endotoxemia (5). TNF-a is a
vital cytokine, which can generate many deleterious effects, such as
inducing other pro-inflammatory cytokines and promoting
macrophage infiltration (5). However, in the context of excessive
consumption of HFD, it is not clear whether HFD triggers TNF-a
increase in the spleen. Given that both endotoxin lipopolysaccharide
and fatty acids target common receptor [toll-like receptor 4 (TLR4)]
(6, 7), we reason that excessive consumption of HFD may promote
TNF-a production in the spleen. Therefore, this investigation aims
to analyze the effect of HFD consumption on TNF-a level in the
plasma and the spleen. Because physical exercise can reduce low-
grade inflammation and prevent or improve obesity, diabetes, and
dyslipidemia (8), we also evaluate the role of exercise intervention in
this process. The results achieved may shed new light on the
management of HFD consumption-associated diseases.
MATERIALS AND METHODS

Animal and Protocols
Male Sprague–Dawley rats weighting 200 ± 10g (Huafukang Co.,
Peking, China) were used in this study. The rats were housed in
individual plastic cages with free access to water under the
environment with constant temperature (23°C ± 2°C), humidity
(45%–55%), and 12-h light/dark cycle. Animal studies were
approved by the Animal Utilization Committee of Sport Hospital
Affiliated to Chengdu Sport University and conducted under NIH
Guidance for the Care and Use of Laboratory Animals.

Rats were divided into four groups: HFD group (n = 8),
HFD+exercise group (n = 8), standard diet control group (n = 8),
and standard diet+exercise group (n = 8). HFD and standard diet
control groups were randomly assigned except for the exercise
groups. Random numbers were generated using a computer-
based random-order generator. Exercise groups were chosen
basing on whether rats are adaptable to treadmill running. Rats
in the HFD and HFD with exercise groups were provided with an
HFD (60% kcal fat; Huafukang Co., Peking, China), while the
rats in the control group and standard diet+exercise group were
provided with standard laboratory chow (17% kcal fat;
Huafukang Co., Peking, China) for 4 weeks. Exercise-trained
groups (HFD+exercise group and standard diet+exercise group)
underwent treadmill running exercise during HFD feeding (4
weeks). Rats that died, that did not finish exercise, or with data
outliers were excluded. After 4 weeks, body weight of rats in each
group was measured, and blood samples were collected from the
retro-orbital sinuses into Eppendorf tubes containing EDTA,
and plasma was prepared and frozen at −80°C. Then, the rats
were sacrificed by decapitation, and the spleen tissue was taken
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and weighed after blotting dry with filter paper. Splenocytes and
splenic macrophages were isolated.

Exercise Regimen
Treadmill running was utilized for exercise intervention. To
identify which rats were enrolled in the exercised groups, all
rats were subjected to assimilation training for 2 weeks prior to
the start of the experiment. Assimilation training was conducted
for 30 min every time, twice a week, on a motorized treadmill,
starting with a 10-min running warm-up at the speed of 6 m/min,
followed by acceleration to 18m/min gradually. Rats adaptable to
treadmill running were chosen for the exercised group.

During exercise sessions, the exercise began with 10-min
warm-up at 6 m/min and then followed by a given running
that sets at 8 m/min. Then the speed was increased to 18 m/min
on a motorized five-lane treadmill at 0° incline for moderate-
intensity exercise. Running exercise was performed 30min/day,
5 days/week, for four consecutive weeks.

