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Abstract: Virtual reality (VR) experiences often elicit a negative effect, cybersickness, which results in
nausea, disorientation, and visual discomfort. To quantitatively analyze the degree of cybersickness
depending on various attributes of VR content (i.e., camera movement, field of view, path length,
frame reference, and controllability), we generated cybersickness reference (CYRE) content with
52 VR scenes that represent different content attributes. A protocol for cybersickness evaluation was
designed to collect subjective opinions from 154 participants as reliably as possible in conjunction with
objective data such as rendered VR scenes and biological signals. By investigating the data obtained
through the experiment, the statistically significant relationships—the degree that the cybersickness
varies with each isolated content factor—are separately identified. We showed that the cybersickness
severity was highly correlated with six biological features reflecting brain activities (i.e., relative
power spectral densities of Fp1 delta, Fp 1 beta, Fp2 delta, Fp2 gamma, T4 delta, and T4 beta waves)
with a coefficient of determination greater than 0.9. Moreover, our experimental results show that
individual characteristics (age and susceptibility) are also quantitatively associated with cybersickness
level. Notably, the constructed dataset contains a number of labels (i.e., subjective cybersickness
scores) that correspond to each VR scene. We used these labels to build cybersickness prediction
models and obtain a reliable predictive performance. Hence, the proposed dataset is supposed to be
widely applicable in general-purpose scenarios regarding cybersickness quantification.

Keywords: virtual reality (VR); VR human factor; cybersickness analysis; VR cybersickness dataset

1. Introduction
1.1. Motivation

To maximize the sensation of reality, visual content is developed not only for flat
displays (including UHD 8K, IMAX, and stereoscopic 3D), but also for more expressive
environments such as augmented-, virtual-, and mixed-reality (AR, VR, and MR). Among
them, VR hardware development is the most promising. The VR industry is rapidly
emerging, and the users expect an increasingly high quality of experience for VR services.
Although the VR environment can deliver an improved sensation of reality to users, such
forced artificial reality using a head-mounted display (HMD) may also induce cybersickness.
The term cybersickness is a motion sickness-like experience in a virtual reality which is
visually induced [1]. The general frequent symptoms caused by cybersickness are nausea,
visual discomfort, and disorientation [2]. Cybersickness restricts the use of VR and various
theories exist regarding its cause, but whose analysis has been limited to human factors,
not VR content. A previous study has reported that 80% of people show symptoms of
cybersickness within 10 min of becoming immersed in the VR environment [3].

In early studies, the physiological mechanism of motion sickness was analyzed from
a neuroscientific approach. Reason and Brand [4] postulated that motion sickness was a
self-inflicted maladaptation caused by internal- and intra-sensory conflicts between visual,
vestibular, and somatosensory proprioceptors, which is the most widely accepted theory.
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Oman [5] expanded sensory conflict theory to include a dynamic model with mathematical
description, where motion sickness was caused by the state of sensory rearrangement.
However, sensory conflict theory cannot sufficiently explain some classes of motion sickness
provoked by an optokinetic circular movement and a head orientation relative to the gravity
vector variation [6]. Bles et al. [7] elaborated on this theory by employing a vector sum of
gravity and inertial acceleration of semicircular canals and otolith organs in the vestibular
system based on the sensed vertical, which is known as subjective vertical conflict theory.
Bos et al. [8] established an advanced model, emphasizing the concept of the neural store in
the subsequent central nervous system to account for expectation, where visual–vestibular
interaction was assumed to be responsible for causing visually induced motion sickness
regarding self-motion. According to this theory, the sensory expectation on the basis of
prior experiences is also a kind of conflict, with discrepancies between multiple sensory
inputs [1].

In our study, we deal with cybersickness arising from viewing HMD-based VR. Despite
similar sickness symptoms, visually induced cybersickness in an artificial environment (e.g.,
stereoscopic 3D display and projection-based VR) is not due to a physical movement and
an external perturbation, but rather is provoked mostly by exposure to visual movement.
In this context, previous theories and their dynamics provide an insight for mathematical
analysis of the psycho-physical responses of the human when experiencing VR, which
also provides meaningful cues for a quantitative investigation of the relationship between
perceptual characteristics and VR content attributes.

First, we investigated which VR content factors dominate cybersickness, since previous
studies focused on the hardware factor or fragmentary content attributes of cybersickness
(detailed in Section 1.2). To conduct quantitative analysis on cybersickness in terms of
VR content, we built a pipeline to collect reliable data and subjective opinions and to
quantitatively investigate this large-scale dataset. Figure 1 depicts the overall framework of
our study. First, the synthetic 3D VR content (cybersickness reference (CYRE) content) was
produced to contain 52 content items (i.e., VR scenes) that correspond to various attributes
that have been known or defined as provocative cybersickness factors with referring physi-
ological motion sickness mechanisms. We designed a cybersickness evaluation protocol
to obtain self-diagnosis responses to sickness symptoms using questionnaires, and the
individuals’ characteristics, including sex, age, and motion sickness susceptibility, were
also collected. In addition, we obtained a subjective sickness score for each scene using a
graphical user interface during a rating procedure. Simultaneously, we acquired objective
data, such as the VR scene displayed on HMD (i.e., rendered video), and biological signals,
including electroencephalograph (EEG), electrocardiogram (ECG), and galvanic skin re-
sponse (GSR). Based on data acquired from 154 valid participants, we performed statistical
tests to identify a quantitative relationship between various factors and cybersickness. Our
experimental design did not involve a cohort study, but rather was constructed in the form
of changing only one dependent variable (i.e., a single content factor) while controlling the
other variables.

In this paper, cybersickness severity is defined as the degree of cybersickness. In
addition to the traditional statistical analysis of the collected data, we verified that we
constructed a sufficient dataset, which enabled us to train the predictor which infers the
objective value representing cybersickness severity based on the rendered VR scene. It
is obvious that cybersickness severity was dealt with as a continuous value, not a binary
decision (i.e., whether cybersickness is provoked or not) since the participants were asked
to report the cybersickness score of 1–5 per VR scene. In general, to model an accurate
cybersickness predictor to determine its severity, a large number of labels is required in
a supervised manner. A number of labels was assigned to various measures by utilizing
a subjective sickness score for 52 VR scenes; such supervisors enabled the trained model
to extract the latent features that represent the severity of cybersickness. To verify the
superiority of the constructed dataset in this study, we used several cybersickness prediction
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schemes, including deep-learning approaches. We showed their predictive performance in
terms of their correlation to the participants’ opinions.

