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Introduction

The renin-angiotensin-aldosterone system (RAAS) is the 
central regulator of water and salt homeostasis in the body. 
Components of this hormonal cascade are major targets for 
pharmaceutical agents aimed at controlling blood pres-
sure, and heart and kidney functions. Dahl salt-sensitive 
(SS) SS/JrHsdMcwi rats are extensively used to study the 
role of salt consumption in the development of hyperten-
sion. These rats, when kept on a high salt diet, exhibit 
remarkable phenotypic traits similar to those seen in the 
hypertensive African American population, including low 
renin, salt-sensitivity, hyperinsulinemia, and early end 
stage renal disease.1–3

Previous studies have shown that introgression of chro-
mosome 13 (Chr 13) from the Brown Norway (BN) rat into 
the SS genetic background attenuates the development of 

hypertension in an SS-13BN consomic strain. While Chr 13 
contains the renin gene, further studies, which narrowed the 
protective loci in the SS-13BN rats against salt-sensitivity, 
did not identify the renin gene in these regions.4–6 However, 
a number of other studies demonstrated that genetic modi-
fication of the renin locus does affect blood pressure.7–10 
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Previously, we generated a renin knockout (Ren−/−) in the 
SS rat using zinc-finger nucleases (ZFNs) designed to tar-
get the renin gene.11 These rats have undetectable plasma 
renin activity, underdeveloped kidneys as well as signifi-
cantly lower mean arterial pressure than their Ren+/+ litter-
mates. There was also evidence of decreased renal function, 
reflected by polyuria, reduced creatinine excretion and cre-
atinine clearance in Ren−/− rats.11

Regulation of sodium balance by the kidney is the key 
factor responsible for long-term blood pressure control. 
Dahl SS rats demonstrate an impaired sodium excretion 
response to increases in renal perfusion pressure. This pre-
disposes them to developing hypertension when chal-
lenged with a high salt diet.12 In the present study we 
describe the effects of renin deficiency on several key 
sodium transporters in various nephron segments.

Materials and methods

Animals

ZFN-mediated renin gene knockout (Ren−/−) rats and their 
wild-type (Ren+/+) littermates were created11 and housed at 
the Medical College of Wisconsin, and all work was con-
ducted under protocols approved by the Institutional 
Animal Care and Use Committee. Male rats were fed 0.4% 
NaCl diet (#113755, Dyets, Bethlehem, Pennsylvania, 
USA). At the age of eight weeks, the rats were anesthe-
tized with isoflurane, blood samples were collected from 
the descending aorta, and the kidneys were flushed with 
phosphate buffer and used for further analysis.13

Plasma aldosterone and corticosterone levels

Collected blood samples were centrifuged (6000 g, 10 
min), and then plasma was analyzed with the Aldosterone 
and Corticosterone Active RIA kits (MP Biomedicals, 
Orangeburg, New York, USA).

Patch-clamp analysis

Patch-clamp electrophysiology was used to assess ENaC 
activity in isolated, split-open rat connecting tubule/cor-
tical collecting duct (CNT/CCD) segment. CNT/CCDs 
were isolated from Ren−/− and Ren+/+ rats as described 
previously.14,15 Kidneys were cut into thin slices (<1 mm) 
and then placed into ice-cold physiologic saline solution 
(pH 7.4). CNT/CCD regions were mechanically isolated 
from these slices under a stereomicroscope by micro-
dissection with forceps. The tubules were split open with 
sharpened micropipettes controlled with micromanipula-
tors to gain access to the apical membrane. Single-
channel recordings were acquired with Axopatch 200B or 
700B amplifiers (Mol. Devices, Sunnyvale, California, 
USA) interfaced via a Digidata 1440A to a personal 

computers (PC) running the pClamp 10.2 suite software 
(Mol. Devices) and subsequently analyzed with Clampex 
10.2. Currents were filtered with an eight-pole, low pass 
Bessel filter LPF-8 (Warner Inst., Hamden, Connecticut, 
USA) at 0.3 kHz. A typical bath solution was used (in 
mM): 150 NaCl, 1 CaCl2, 2 MgCl2, 10 HEPES (pH 7.4). 
The pipette solution for the cell attached configuration 
was (in mM): 140 LiCl, 2 MgCl2 and 10 HEPES (pH 
7.4). NPo, the product of the number of channels and the 
open probability (Po) were used to measure the channel 
activity within a patch. When multiple channel events 
were observed in a patch, the total number of functional 
channels (N) in the patch was determined.