Splenocyte and Splenic Macrophage
Isolation
Splenocytes and macrophages were isolated from rats in each
group as described by Lahat (9). In brief, the whole spleen was
pressed with a syringe plunger through a 40-G stainless steel
screen in Roswell Park Memorial Institute (RPMI) 1640 culture
medium (HyClone, Logan, USA). The cell suspension was
centrifuged at 1,000g for 5 min at 4°C. Erythrocytes were lysed
with distilled water to obtain splenocytes. Then, the splenocytes
were washed and were suspended in RPMI 1640 medium. The
cell number was counted using a hemocytometer. Subsequently,
107 cells were cultured in RPMI 1640 medium, supplemented
with 20% heat-inactivated fetal calf serum (Gibco, USA),
penicillin, and streptomycin (Biological Industries, Israel) for
90 min. Non-adherent cells were removed, and the adherent cells
were centrifuged and harvested to obtain a macrophage-rich cell
preparation. The enrichment of macrophages was examined by
fluorescence-activated cell sorting (FACS) using Flow Cytometer
(BD Fortessa; BD Biosciences, San Jose, CA, USA) and FlowJo
software (FlowJo, Ashland, OR, USA) after macrophages were
labeled with fluorescein isothiocyanate (FITC)-anti-rat CD11b/c
monoclonal antibody (OX42; BD PharMingen, San Diego, CA,
USA). Results are presented as mean of fluorescence intensity.

ELISA Analysis
TNF-a level was measured using a commercially available
enzyme-linked immunosorbent assay kit (Lianke, Hangzhou,
China) following the manufacturer’s instructions. Protein
concentrations were quantified using bicinchoninic acid
protein assay kit (MLBIO Biotechnology Co. Shanghai, China).

Quantitative Real-Time PCR
For gene expression analysis, total RNA from splenic macrophages
was extracted using TRIzol (Solarbio Co., Beijing, China) according
to manufacturer’s instructions. RNA concentration and purity were
examined by an ultraviolet spectrophotometer. cDNAs were
synthesized with a cDNA synthesis kit (Solarbio Co., Beijing,
China). The mRNA levels of TNF-a, TLR4, nuclear factor kB
December 2021 | Volume 12 | Article 671167
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p65, nicotinic acetylcholine receptor alpha 7 subunit (a7nAChR),
and b-actin were measured using a SYBR Green PCRmix (Solarbio
Co., Beijing, China) on an Rotor-Gene Q (Qiagen, Germany). The
primer sequences were designed using Primer Express (version
2.0.0), and the primers were synthesized by Shanghai Generay
Biological Engineering Co., Ltd. All primer sequences are listed in
Table 1. The relative levels of target gene expression were calculated
using the Ct method and normalized to the expression of the
housekeeping gene b-actin.

Statistical Analysis
Data were expressed as mean ± SD. Data were analyzed by
Student’s t-tests of unpaired samples for the statistical difference
between groups or one-way analysis of variance (ANOVA)
followed by Tukey’s test for multiple groups using the
GraphPad Prism 5.0 software. p < 0.05 was regarded as a
statistically significant difference.
RESULTS

The Effect of HFD on Rat Body Weight,
Spleen Mass, and Splenic TNF-a Level
Prior to the experiment, the rats in the control and HFD groups
had similar body weights. Following consumption of HFD for 4
weeks, the rats in the HFD group had significant increase in body
weight compared with that in the control group (p = 0.0071)
(Figure 1A). Blood samples were collected to detect TNF-a level
by ELISA. Consistent with other studies (1), HFD-fed rats showed
higher TNF-a level in the plasma compared with standard chow-
fed control rats (p < 0.0001) (Figure 1B). Spleen was obtained
after rats were sacrificed. Spleen mass, total cell number,
macrophage enrichment, and TNF-a level in the spleen were
analyzed. Although the spleen mass and total spleen cell number
decreased in the HFD group, there is no statistical significance
compared with control groups (Figures 1C, D). Also, no
statistical difference in macrophage enrichment was detected in
these two groups (Figure 1E). However, the spleen TNF-a level
was significantly elevated in HFD-fed rats compared with the
control group (p < 0.0001) (Figure 1F).

The Effect of HFD on the Expression of
TNF-a and Its Relevant Genes in
Macrophages from the Spleen
Given that macrophages are a major source of TNF-a release in
the spleen (10), we isolated macrophages from the spleen to
further evaluate the expression of TNF-a by qRT-PCR. We
found that HFD consumption significantly increased the
Frontiers in Immunology | www.frontiersin.org 3
expression of TNF-a mRNA in splenic macrophages, and
significant difference in the level of TNF-a expression was
detected between HFD and control groups (p < 0.0001)
(Figure 2A), suggesting that HFD consumption results in low-
grade inflammation in the spleen.