Figure 1. Overall framework for the construction of a dataset with subjective evaluation and the
analysis of the degree of cybersickness. *, **, and *** represent that p-value is less than 0.05, 0.01, and
0.001, respectively.

1.2. Related Work

Although a solid theoretical foundation and the approximated dynamic models that
represent motion sickness have been introduced, there has not been a comprehensive
study on cybersickness in terms of the VR content factor. Previous studies were interested
in the binary decision of whether a certain VR factor provokes sickness or not. More-
over, most studies were hardware-oriented and considered parameters such as display
type, display resolution, display field of view (FOV), and latency without considering the
VR content [9–17].

1.2.1. Content Factor-Based Cybersickness Analysis

Few studies dealt with the VR content factor following an ad hoc approach while
only analyzing it in a qualitative manner. Hell and Argyriou [18] studied motion sickness
depending on the content factors in a roller-coaster simulation. The stored parameters in the
virtual environment were fed into the trained neural network model, where the considered
attributes were biased to camera movements. Joseph et al. [19] focused on single-axis
rotations and showed that roll and pitch rotations cause relatively higher motion sickness
than yaw. Porcino et al. [20] emphasized the depth and calculated the importance of the
virtual objects to mitigate cybersickness through a dynamic de-focus blurring. Fernandes
and Feiner [21] investigated a trade-off relationship between cybersickness and a sense
of presence with varying FOV. In a study with 30 volunteers, the results showed that
the restricted FOV was effective to suppress the degree of cybersickness. So et al. [22]
reported that VR navigation speed significantly affected the degree of vection, and the
authors demonstrated that cybersickness is a type of vection-induced motion sickness.
Chardonnet et al. [23] demonstrated that the distance from a virtual barrier and the choice
of the navigation interface can mitigate cybersickness. Some studies suggested that using
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an independent visual background deployment as a frame reference is helpful to reduce
the postural balance disturbance accompanied by cybersickness [24,25].

1.2.2. Machine Learning for Quantifying Cybersickness

Apart from factor-based cybersickness analysis, some studies attempted to quantify
cybersickness directly from VR content. Padmanaban et al. [26] designed a cybersickness
prediction model based on the hand-crafted features (including relative depth and motion
vectors) from 360◦ stereoscopic video clips. The extracted features were regressed onto sub-
jective sickness scores, which were obtained from the deployment of a post-questionnaire.
Kim et al. [27,28] defined a concept of exceptional motion in VR content, and they predicted
it by deploying an auto-encoder. The latent variables of their model were learned from
easily downloadable 360◦ scenes, and the results showed that the inferred exceptional
motion was correlated with cybersickness. Lee et al. [29] modeled a cybersickness predictor
for a 360◦ stereoscopic video. The authors proposed a 3D convolutional kernel-based
neural network to capture representative temporal abstractions related to cybersickness.
Balasubramanian and Soundararajan [30] trained their model to predict the degree of visual
discomfort based on 40 subjective ratings for viewing 360◦ scenes.

Unfortunately, machine-learning approaches using 360◦ VR content cannot provide
any practical information to mitigate cybersickness. In other words, it is difficult to know
which content factor has to be regulated. This limitation is mainly due to the impossibility
of controlling the factors independently while capturing the VR scene and the unexplain-
able/uninvertible weighted parameters for each factor implied in the non-linearly trained
model. Besides, another practical challenge is conducting a massive subjective test, owing
to the limitations of employing questionnaires. The collection of subjective opinions using
a post-questionnaire inevitably results in a lack of data-label pairs for supervised learning,
because the response process is inconvenient, and only a single response (i.e., sickness
score) can be obtained for several evaluated content items. In other words, the previous
study had limitations because of the insufficient size of the dataset in terms of its supervised
learning manner, and an additional data augmentation technique was required to model
an accurate predictor [29].

1.2.3. Quantitative Cybersickness Analysis via Biological Signal

Similar limitations regarding learning-based approaches also appeared in several
studies based on biological measurements for quantifying cybersickness regarding the
human factor. Guna and Gersak [31] observed ECG and GSR results of 26 participants
who reported sickness after experiencing a VR environment, where only two 360◦ VR
clips were shown. Lin et al. [32] quantified cybersickness into three stages by categorizing
the power of EEG and electro-oculography from 25 volunteers who participated in a
360◦ VR experiment. Similarly, Islam et al. [33] quantified cybersickness severity using
a neural network based on 31 participants’ physiological signals. In the most advanced
study, Lin et al. [34] predicted the level of motion sickness from the EEG spectrum. A self-
organizing neural fuzzy inference network was introduced to achieve it. However, their
research mainly focused on car sickness in a virtually designed driving environment, rather
than analyzing visually induced cybersickness arising from viewing VR. Consequently,
since almost all experiments of previous researchers were limited to 360◦ VR content, the
factor-based analysis and the techniques for mitigating cybersickness in terms of VR content
remain ungeneralized.

1.3. Contributions

The contributions of this study are as follows:

• We generated synthetic CYRE content: 52 VR scenes that represent different content
factors associated with causing cybersickness.
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• We designed a cybersickness evaluation protocol and obtained a number of subjective
opinions from 154 participants in conjunction with objective data (e.g., rendered videos
of VR scenes and biological signals) to construct a database.

• We quantitatively analyzed how various factors (e.g., content attributes, physiological
responses, and individual characteristics including sex, age, and susceptibility to
motion sickness) influence the severity of cybersickness.

• We constructed a number of data-label pairs (i.e., the number of scenes × the number
of participants) for supervised learning.

2. Construction of CYRE Content

To conduct a subjective assessment and to collect data for cybersickness analysis
depending on VR content factors, we created new CYRE content with various attributes.
The main scenario of the generated content is flight navigation: 52 scenes with different
factors, as shown in Table 1. Flight is a less common motion in VR than walking; however,
several factors have been revealed in the past decades, and we selected controllable content
factors to be quantitatively verified. Here, the scene-by-scene analysis of each content factor
was performed, thus every VR scene pair exists in CYRE content as tabulated in Table 1 for
single-factor analysis (i.e., only a single dependent variable exists while the other variables
have to be controlled). The content was generated using the Unity 3D engine. The factors
used in CYRE content are described as follows.

2.1. Background of Scene

Regardless of the kind of VR content, a stationary object or background in the scene can
suppress cybersickness [35]. In this context, CYRE content scenes include two background
types: urban space and astrospace, as shown in Figure 2a,b. In the urban scenes, the
terrain is always at the lower side of the viewer’s sight, and it can be regarded as a strong
self-motion perception cue, which is unseen in the astrospace scenes. The urban scenes
also contain several textured objects (e.g., buildings, bridges, and trees); their higher spatial
complexity may provoke cybersickness (compared with the astrospace scenes) [36].