Western blot analysis

Kidney total lysate was prepared as described previously.15 
Briefly, kidneys were cut in 1–2 mm slices under a stere-
omicroscope. Kidney cross-sections (~50 mg) were diced 
into small pieces with a razor blade. Samples were pulse 
sonicated in Laemmli buffer (Bio-Rad #161-0737) with a 
protease inhibitor cocktail (Roche) for 10 s and spin cleared 
at 10,000 g for 5 min. The resulting supernatant was sub-
jected to PAGE, subsequently transferred onto a nitrocel-
lulose membrane (Millipore, Bedford, Massachusetts, 
USA), probed with antibodies, and visualized by enhanced 
chemiluminescence (Fisher Sci #32106). The visualization 
and densitometric analysis was done on the ChemiDoc 
XRS+ System with Image Lab Software containing a band 
saturation control. Densities were normalized to the cor-
responding β-actin intensities and then relative values 
were averaged in groups. Primary antibodies for sodium-
hydrogen antiporter (NHE3), α-, β- and γ-ENaC (SPC-
400D, SPC-403D, SPC-404D and SPC-405D, respectively) 
were from StressMarq Biosciences Inc. (Victoria, British 
Columbia, Canada);16 antibodies for sodium chloride 
cotransporter (NCC) were kindly provided by David H 
Ellison (Oregon Health & Science University, Portland),17,18 
and Na-K-Cl cotransporter (NKCC2) by Pablo Ortiz 
(Henry Ford Hospital, Detroit).19,20

Histological and immunohistochemical analysis

Extracted kidneys were placed into a neutral buffered 10% 
formalin solution. The kidney sections were cut at 4 μm 
slices, dried, and deparaffinized for subsequent streptavi-
din-biotin immunohistochemistry. After deparaffinization, 
the slides were treated with a citrate buffer pH6 for a total 
of 35 min. The slides were blocked with a peroxidase 
block (DAKO, Carpinteria, California, USA), Avidin Block 
(Vector Labs, Burlingame, California, USA), Biotin Block 
(Vector Labs), and serum-free Protein Block (DAKO). For 
morphological analysis, the tissue was stained with hema-
toxylin-eosin. For immunohistochemical staining, tissue 
sections were incubated for 30 min with anti-α, β or γ-ENaC 
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antibodies. Secondary detection was performed with goat 
anti-rabbit biotinylated immunoglobulin G (IgG) (Biocare, 
Concord, California, USA) followed by streptavidin conju-
gated with horseradish peroxidase (Biocare) and visualized 
with diaminobenzadine (DAKO). 

Statistical analysis

All summarized data are reported as mean±standard error 
of the mean (SEM). Data are compared using one-way 
analysis of variance (ANOVA) with Tukey correction and 
p<0.05 is considered significant.

Results

Kidney morphology, plasma aldosterone, 
corticosterone, and electrolyte levels

Ren−/− rats were previously reported to differ from their 
Ren+/+ littermates by having significantly lower body 
weights and kidney underdevelopment marked by dis-
placed medulla, incomplete formation of the medullary 
rays, and occurrence of large central lesions.11 Figures 1(a) 
and (b) confirm the presence of structural abnormalities in 
Ren−/− kidneys, significant thinning of the medullar layer, 
and massive areas of undifferentiated tissue in the cortex. 
The low-renin plasma activity and angiotensin I levels 
reported earlier11 are in accordance with our evaluation of 
the plasma aldosterone concentration, which was found to 
be significantly lower in Ren−/− rats (Figure 1(c)). Plasma 
corticosterone level did not differ significantly between 
the groups (Figure 1(d)).

Western blot analysis of renal sodium 
transporters

Absolute sodium excretion and plasma Na+ concentration 
in Ren−/− rats did not differ from their Ren+/+ littermates.11 
However, the mutant animals demonstrated substantial 
polyuria (especially when considering their low weight).