It has been shown that TLR4 mediates free fatty acids and
lipopolysaccharide-associated inflammation and that nuclear
factor kB (NF-kB) is a pivotal signal molecule for TNF-a
production (11, 12). To understand the mechanism by which
HFD increases TNF-a expression, we analyzed the expression of
TLR4 and NF-kB p65 mRNA in splenic macrophages by qRT-
PCR. Consistent with the alteration of TNF-a mRNA, the
mRNA levels of TLR4 and NF-kB p65 were significantly
elevated in splenic macrophages from HFD rats, compared
with those from control rats (p < 0.0001; p < 0.0001)
(Figures 2B, C). This result suggests that HFD intake increases
TNF-a production through activating TLR4/NF-kB signaling
pathway in splenic macrophages.

Macrophages in the spleen also express a7nAChR, which is
an essential component in the vagus nerve-based cholinergic
anti-inflammation pathway (13). Upon activation, a7nAChR
suppresses TNF-a production and release in splenic
macrophages (14, 15). To further understand the effect of HFD
on TNF-a production, we analyzed the level of a7nAChR
mRNA in splenic macrophages by qRT-PCR. In contrast to the
change of TLR4 expression, we found that the level of a7nAChR
mRNA was significantly downregulated in splenic macrophages
from HFD-fed rats compared with control rats (p = 0.001)
(Figure 2D), suggesting the reduction of anti-inflammatory
capacity in the spleen in HFD-fed rats.

The Effect of Exercise Intervention on the
Expression of TNF-a and Its Relevant
Genes in Splenic Macrophages in
HFD-Fed Rats
To evaluate the effect of exercise on TNF-a level in the plasma
and the spleen, a group of rats was subjected to moderate-
intensity running exercise on treadmill during HFD feeding,
which was compared with the standard diet group with exercise
(SD+Ex) and the HFD group without exercise (HFD group).
After 4 weeks, body weight decreased in HFD rats with exercise
(HFD+Ex group), but it is not statistically significant compared
with the HFD group (Figure 3A). TNF-a level in the plasma was
measured by ELISA. We found that TNF-a levels in the plasma
reduced significantly in HFD+Ex group compared with the HFD
group (p < 0.0001) (Figure 3B). Interestingly, there was no
statistically significant difference for TNF-a levels between the
SD+Ex group and HFD+Ex group (Figure 3B).
December 2021 | Volume 12 | Article 671167
TABLE 1 | The sequences of primers used for qRT-PCR.

Target gene Forward Reverse

TNF-a GCCTCTTCTCATTCCTGCTT TGGGAACTTCTCATCCCTTTG
TLR4 CCGCTCTGGCATCATCTTCA CCCACTCGAGGTAGGTGTTTCTG
NF-kB GTGGGCAAGCACTGTGAGGA TCATCCGTGCTTCCAGTGTTTC
a7nAChR CTCATGGGAATCCCTGGCAAA GAGCCAGGGCTGAAATGAGT
b-Actin GGTGGGGCGCCC CAGGCACCA GCTCCTTAATGT CACGCACGA
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Next, we analyzed spleen mass, total spleen cell number,
macrophage enrichment, and splenic TNF-a level in the three
groups (HFD, HFD+Ex, and SD+Ex groups). The rats in the
HFD+Ex group showed increase in spleen mass and total spleen
cell number, but the difference was not significant compared with
that in the SD+Ex group (Figures 3C, D). No significant difference
in macrophage enrichment was noticed in the three groups
(Figure 3E). However, the splenic TNF-a levels decreased
significantly in the HFD+Ex group compared with the HFD
group, although no significant difference in splenic TNF-a levels
was detected between the HFD+Ex and SD+Ex groups (Figure 3F).