(a) (b) (c)

(d) (e) (f)

Figure 2. Examples of VR scenes in CYRE content: (a) 202, (b) S101, (c) S214, (d) S215, (e) S218, and
(f) S001. Attributes of each scene are given in Table 1.
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Table 1. List of scenes and their corresponding attributes in CYRE content.

Scene
Index Background

Camera

FoV Frame
Reference Duration Controllability

Scene
CategoryMovement Rotation and Translation 1 Translation

Acceleration Translation Speed

S001 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Short (∼14.6 s) Controllable

CCU
(∼144.8 s)

S002 Urban Complex
(
t f , tu, td, rr , ry, rp

)
No Moderate (4 m/s) Large (90◦) No Short (∼14.9 s) Controllable

S003 Urban Complex
(
t f , tu, td, rr , ry, rp

)
No Moderate (4 m/s) Large (90◦) No Short (∼14.8 s) Controllable

S004 Urban Complex
(
t f , tu, td, rr , ry, rp

)
No Moderate (4 m/s) Large (90◦) No Short (∼14.2 s) Controllable

S005 Urban Complex
(
t f , tu, td, rr , ry, rp

)
No Moderate (4 m/s) Large (90◦) No Short (∼15.6 s) Controllable

S006 Urban Complex
(
t f , tu, td, rr , ry, rp

)
No Moderate (4 m/s) Large (90◦) No Short (∼15.2 s) Controllable

S007 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Long (∼28.0 s) Controllable

S008 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Long (∼27.5 s) Controllable

S101 Astrospace Simple ry No No translation Large (90◦) No Short (13 s) Uncontrollable

CUA
(234 s)

S102 Astrospace Simple rr No No translation Large (90◦) No Short (13 s) Uncontrollable

S103 Astrospace Simple rp No No translation Large (90◦) No Short (13 s) Uncontrollable

S104 Astrospace Simple t f No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S105 Astrospace Simple tb No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S106 Astrospace Simple tl No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S107 Astrospace Simple tu No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S108 Astrospace Simple td No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S109 Astrospace Complex
(
t f , tu, td, rp

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S110 Astrospace Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S111 Astrospace Complex
(
t f , tu, td, rr , ry, rp

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S112 Astrospace Complex
(
t f , rr , ry

)
No Fast (9.2 m/s) Large (90◦) No Short (13 s) Uncontrollable

S113 Astrospace Complex
(
t f , tu, td, rr , ry, rp

)
No Fast (9.2 m/s) Large (90◦) No Short (13 s) Uncontrollable

S114 Astrospace Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Middle (45◦) No Short (13 s) Uncontrollable

S115 Astrospace Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Small (30◦) No Short (13 s) Uncontrollable

S116 Astrospace Complex
(
t f , rr , ry

)
Yes (160%) 2 Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S117 Astrospace Complex
(
t f , tu, td, rr , ry, rp

)
Yes (160%) Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S118 Astrospace Complex
(
t f , tu, td, rr , ry, rp

)
Yes (160%) Moderate (4 m/s) Large (90◦) Yes Short (13 s) Uncontrollable

S201 Urban Simple ry No No translation Large (90◦) No Short (13 s) Uncontrollable

CUU
(371 s)

S202 Urban Simple rr No No translation Large (90◦) No Short (13 s) Uncontrollable

S203 Urban Simple rp No No translation Large (90◦) No Short (13 s) Uncontrollable

S204 Urban Simple t f No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S205 Urban Simple tb No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S206 Urban Simple tl No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S207 Urban Simple tu No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S208 Urban Simple td No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S209 Urban Complex
(
t f , tu, td, rp

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S210 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S211 Urban Complex
(
t f , tu, td, rr , ry, rp

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S212 Urban Complex
(
t f , rr , ry

)
No Fast (9.2 m/s) Large (90◦) No Short (13 s) Uncontrollable

S213 Urban Complex
(
t f , tu, td, rr , ry, rp

)
No Fast (9.2 m/s) Large (90◦) No Short (13 s) Uncontrollable

S214 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Middle (45◦) No Short (13 s) Uncontrollable

S215 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Small (30◦) No Short (13 s) Uncontrollable

S216 Urban Complex
(
t f , rr , ry

)
Yes (160%) Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S217 Urban Complex
(
t f , tu, td, rr , ry, rp

)
Yes (160%) Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S218 Urban Complex
(
t f , tu, td, rr , ry, rp

)
Yes (160%) Moderate (4 m/s) Large (90◦) Yes Short (13 s) Uncontrollable

S219 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S220 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S221 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S222 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S223 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Short (13 s) Uncontrollable

S224 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Long (24 s) Uncontrollable

S225 Urban Complex
(
t f , rr , ry

)
No Moderate (4 m/s) Large (90◦) No Long (24 s) Uncontrollable

S226 Urban Complex
(
t f , rr , ry

)
Yes (160%) Moderate (4 m/s) Large (90◦) No Long (24 s) Uncontrollable

1 ry, rr , and rp represent yaw, roll, and pitch rotations, and t f , tb, tl , tu, and td represent forward, backward, lateral,
upward, and downward translations, respectively. 2 The translation speed gradually increases up to 160% from
the initial translation speed.
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2.2. Camera Movement

Moving visual stimuli without physical motion induces illusory self-motion (i.e.,
vection) within virtual environments [37]. The lack of other sensory inputs for self-motion
perception (i.e., vestibular and somatosensory stimuli) causes multi-sensory conflict that
leads to severe cybersickness [38,39]. In this context, the camera movements in a VR
scene are deeply related to the moving visual stimuli, which are key factors for analyzing
cybersickness [40]. CYRE content includes two types of camera movement: simple and
complex.

2.2.1. Simple Movement

Some generated scenes include single-camera movements, i.e., rotations (i.e., yaw
ry, roll rr, and pitch rp) and translations (i.e., forward t f , backward tb, and lateral tl). In
particular, the upward, tu, and downward, td, translations are also included in CYRE
content to determine the effect of vertical movements on cybersickness. Each scene was
produced to compare the influence of different primary movements upon the degree of
cybersickness.

2.2.2. Complex Movement

In general, a complex visual motion causes more severe cybersickness; however, it is
non-linearly proportional to its degree [41,42]. In CYRE content, 36 scenes have dual- or
triple-axis dynamic rotations combined with translations.