Several Na+ transporters expressed in the nephron 
mediate sodium absorption in the kidney: NHE3 and 
sodium-glucose transport protein (SGLT) in the proximal 
tubules, NKCC2 in the loop of Henle, NCC in the distal 
convoluted tubules and epithelial sodium channel (ENaC) 
in the aldosterone-sensitive distal nephron, including late 
part of DCT, CNT and CCD.21 Figure 2 demonstrates 
Western blot analysis of several of these transporters in the 
Ren−/− rats and their wild type littermates. NHE3 expres-
sion was lower in the Ren−/− group (Figure 2(a)) whereas 
the expression of NKCC2 was not altered (Figure 2(b)). 
We tested the consequences of renin deficiency on abun-
dance of the thiazide-sensitive NaCl co-transporter, NCC, 
and found significantly lower expression of NCC in the 
mutant animals (Figure 2(c)).

ENaC abundance and activity measurements

Normally, cortical ENaC performs only ~5% of sodium 
reabsorption. However, this widely regulated channel is 
involved in the fine tuning of sodium transport in the kid-
ney and is a key element in the antinatriuretic response to 
aldosterone.16,22 Surprisingly, Western blot (Figure 3) and 
immunohistochemical (Figure 4) analyses revealed that the 
expression of all three ENaC subunits did not differ between 

Figure 1. Kidney morphology and plasma aldosterone levels of wild-type (Ren+/+) and renin knockout (Ren−/−) rats. (a) Magnified 
view of renal midline section from Ren+/+ and Ren−/− rats. Significant thinning of medullar layer and loss of tissue in central part of 
the Ren−/− rat kidney are clearly visible. Scale bar is 4 mm. (b) Hematoxylin-eosin staining of cortical layer shows the presence of 
large areas of undifferentiated tissue. Scale bar is 50 μm. (c) Plasma aldosterone and (d) corticosterone concentrations in Ren−/− rats 
and their Ren+/+ littermates. Number of rats used for analysis is shown. *p<0.05 versus Ren+/+ rats.



4 Journal of the Renin-Angiotensin-Aldosterone System  

the groups. The only difference we noted was that expres-
sion of a ~90 kDa band of α-ENaC was significantly lower 
in Ren−/− animals (band 1; Figure 3). It should be noted, 
however, that we did not analyze the cleaved forms of α- 
and γ-ENaC subunits, which play critical roles in the activ-
ity of the channel.23 To further test whether renin deficiency 
affects functions of ENaC, we performed single channel 
analysis using the cell-attached configuration of the patch-
clamp method. Figure 5(a) demonstrates representative 
current traces recorded from the apical membranes of CCDs 
isolated from Ren+/+ and Ren−/− rats. We found that mutant 
rats exhibited significantly lower total ENaC activity (NPo) 
compared to Ren+/+ littermates. The average number of 

channels observed in each experiment (N) did not signifi-
cantly vary between groups, but the lower NPo in the Ren−/− 
animals was caused by changes in the open probability of 
individual channels (Po) (Figure 5(b)). Therefore, these 
data allow us to conclude that absence of renin decreases 
the activity of ENaC by alteration of gating properties but 
not expression of the channel.

Discussion

The role of the RAAS components in the management of 
sodium reabsorption and excretion is still not fully under-
stood. SS rats are a low renin strain, and high salt con-
sumption decreases plasma renin activity even further,24–26 
yet SS hypertension is accompanied with activation of the 
paracrine RAAS system.24,26,27 Furthermore, adrenalecto-
mized SS rats do not develop hypertension on a high salt 
diet, whereas exogenous aldosterone supplement reverses 
this phenomenon.28 Renin knockout failed to concentrate 
urine and have lower plasma angiotensin I11 and aldoster-
one levels. Angiotensin II and aldosterone were described 
as positive regulators of several channels and transporters 
in the kidney, including ENaC.29–31

Our goal was to investigate functions of major sodium 
transport proteins along the nephron in the condition of 
renin deficiency and the lack of aldosterone in the system. 
We found that NKCC2 abundance did not change in mutant 
compared to wild type animals whereas the other tested 
sodium transporters exhibited reduced functions. Thus, 
NHE3 abundance as well as NCC expression was lower 
in the mutant animals. RAAS is a potent regulator of 
sodium reabsorption in the distal segments of the nephron. 
Aldosterone stimulates thiazide-sensitive sodium reab-
sorption, an effect accompanied with an increase in  
NCC abundance.32–34 It was previously reported that salt 
restriction leads to increased plasma renin activity, aldos-
terone levels, and NCC abundance.35 Angiotensin II posi-
tive regulation of NCC functions was also described.36–39 