Finally, macrophages were isolated from the spleen to analyze
the expression of TNF-a, TLR4, NF-kB p65, and a7nAChR genes
by qRT-PCR. We found that there was a significant lower level of
Frontiers in Immunology | www.frontiersin.org 4
TNF-a mRNA in splenic macrophages in HFD+Ex group than in
the HFD group (p < 0.0001) (Figure 3G). Concomitantly, the levels
of TLR4 and NF-kB p65 mRNA were significantly downregulated
in the HFD+Ex group compared with the HFD group (p = 0.0003;
p < 0.0001) (Figures 3H, I); the expression of a7nAChR mRNA
was significantly elevated following exercise, and the difference was
statistically significant between the HFD+Ex and HFD groups
(p = 0.0027) (Figure 3J). However, between the SD+Ex group
and HFD+Ex group, no statistically significant difference was
detected for the expression of these genes in splenic macrophages.
These results indicate that moderate-intensity exercise inhibits
HFD-induced increase of TNF-a levels in system and the spleen
and prevents abnormal expression of TNF-a, TLR4, NF-kB, and
a7nAChR mRNAs in splenic macrophages.
A B

C D

E F

FIGURE 1 | The effect of high-fat diet (HFD) consumption on body weight, spleen mass, and tumor necrosis factor alpha (TNF-a) level in the spleen from rats. After
rats consumed HFD for 4 weeks, body weight, spleen mass, total spleen cell number, splenic macrophage enrichment, and TNF-a level in the plasma and the
spleen in control and HFD groups were analyzed. (A) Body weight; (B) TNF-a level in the plasma; (C) spleen mass; (D) total spleen cell number; (E) fluorescence-
activated cell sorting (FACS) histograms of splenic macrophages; and (F) TNF-a level in the spleen. Values are mean ± SD. n = 8. Data were analyzed by Student’s
t-tests of unpaired samples. *p < 0.05 vs. control.
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DISCUSSION

In the current study, we found that 4-week HFD consumption
significantly increased TNF-a level in rat spleen, which was
accompanied by upregulating the mRNA levels of TNF-a, TLR4,
and NF-kB p65, and by downregulating the mRNA of a7nAChR in
macrophages from rat spleen. This result suggests that the effect of
HFD on TNF-a level in the spleen may be attributed to impaired
balance of inflammation and anti-inflammation in the spleen.
Additionally, we demonstrated that moderate-intensity exercise
during HFD feeding abolished the detrimental effect of HFD on
TNF-a level in the spleen and prevented abnormal expression of
TNF-a and other relevant genes in splenic macrophages.

Previous studies have verified that HFD results in increased
expression or production of TNF-a in intestinal macrophages (16),
adipose tissuemacrophages (17),hypothalamicmicroglia (thecentral
nervous system counterpart of macrophages) (18), peritoneal
macrophages (19), and hepatic Kupffer cells (20). In the current
study, we found that 4-week HFD consumption significantly
increased TNF-a expression in splenic macrophages from rats. It
appears that elevated TNF-a expression in macrophages might play
an important role inHFD-associated increase in splenicTNF-a level.
Indeed, macrophage depletion has been shown to suppress the
infiltration of macrophages in some tissues and the production of
inflammatory cytokines (8). TNF-a ismainly released fromactivated
Frontiers in Immunology | www.frontiersin.org 5
macrophagesandcan trigger adeleterious signalingcascade to induce
the production of other pro-inflammatory cytokine (21), and the
increase of macrophage infiltration (22). Based on the crucial role of
TNF-a in chronic low-grade inflammation, it has been used as
markers to monitor the dynamic change of inflammation in
responses to high-fat meals and exercise (23).

In the current study, we also demonstrated significant increase
in plasma TNF-a in HFD rats. High levels of circulating TNF-a
are believed to lead to severe inflammatory response, metabolic
alteration, and insulin resistance (24, 25). In lipopolysaccharide-
induced endotoxemia, the spleen has been verified to be the major
source of circulating TNF-a (5). In the context of HFD feeding,
elevated circulating TNF-amay come from different tissues, such
as the spleen and white adipose tissue, because of a change in the
inflammatory profile in multiple tissues. The white adipose tissue
has been shown to release TNF-a and other inflammatory
mediators into the circulation (24).