2.2.3. Translation Acceleration

Acceleration is highly associated with the vector sum of gravity and inertial accelera-
tion, and the unexpected, when sensed vertically by optokinetic signals, directly affects
motion sickness [8,43,44]. Based on this, some scenes in CYRE content have acceleration
for translation movements whose rates were ∼160% (i.e., the translation speed gradually
increased up to 160% of the initial translation speed.). Thus, the degree of cybersickness
could be analyzed by comparing these scenes with the other scenes that have a constant
velocity (e.g., S110 and S116).

2.2.4. Translation Speed

Beyond acceleration, Singla et al. showed that camera translation speed is also corre-
lated to cybersickness [13]. CYRE content includes scenes with both moderate (4 m/s) and
relatively fast (9.2 m/s) camera translation movements. Note that the value of speed is the
Unity3D parameter (in camera coordinate), thus the perceived speed by humans (in the
world coordinate) may be different due to the viewing geometry. All transitions have the
same speed for the complex movement scenes. The purpose is to quantitatively analyze
the relationship between the degree of cybersickness and the navigating speed. Note that
our study only considers the comparison of the participants’ cybersickness corresponding
to translation speed without examining rotation speed.

2.3. FOV

In general cases of VR environments, the internal FOV is characterized by the graphic
generation engine, while the external FOV is determined by the HMD specification and
the viewing geometry [45]. It is well known that a smaller external FOV can reduce
cybersickness [21,46]. However, it is difficult to reflect external FOV as a VR content factor,
because it can depend heavily on the display hardware. To analyze the effect of internal
FOV on cybersickness, CYRE content includes three different sizes of internal FOV: small
(30◦), middle (45◦), and large (90◦) FOVs, as shown in Figure 2c,d.

2.4. Frame Reference

A frame reference is strong evidence for consistent inertial sensing of when the rest
regions are heavily influenced by the moving background [47]. In CYRE content, the head
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of the flight vehicle is seen as a frame reference at the lower side of a scene (Figure 2e, which
is intended to provide similar effects to a “virtual nose” in the first-person-perspective VR
content [35].

2.5. Duration (Path Length)

Previous studies indicated that the path length and duration of a VR experience could
increase cybersickness [41,48,49]. This factor is also believed to generate CYRE content, and
the length of the visual stimulus was determined by referring to previous studies [50,51].
The scenes have different lengths, which are characterized by the extended navigation
routes. In other words, some of the scenes require a longer VR experience time (24 s)
than the others (13 s), because their endpoint is far from the starting point. Note that a
termination criterion of scenes S001–S008 is the ability of the users to reach the endpoint
independently (S007 and S008 have a longer route than S001–S006); thus, the average
experience times of all the participants are shown in Table 1.

2.6. Controllability

According to the sensory conflict theory, a neurological reflex exists in the percep-
tual mechanism when the human prepares to an anticipated visual motion [8]. In other
words, an unexpected visual motion initiated by a passive (i.e., without control) camera
movement contributes to cybersickness [52]. CYRE content includes both controllable and
uncontrollable scenes in the same environment. In the controllable scenes, the flight vehicle
movement direction can be freely controlled following a user’s intention. Additional navi-
gation information is displayed graphically to keep the user on the route and to show the
endpoint, as shown in Figure 2f.

3. Subjective Evaluation and Data Acquisition
3.1. Protocol Design

Both objective data (i.e., scene parameters, rendered VR scenes, and physiological
measures) and subjective data (opinions on the degree of cybersickness) have to be collected
when the participants view the constructed CYRE content. Towards this, we designed a
subjective evaluation protocol. An overall procedure is shown in Figure 3, and the detailed
descriptions for each step are following.

Figure 3. Designed protocol for subjective cybersickness evaluation.

3.1.1. Tutorial Session

Before the evaluation, we conducted a tutorial session. The participants were intro-
duced to the evaluation process and the degrees of cybersickness. During the instruction,
six VR scenes were shown, broadly spanning the range of VR factors. The tutorial session
helped to collect more reliable data in two ways. First, the participants were familiarized
with the interactive controlling method used in this experiment, which helped to avoid a
potentially unwanted stress factor (e.g., stress about not being able to control navigating
at will). Second, the tutorial helped to reduce the biased subjective opinion for inexperi-
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enced content, due to the human’s psychological expectations that lead to a self-hypothesis,
known as “experimental demand characteristics” [53].

3.1.2. Evaluation Session

As the bold-framed boxes in Figure 3 show, the overall subjective evaluation procedure
was divided into three evaluation sessions. As shown in Table 1, there are threecategories,
CCU, CUA, and CUU, for representing the controllable urban scenes, uncontrollable as-
trospace scenes, and uncontrollable urban scenes, respectively. Their durations are 145,
234, and 371 s, respectively. The goal of our research is to investigate the relationship
between the VR content factor and cybersickness, thus the temporal effects of cybersickness
including accumulation and adaptation were out of the study scope [54]. To cope with
this critical problem, we shuffled the order of the scene categories when assigning them
to each evaluation session for each participant, and the order of the corresponding VR
scenes (i.e., 8, 18, and 26 scenes for CCU, CUA, and CUU, respectively) was also randomly
shuffled [55,56]. Such shuffling methodology can facilitate a relative comparison between
each scene, and this would not affect the experiment results since each VR scene was
scored individually (at a scene-level, each participant experiences the same VR scene).
Here, the analysis of individual characteristics in Section 4.3 was performed based on each
scene category, but whose controlled attributes were the same for each participant and
only their displayed order was different. After each evaluation session and response to
the corresponding questionnaires, rest periods of 3 min were inserted to minimize the
accumulated VR sickness [50,57]. During the rest periods, a monotonous scene with a cross
mark at the center of the frame was displayed to avoid the loss of the viewer’s focus.

3.1.3. Questionnaires

Before viewing VR content, participants were asked to fill the motion sickness suscep-
tibility questionnaire (MSSQ) [58] and the simulator sickness questionnaire (SSQ) [2], which
are the traditional questionnaires used by motion-sickness-related researchers [59–61], as
depicted in Figure 3. Such pre-assessment reflects the subjective opinions which lie on
a neutral state. These responses could be compared with those acquired after the VR
experience (in Section 4.3.3).