Figure 2. Western blot analysis of sodium transporters 
(sodium-hydrogen antiporter (NHE3), Na-K-Cl cotransporter 
(NKCC2) and sodium chloride cotransporter (NCC)) in the 
kidney total lysates from wild type and Ren−/− rats. Summary 
graphs represent the average relative density of the bands 
(normalized to β-actin) in the groups. *p<0.05 versus Ren+/+ rats.

Figure 3. Western blot analysis of α-, β-, and γ- epithelial sodium channel (ENaC) subunits in renin knockout (Ren−/−) and wild 
type (Ren+/+) littermates. ***p<0.001 versus Ren+/+ rats.
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As mentioned above, RAAS is a powerful regulator of 
ENaC activity. We did not find significant differences in 
ENaC abundance between the groups, but Western blot-
ting revealed diminished presence of a ~90 kDa form 

α-ENaC subunit in the Ren−/− rats. Previously Ergonul and 
colleagues demonstrated that maturation of ENaC was 
accompanied with glycosylation of the α-subunit, which 
might play a role in current conditions.40 We further utilized 
the patch-clamp approach to perform a functional assay and 
found that ENaC activity in the Ren−/− isolated CCDs was 
lower due to decreased open probability of the channel.

Recent studies also identified that kidney-specific min-
eralocorticoid receptor (MR) knockout mice exhibited salt 
wasting, low BP, and hyperkalemia.18 It was reported that 
knockout of MR in the kidney resulted in deficient apical 
orientation and cleavage of ENaC. NCC and pNCC abun-
dances were also substantially reduced in the kidney- 
specific MR−/− mice. Plasma K+ was elevated in the MR−/− 
mice. The authors concluded that the effects on NCC were 
secondary to the changes in plasma K+ since dietary K+ 
restriction of kidney-specific MR−/− mice maintained the 
abundance of pNCC at a level similar to or greater than 
control.18 This mechanism may be important in the Ren−/− 
rats since it was previously shown that serum potassium 
was significantly increased in Ren−/− rats.41 The authors 
also demonstrated in vitro that the corticosterone basal lev-
els and production by zona reticularis/fasciculata cells in 
response to cyclic adenosine monophosphate (cAMP) was 
unaffected in the Ren−/− rat compared with the Ren+/+ con-
trols. Our in vivo experiments accordingly revealed equal 
plasma levels of corticosterone in Ren−/− and Ren+/+ litter-
mates. We assume that the Ren−/− strain of Dahl SS rats can 
be considered a model of isolated hypoaldosteronism but 
further studies are needed to test this hypothesis.

The Ren−/− rat strain is a very exciting model which 
delineates the role of local intrarenal processes when sys-
temic RAAS activity is low. For instance, recent studies 
using this model defined basal and cAMP-stimulated 
aldosterone production in the zona glomerulosa cells.41 
Further characterization of sodium balance in these ani-
mals is required as we hypothesize that low systemic 
RAAS activity is the cause of very low blood pressure 
(~60 mm Hg) in these animals.11
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Figure 4. Expression of epithelial sodium channel (ENaC) 
in renin knockout (Ren−/−) and wild type (Ren+/+) rats. 
Immunohistochemical staining for α-, β-, and γ-ENaC subunits 
in the kidney cortical sections of Ren+/+ and Ren−/− rats. 40× 
magnification, scale bar is 50 μM.

Figure 5. Patch clamp analysis of epithelial sodium channel 
(ENaC) in renin knockout (Ren−/−) and wild type (Ren+/+) rats. 
(a) Representative current traces from cell-attached patches 
containing ENaC and recorded from the apical membrane of 
split-opened connecting tubule/cortical collecting duct (CNT/
CCD) tubules of wild type and Ren−/− rats. Holding potential is 
−60 mV. (b) Summary graphs of ENaC activity (NPo), number of 
channels (N) and channel open probability (Po) in cell-attached 
patches. *p<0.05 versus Ren+/+ rats.
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