We found that increased TNF-a level in the spleen is
accompanied with upregulation of TNF-a, TLR4, NF-kB mRNAs,
anddownregulationofa7nAChRmRNA.TLR4 isoneof the toll-like
receptors, a family of proteins playing a role in the innate immune
system, and is believed to be an important trigger of obesity-
associated inflammatory response (26). Saturated fatty acids and
lipopolysaccharides are agonists for TLR4, which can bind to and
activate TLR4 signaling pathways, subsequent transcription factor
A B

C D

FIGURE 2 | The effect of high-fat diet (HFD) consumption on the expression of TNF-a and the relevant genes in splenic macrophages. After HFD consumption for 4
weeks, macrophages were isolated from rat spleen. Then, the expression of tumor necrosis factor alpha (TNF-a) and its related genes was analyzed by qRT-PCR.
(A) TNF-a mRNA expression level; (B) toll-like receptor 4 (TLR4) mRNA expression level; (C) nuclear factor kB (NF-kB) p65 mRNA expression level; and (D) nicotinic
acetylcholine receptor alpha 7 subunit (a7nAChR) mRNA expression level. Values are mean ± SD. Data were analyzed by Student’s t-tests of unpaired samples.
*p < 0.05 vs. control.
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A B C

D E

H I J

F G

FIGURE 3 | The effect of exercise intervention on TNF-a in the spleen from rats with high-fat diet (HFD) feeding. Rats were subjected to moderate-intensity running
exercise during HFD feeding. After 4 weeks, body weight, spleen mass, total spleen cell number, and TNF-a level in the plasma and the spleen were measured in
HFD group with exercise (HFD+Ex group), HFD group without exercise (HFD group), and standard diet group with exercise (SD+Ex). Macrophages were isolated
from the spleen in rats from these groups to analyze the expression of TNF-a and its related genes by qRT-PCR. (A) Body weight; (B) TNF-a level in the plasma;
(C) spleen mass; (D) total spleen cell number; (E) fluorescence-activated cell sorting (FACS) histograms of splenic macrophages; (F) TNF-a level in the spleen;
(G) the expression level of TNF-a mRNA in splenic macrophages; (H) the expression level of TLR4 mRNA in splenic macrophages; (I) the expression of NF-kB p65
mRNA in splenic macrophages; and (J) the expression of a7nAChR mRNA in splenic macrophages. Values are mean ± SD. Data were analyzed by one-way
analysis of variance (ANOVA) followed by Tukey’s test. *p < 0.05 vs. HFD group.
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NF-kB, to lead to production of pro-inflammatory cytokines,
including TNF-a (26). a7nAChR was identified as a major
component of efferent vagus nerve-based cholinergic anti-
inflammatory pathway (13). This pathway is a predominant
modulatory circuitry in neural regulation of immunity and
inflammation, and it interacts with immune cells to modulate and
restrain chronic inflammation (27). Activation of this pathway
improves blood glucose, insulin resistance, and other obesity-
associated complications in mice fed with HFD (28). a7nAChR
activation suppresses pro-inflammatory cytokine production and
release by inhibition of NF-kB in splenic macrophages (14). In vitro,
antigen-stimulated spleen cells from a7nAChR-deficient mice
produce more TNF-a (29). In the current study, the upregulation
of TLR4 and NF-kB genes and downregulation of a7nAChR
expression by HFD consumption suggest it tips the balance of
TNF-a regulation in splenic macrophages. It also suggests that
inflammatory response increases but anti-inflammatory capacity
decreases in the spleen, which is in agreement with the notion that
disruption of immune homeostasis is a key aspect of low-grade
inflammation development (4). Specifically, reduction of anti-
inflammatory capacity in the spleen, as demonstrated by
downregulation of a7nAChR expression in macrophages, is likely
more critical for HFD-induced low-grade inflammation because
vagus nerve regulation of peripheral anti-inflammatory activity
mainly depends on the spleen (4).