Originally, MSSQ was designed for self-diagnosis, i.e., to determine how much a
participant is susceptible to motion sickness. MSSQ consists of two sections: Section A is
for the motion sickness experience in childhood, and Section B is for the last 10 years. By a
weighted summation, the motion sickness susceptibility score sMSSQ is calculated as [58]

sMSSQ = sMSSQ,A + sMSSQ,B, (1)

where sMSSQ,A and sMSSQ,B represent the scores of MSSQ Sections A and B.
SSQ rates the levels of 16 symptoms of motion sickness using a four-point scale

(ranging from zero to three). SSQ evaluates the degree of three general classes of motion
sickness: nausea, oculomotor, and disorientation. The scores of nausea sN , oculomotor sO,
and disorientation sD are calculated from a selective sum of the levels of 16 symptoms, and
a total score of motion sickness sT is the scaled sum of all subjective scores of symptoms
belonging to the three general classes [2]. It is worth noting that sN , sO, sD, and sT are
unnormalized values, which can be relatively compared.

As depicted in Figure 3, the participants were asked to answer SSQ four times: one
pre- and three post-evaluations. In contrast to the pre-assessment of SSQ acquired by
handwriting, as shown in Figure 4a, each SSQ after the evaluation session was sent via a
graphical user interface using a controller in the VR environment; thus, the participants
did not need to take off their HMD.
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(a) (b)

Figure 4. Graphically generated supporting content for subjective evaluation. (a) Graphical user
interface for answering to SSQ after the evaluation session (the first four questions of 16 questions in
SSQ). (b) Graphical user interface for scoring the level of cybersickness corresponding to each VR
scene during the evaluation session.

3.1.4. Scoring Cybersickness

Apart from SSQ scores, we also collected subjective cybersickness scores for each VR
scene. Here, the goal is to analyze the finer-level content factor and to use it as a label in
the cybersickness prediction scenario. To rate the degree of cybersickness in each VR scene,
we used a modified version of the absolute category rating methodology [62]. As depicted
in Figure 3, at each evaluation session, the participants were asked to assign the sickness
score based on a five-point Likert-like scale: 5 = extreme sickness, 4 = strong sickness,
3 = sickness, 2 = mild sickness, and 1 = comfortable. The subjective scores were collected
using a controller without taking off an HMD, as depicted in Figure 4b.

3.2. Acquisition of Physiological Signals

To objectively measure cybersickness, we acquired three types of physiological data
during the experiment: EEG, ECG, and GSR. The LAXTHA’s PolyG-I system was used,
which supports eight channels of EEG, single-channel ECG, and single-channel GSR with a
256 Hz sampling rate [63,64]. As depicted in Figure 5a, the EEG electrodes were located
according to the international 10–20 system [65]. We obtained eight channels of brain
signals: two on the pre-frontal lobes (Fp1 and Fp2), two on the frontal lobes (F3 and F4),
two on the temporal lobes (T3 and T4), and two on the parietal lobes (P3 and P4). The
impedance of each electrode was less than 5 KΩ. When measuring EEG signals, we applied
the notch filters with 60 and 120 Hz stop-bands to reject electrical interferences before
analog-to-digital conversion. As shown in Figure 5b,c, the electrodes for ECG and GSR are
located at both wrists and the ring and little fingers. Physiological signals were recorded
over an entire CYRE content. Those were divided into signals of suitable duration, and
they were synchronized with each corresponding VR scene.

3.3. Participants and Environment

In the subjective evaluation, 203 volunteers participated (normal and corrected-to-
normal vision; age range: 14 to 59 years; mean age: 27.58 years). The participants were
divided into four groups: young men (under 30 years), middle-aged/elderly men (over
30 years), young women (under 30 years), and middle-aged/elderly women (over 30 years).
The number of participants in each group is presented in Table 2. This categorization was
designed to evaluate the effects of sex and age on cybersickness severity [66–68]. There
were no special criteria for participation; however, in accordance with institutional review
board recommendations, only people of a certain age range (except for children) without
the underlying disease could participate. The participants were randomly recruited by
a poster and an advertisement in online communities where a small fee was paid for a
participant. All participants were non-experts in the fields related to VR and vision research.
No cues relating to the study hypothesis were given during the instruction session before
the evaluation. The time for subjective evaluation varied from person to person, but on
average it took about three hours per person including instruction, filling out a consent
form, and arranging system settings as depicted in Figure 3. The total period to complete
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the experiment was four months. In the laboratory environment, we used HTC VIVE as
an HMD. A high-end workstation with Intel i7 8700 CPU, nVidia GTX1080Ti GPU, and
64 GB RAM was used to maintain an approximately 90 fps rendering rate; the goal was to
minimize the motion-to-photon latency and the other hardware-oriented factors related
to cybersickness. The data from a single participant were collected in a single sitting. The
participants sat on chairs and were instructed to keep their heads stationary to ensure that
reliable physiological signals were obtained.

(a)

(b) (c)

Figure 5. Electrode locations for obtaining biological measurements. (a) Eight EEG electrodes on
scalp are located according to the international 10–20 system [65]. (b) Single ECG electrodes are
placed on the wrists. (c) Two electrodes for GSR are placed on the fingers.

During the study, 15 participants (11 women (mean age: 38.45) and four men (mean
age: 37.25)) dropped out of the evaluation procedure owing to physical symptoms (vomit,
nausea, and dizziness) and their own will, and the data of 18 participants who met two of
the conditions below because of insincere ratings were rejected:

• the same scores for all 116 ratings,
• the discrepancy between the answers in consent and personal information, and
• the eye tracker capture showed the eyes were closed throughout the experiment.

The data of 16 participants were removed because of an evaluation system error.
Finally, the data of 154 valid participants were determined as a valid dataset for statistical
tests and cybersickness prediction. The details of the number of participants in each group
after refinement are presented in Table 2.
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Table 2. The number of participants (total 154).

Men Women

Young 43 63
(under 30 yr) (mean age 22.98 yr) (mean age 21.02 yr)

Middle-aged
(upper 30 yr)

28
(mean age 38.82 yr)

20
(mean age 42.40 yr)

Additional analysis of the participants who dropped out based on their individual and
demographic characteristics may be possible; however, our study focuses on the VR content
factors. Thus, the following analysis only deals with data from the 154 valid participants.

4. Experimental Results
4.1. Scene Factors and Cybersickness

We investigated the statistical relationship between each content factor and the cy-
bersickness score to understand which types of content factors are crucial for provoking
cybersickness. All participants were asked to rate all scenes as stated in Section 3.1.4, thus
we calculated the mean opinion score (MOS) for the scenes with the same attributes and
perform a paired t-test on them. The threshold significance level was set to 5%, and the
outliers were removed based on the IQR rule at each factor of analysis. The flagged levels
of significance *, **, and *** represent that the p-value is less than 0.05, 0.01, and 0.001,
respectively. Here, significance values were adjusted with the Bonferroni correction for
multiple tests.

4.1.1. Camera Rotation

The degree of cybersickness was analyzed depending on different uniaxial camera
rotations: yaw ry (S101 and S201), roll rr (S102 and S202), and pitch rp (S103 and S203)
scenes. As shown in Figure 6a, we found a statistical significance: MOS of rr scenes (mean:
3.039) is 43.0% and 4.7% higher than those of the ry (mean: 2.127, p = 3.35× 10−34 < 0.001
***) and rp scenes (mean: 2.903, p = 0.040 < 0.05 *). Moreover, the results show that
the MOS of rp scenes was 36.5% higher than for ry scenes (p = 1.25× 10−39 < 0.001 ***).
Overall, rr induces extreme cybersickness rather than the other camera rotations. Thus,
drastic roll rotation has to be avoided in VR content.

4.1.2. Camera Translation

We investigated which type of camera translation causes higher cybersickness. The
obtained MOSs of the forward t f (S104 and S204), backward tb (S105 and S205), and
lateral tl (S106 and S206) movement scenes were compared, as shown in (b). The results
demonstrate that the cybersickness severity of tb (mean: 1.276) is significantly higher than
those of the movements of t f (mean: 1.107, p = 4.44× 10−7 < 0.001 ***) and tl (mean: 1.149,
p = 7.49× 10−5 < 0.001 ***).

Moreover, the t f scenes were compared to vertical translations: the upward tu (S107 and
S207) and downward td (S108 and S208) movement scenes. The result is depicted in Figure 6c.
The MOSs of the tu and td scenes are significantly higher than the t f scenes: 17.9% (mean:
1.305, p = 2.69× 10−10 < 0.001 ***) and 15.3% (mean: 1.259, p = 5.95× 10−10 < 0.001 ***),
respectively.

The MOS of the tu scene is slightly higher than the downward scene; however, the
difference is insignificant (p = 0.108). Although there are statistically significant relation-
ships between each different translational movement, overall MOS values are relatively
low. Thus, a simple translational camera movement causes less cybersickness than the
other VR content factors.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. MOS comparisons of each VR content factor: (a) camera rotation, (b) horizontal camera
translation, (c) vertical camera translation, (d) size of FOV, (e) translation acceleration, (f) translation
speed, (g) frame reference, (h) duration, and (i) controllability. *, **, and *** represent that p-value is
less than 0.05, 0.01, and 0.001, respectively.

4.1.3. FOV

We compared different sizes of FOV to investigate how much the restricted FOV is
effective in reducing cybersickness. As shown in Figure 6d, there is no statistical significance
between the large (S110 and S210) and the middle (S114 and S214) sizes of FOV scenes.
Thus, we concluded that the marginal reduction of FOV is trivial to decrease the level
of cybersickness. However, when the FOV is sufficiently smaller (S115 and S215), it
significantly reduces the degree of cybersickness∼ 6% (mean: 1.455) in comparison with the
large (mean: 1.545, p = 0.0305 < 0.05 *) and middle FOV (mean: 1.594, p = 0.0012 < 0.01
**) scenes. Such results are consistent with well-known previous studies on FOV [21,46].

4.1.4. Translation Acceleration

As shown in Figure 6e, the participants rated that the translation acceleration scenes
(S116 and S216) made them experience 19.7% higher cybersickness rather than viewing
the constant-speed scenes (S110 and S210) (p = 1.948× 10−11 < 0.001 ***). This result is
consistent with previous research [39].

4.1.5. Translation Speed

In this paper, we compared cybersickness in moderate-speed (S110 and S210) and
fast-speed translation scenes (S112 and S212), as shown in Figure 6f. The MOSs of the
fast-speed translation scenes are significantly higher (27.5%) than those of the moderate-
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speed translation scenes (p = 1.417× 10−16 < 0.001 ***). This result shows that not only
translation acceleration, but also translation speed, is a factor that increases cybersickness.

4.1.6. Frame Reference

To investigate how much the frame reference can alleviate cybersickness, the obtained
MOSs of S117, S217, S118, and S218 were compared. The results show that the cybersickness
severity is reduced by 15.2% when the frame reference is included rather than excluded
(p = 1.927× 10−11 < 0.001 ***), as shown in Figure 6g. We concluded that the deployment
of the frame reference is recommended for producing VR content, forcing the unanticipated
camera movement to the viewers to decrease cybersickness.

4.1.7. Duration

In Figure 6h, we observed a statistically significant difference between cybersickness
severities when the experience duration and the path length were extended. The results
show that the longer scene (S224) induces increased cybersickness (p = 9.957× 10−31 <
0.001 ***), compared with the short scene (S210).

4.1.8. Controllability

To quantify how much cybersickness can be suppressed by the user’s intention with
the navigation control, we compared the MOSs of the controllable (S001, S002, S007, and
S008) and uncontrollable (S210, S211, S224, and S225) scene pairs whose attributes are
identical except for controllability, thus the rest of the variables are controlled. As shown in
(i), when controllability is given, the MOS is reduced by 22.5% in comparison with viewing
an uncontrollable scene (p = 6.063× 10−45 < 0.001 ***).

4.2. Physiological Signals and Cybersickness

This subsection aims to identify the cybersickness-related physiological patterns in
the measured data. Each obtained EEG, ECG, and GSR signal was pre-processed, and then
the extracted features were statistically analyzed in terms of cybersickness severity.

4.2.1. Feature Processing

To filter the noise and remove artifacts contained in EEG, we applied a band-pass filter
with a range of 1–59 Hz. Noninvasive electrodes were used to measure electrical activity on
the human scalp. In general, the blind source separation is a critical problem to be resolved
due to various artifacts including eye blinks and muscle movements. To address this, we
applied independent component analysis to identify the linear projections maximizing
the mutual independencies of the estimated components, which is a useful approach to
isolate artifacts and brain activity [34]. From the signals decomposed by applying the
independent component analysis, a single component with the maximum kurtosis was
subtracted, which was regarded as a potential artifact [69]. After the pre-processing, we
estimated the power spectral density for six waves with different frequency bands: delta
(1–3.99 Hz), theta (4–7 Hz), alpha (8–15 Hz), beta (16–31 Hz), gamma (32–59 Hz), and
Mu (8–12 Hz) waves. Here, the relative ratio of power spectral density was calculated for
statistical analysis.

For ECG, we applied the de-trending filter to the raw data to eliminate the baseline-
offset fluctuation. The QRS complex was detected by the peak detection algorithm. Three
time-domain parameters were extracted for cybersickness analysis: beats per minute (BPM),
the standard deviation of normal-to-normal intervals (SDNN), and the root mean square of
the successive R-R interval difference (RMSSD).