It has been shown that HFD can result in splenic lesions, such as
histological changes, atrophy, splenocyte apoptosis, and lipotoxicity
(30, 31). In the current study,weobserved thatHFDdecreased spleen
mass and total spleen cell number, although the decrease is not
statistically significant. However, HFD did not affect splenic
macrophage number. The change of spleen mass and total spleen
cell numbermay indicate splenocyte apoptosis. Inflammatory factors
are shown to trigger splenocyte apoptosis (32). In our study,
HFD-induced increase in splenic TNF-a level might be a major
cause for the change of spleen mass and total spleen cell number.

In the present study, we also found that moderate-intensity
running exercise for 4 weeks abolished not only the decrease in
spleenmassand total spleencellnumberbutalso the increaseofTNF-
a expression in splenic macrophages during HFD feeding. Physical
exercise, an inexpensive and side effects-free way, has been well
proven to be an effective clinical intervention to reduce body weight
and improve insulin resistance and type 2 diabetes mellitus (33, 34).
Exercise also decreased HFD-induced body weight gain and
metabolic syndrome in experimental rats (35). The beneficial
effects of physical exercise on obesity and type 2 diabetes mellitus
have been verified to be involved in the decrease in chronic low-level
inflammation (19, 34). Indeed, physical exercise is documented to
markedly restrain chronic low-grade inflammation and is
acknowledged as an efficient anti-inflammatory intervention (8, 36,
37). However, themolecularmechanism about its beneficial effects is
poorly understood. One study shows that voluntary wheel-running
exercise inhibits the increase of TNF-a expression in peritoneal
macrophages in mice (19). In another study targeting
macrophages, suppression of TNF-a production has been shown
to be the basis of mechanical stress anti-inflammatory effect (38). A
meta-analysis including 17 animal studies concludes that chronic
endurance exercise leads to a marked tendency towards TLR4
Frontiers in Immunology | www.frontiersin.org 7
downregulation in macrophages and other immune cells in rodents
with obesity or metabolic syndrome (39). Based on the fact that
physical exercise enhances cardiac parasympathetic tone, Lujan
hypothesizes that a7nAChR cholinergic anti-inflammatory
pathway mediates the anti-inflammatory phenotype associated
with physical exercise (36). Similarly, through analyzing the effect
of exercise on the levels of brain-derived neurotrophic factor that
increases cholinergic activity, Papathanassoglou also proposed that
physical exercise likely upregulatesa7nAChR signaling in the central
and peripheral nervous system and in immune cells (40).
Intriguingly, in the present study, running exercise downregulates
the expression of TLR4 and NF-kB mRNA and meanwhile
upregulates the expression of a7nAChR mRNA in splenic
macrophages from HFD feeding rats, suggesting that moderate-
intensity physical exercise maintains the balance of TNF-a
production in splenic macrophages, or the balance of inflammatory
and anti-inflammatory activities in the spleen during HFD feeding.

It is clear that the efficacy of exercise depends on its duration,
intensity, and modality (41). A minimum of 150 min of
moderate-to-vigorous intensive physical activity per week is
able to promote health, as recommend by the American College
of Sports Medicine (42). Previous studies show that, in humans
and in animal models, 2 weeks’ moderate-intensity exercise can
lower blood glucose level and improve plasma lipoprotein profiles
(43). In the current study, it is not surprising that moderate-
intensity running exercise for four consecutive weeks prevents
TNF-a expression in splenic macrophages during HFD feeding.

Taken together, our results reveal that HFD consumption leads
to increase in TNF-a level in the spleen, which is along with
upregulation of TLR4 and NF-kB expression, as well as
downregulation of a7nAChR expression in splenic macrophages
from rats. Exercise reduced TNF-a level in the spleen and prevented
abnormal expression of TNF-a and its relevant genes in
macrophages in HFD-fed rats. Therefore, this research may
deepen our understanding of the pathogenesis of HFD-associated
diseases and shed light on the management of these diseases.
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