For GSR, we applied the moving average filter to remove interferences. The mean
amplitude over the VR scene duration was estimated as a cybersickness representation.
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4.2.2. Statistical Analysis

To understand the representative features associated with cybersickness, we conducted
a three-step statistical analysis. For this analysis, the extracted features were grouped, along
with the cybersickness scores obtained by the subjective evaluation; thus, five groups were
composed. First, under the assumption that the features represent significant patterns
according to the sickness level, we performed a one-way analysis of variance (ANOVA)
on the five groups. Second, when ANOVA showed significant results within the selected
feature, we performed an independent t-test on every combination of group pairs subse-
quently. Finally, we utilized the ordinary least squares (OLS) regression to observe whether
the features varied monotonically following the level of cybersickness or not. The threshold
significance level was set to 5%. Table 3 shows p-values from the statistical analysis. Here,
significance values were adjusted with the Bonferroni correction for post hoc tests. Hence,
the statistically insignificant features through ANOVA and t-tests were rejected.

Table 3. Statistics concerning physiological features and cybersickness.

Data Feature
p-Values of Statistical Test

Data Feature
p-Values of Statistical Test

ANOVA t-test (1, 2) t-Test (2, 3) t-Test (3, 4) t-Test (4, 5) ANOVA t-Test (1, 2) t-Test (2, 3) t-Test (3, 4) t-Test (4, 5)

Delta <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.05 * Delta <0.001 *** <0.001 *** <0.001 *** 0.2240 <0.01 **

Theta <0.001 *** <0.01 ** <0.05 * 0.8881 0.1415 Theta <0.001 *** <0.01 ** <0.01 ** 0.5028 0.3645

Alpha <0.001 *** <0.01 ** 0.0700 0.5406 0.2676 Alpha <0.001 *** <0.001 *** 0.0848 0.9419 0.3362

Beta <0.001 *** <0.01 ** <0.001 *** <0.05 * <0.01 ** Beta <0.001 *** <0.001 *** <0.001 *** 0.1927 <0.05 *

Gamma <0.001 *** <0.001 *** <0.01 ** <0.01 ** 0.2268 Gamma <0.001 *** <0.001 *** <0.001 *** 0.5954 0.2294

EEG
Fp1

Mu <0.001 *** <0.01 ** 0.0793 0.4439 <0.05 *

EEG
T3

Mu <0.001 *** <0.001 *** 0.0790 0.8074 0.5842

Delta <0.001 *** <0.001 *** <0.01 ** <0.05 * <0.001 *** Delta <0.001 *** <0.01 ** <0.001 *** <0.01 ** <0.05 *

Theta <0.001 *** <0.001 *** <0.05 * 0.4147 <0.01 ** Theta <0.001 *** 0.0531 0.0991 0.0718 0.1780

Alpha <0.001 *** <0.001 *** <0.05 * 0.4755 0.1357 Alpha <0.001 *** <0.01 ** 0.1741 0.9474 0.6311

Beta <0.001 *** <0.001 *** <0.01 ** 0.0625 <0.001 *** Beta <0.001 *** <0.01 ** <0.001 *** <0.05 * <0.05 *

Gamma <0.001 *** <0.001 *** <0.01 ** <0.05 * <0.01 ** Gamma <0.001 *** <0.001 *** <0.01 ** 0.1085 0.0813

EEG
Fp2

Mu <0.001 *** <0.001 *** 0.1113 0.2698 <0.05 *

EEG
T4

Mu <0.001 *** <0.05 * 0.1957 0.6509 0.3801

Delta <0.001 *** <0.01 ** <0.001 *** <0.05 * 0.1582 Delta <0.001 *** <0.01 ** <0.001 *** 0.3325 <0.01 **

Theta <0.01 ** 0.9996 0.0539 0.1751 0.9101 Theta <0.05 * 0.7200 <0.05 * 0.2063 0.4868

Alpha <0.01 ** 0.0582 0.7701 0.3810 <0.01 ** Alpha 0.2211 0.2263 0.5675 0.6228 0.8228

Beta <0.001 *** 0.4779 <0.01 ** <0.05 * <0.05 * Beta <0.001 *** 0.0578 <0.01 ** 0.1048 <0.01 **

Gamma <0.001 *** <0.01 ** <0.05 * 0.1821 0.1738 Gamma <0.001 *** <0.05 * <0.01 ** 0.3226 0.7697

EEG
F3

Mu <0.05 * 0.3330 0.4663 0.5991 <0.01 **

EEG
P3

Mu 0.1596 0.3706 0.5515 0.2886 0.9481

Delta <0.001 *** <0.001 *** <0.001 *** 0.1333 <0.01 ** Delta <0.001 *** 0.1651 <0.001 *** 0.1990 <0.01 **

Theta <0.001 *** 0.0537 0.0663 0.4235 0.3859 Theta 0.0510 0.1515 0.0258 0.8868 0.3862

Alpha <0.001 *** <0.01 ** 0.3938 0.5183 0.1883 Alpha <0.05 * 0.1066 0.6538 0.5482 0.1261

Beta <0.001 *** <0.05 * <0.001 *** 0.1960 <0.01 ** Beta <0.001 *** 0.3294 <0.01 ** 0.3998 <0.001 ***

Gamma <0.001 *** <0.001 *** <0.05 * 0.2301 0.0701 Gamma <0.001 *** 0.1040 <0.05 * 0.2021 0.1609

EEG
F4

Mu <0.001 *** <0.05 * 0.1889 0.6718 <0.05 *

EEG
P4

Mu <0.01 ** 0.4021 0.8191 0.3378 0.0573

BPM <0.01 ** 0.1308 0.2590 0.9342 0.0910

SDNN <0.001 *** <0.001 *** 0.7875 0.8688 <0.01 **ECG

RMSSD <0.001 *** <0.001 *** 0.7840 0.9575 <0.01 **

GSR Mean <0.01 ** 0.1110 0.1162 0.6136 0.2411

*, **, and *** represent that the p-value is less than 0.05, 0.01, and 0.001, respectively.

4.2.3. Discussion

Our results show that the six EEG features (i.e., relative power spectral densities of
Fp1 delta, Fp1 beta, Fp2 delta, Fp2 gamma, T4 delta, and T4 beta) were determined as the
valid patterns representing the level of cybersickness. Figure 7 shows that the cybersickness
severity (horizontal axis) and EEG features (vertical axis) are highly correlated, given
the coefficient of determination R2 being greated than 0.9. The intercept and regressed
coefficient values obtained by OLS regression are represented in the legend. The results
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in Figure 7a–d demonstrate that a variation of the relative power spectral density of the
pre-frontal lobes is significantly related to the degree of cybersickness. This is reasonable,
because it is well known that the prefrontal area is activated for the prior expectation of
motion direction [70]. A large portion of designed CYRE content aims to artificially induce
a conflict between anticipation and percipation, as explained in Bos’s model. Hence, this
result suggests that a visual motion imposes a heavy load on the related neurological
motion expectation process. Notably, the relative delta power of the overall area increases
significantly when cybersickness increases, as shown in Table 3. As discovered in a previous
study, a delta power increasing in various brain regions reflects a stress component affected
by motion sickness [71]. Therefore, a similar analysis might be applied: cybersickness
induced by viewing a VR scene can be treated as a stressification. Figure 7e shows that the
relative delta power of the T4 lobes is also increased when the cybersickness level increases;
this result is consistent with a previous physiological study [1]. In general, activities in
the temporal lobe are involved in the sensory process to derive the appropriate retention
of visual memory [72]. Thus, we can determine that a visually induced cybersickness is
associated with the neural store mechanism of visual stimuli. The relative beta powers of
Fp1 and T4 decrease significantly when the cybersickness increases, as shown in Figure 7b,f.
According to Valentino and Dufresne’s demonstration [73], beta power variation reflects the
process of attending to the stimuli of the task. Thus, according to our results, increases of
cybersickness are accompanied by a decrease in the participants’ concentration. Although
we could not find any statistical significance between GSR, ECG, and cybersickness severity
in this study, recent work reported that such biological information could be the feature to
predict the degree of cybersickness [74]. Such kinds of regression approaches are emerging
based on machine learning techniques, and then it is expected that those factors would also
be considered to predict potential cybersickness severity.

(a) (b) (c)

(d) (e) (f)

Figure 7. Selected features of EEG (i.e., relative power spectral density) through statistical tests and
the results of a linear regression onto cybersickness scores. (a) Fp1 delta, (b) Fp1 beta, (c) Fp2 delta,
(d) Fp2 gamma, (e) T4 delta, and (f) T4 beta.
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4.3. Individual Characteristics and Cybersickness

Beyond the VR content factors, the individual characteristics and sickness susceptibil-
ity might be related to the degree of cybersickness [59,60]. To investigate this, we analyzed
the collected MSSQ and SSQ data by performing statistical tests.

4.3.1. Sex and Cybersickness

First, we investigated whether sex determined cybersickness severity or not. For this,
the participants were categorized into two groups: women and men, as shown in Table 2,
and the independent two-sample t-test was performed on the pre-assessment of the SSQ
and the three SSQ results after the participants had viewed the controllable urban (CCU),
uncontrollable astrospace (CUA), and uncontrollable urban (CUU) scenes. As shown in
Table 4, there is no significant difference in the cybersickness symptoms experienced by the
women and men. This finding is consistent with a previous study of 36 participants [66]. In
contrast, Koslucher et al. showed that the ratio of motion sickness incidence for women
versus men was greater than 4:1 [67]. Such results suggest that sex is one of the future
topics to be examined further as a part of the human factor for determining the severity of
cybersickness.

Table 4. Statistics concerning sex and cybersickness.

sN sO sD sT

Rest

Men 7.325 17.190 13.423 14.960

Women 9.817 14.630 18.358 19.947

p-value 0.336 0.138 0.311 0.191

CCU

Men 14.140 19.627 35.794 24.844

Women 12.582 15.490 27.840 20.055

p-value 0.745 0.353 0.352 0.432

CUA

Men 20.273 26.395 44.991 33.059

Women 17.974 20.763 32.480 26.017

p-value 0.631 0.156 0.081 0.183

CUU

Men 35.945 34.110 63.386 47.952

Women 29.450 29.551 52.856 40.327

p-value 0.356 0.429 0.345 0.351

4.3.2. Age and Cybersickness

We hypothesized that age is a factor reflecting the individual characteristics of the
experienced level of cybersickness. The participants were categorized into two groups
as tabulated in Table 2: young and middle-aged [68]. We compared the age groups to
discover a relationship between age and cybersickness. The independent two-sample
t-test was performed on SSQ scores. Table 5 and Figure 8a–d show the results of the rest
state and three-scene categories (CCU, CUA, and CUU). According to our results, there
are statistical significances for every SSQ score of the CCU scenes between the young and
middle-aged groups. The results indicate that the elder participants experienced 393%,
193%, 256%, and 254% more severe nausea, disorientation, oculomotor fatigue, and total
sickness from controllable content, respectively. Therefore, cybersickness is independent
of age when viewing the general VR content. However, the proficiency in controlling is
highly associated with sickness, because we observed that the middle-aged (upper 30)
participants experienced more difficulties in controlling the VR scenes during the subjective
evaluation, although the pre-training time had been given in the tutorial session as depicted
in Figure 3.
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(a) (b)

(c) (d)

Figure 8. SSQ score comparison in accordance with age. (a–d) show the SSQ scores sN , sO, sD, and
sT of the rest state, CCU, CUA and CUU, respectively. ** and *** represent that p-value is less than 0.01
and 0.001, respectively.

Table 5. Statistics concerning age and cybersickness.

sN sO sD sT

Rest

Under 30 9.321 21.694 15.680 18.571

Upper 30 7.281 16.756 17.217 15.747

p-value 0.466 0.213 0.771 0.494

CCU

Under 30 7.018 13.505 21.280 15.132

Upper 30 27.616 26.131 54.581 38.384

p-value <0.001 *** <0.01 ** <0.001 *** <0.001 ***

CUA

Under 30 16.448 22.043 34.240 26.524

Upper 30 24.854 26.131 46.888 35.235

p-value 0.102 0.342 0.103 0.127

CUU

Under 30 33.445 34.502 58.720 45.912

Upper 30 35.235 29.875 54.947 38.778

p-value 0.639 0.124 0.755 0.419

** and *** represent that p-value is less than 0.01 and 0.001, respectively.

4.3.3. Susceptibility and Cybersickness

Based on the collected MSSQ and SSQ scores, we investigated how individual char-
acteristics in motion sickness susceptibility affect the degree of cybersickness. For this
analysis, the participants were categorized into the upper, middle, and lower 1/3 percentile
groups of sMSSQ,A, sMSSQ,B, and sMSSQ susceptibility scores, respectively.

Figure 9 shows the results of the independent two-sample t-test performed on the SSQ
scores. Figure 9a–d show the sN , sO, sD, and sT scores of the three groups based on the
sMSSQ,A. We observe that sickness experience in childhood is related to the CCU scenes
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across all SSQ scores. The sMSSQ,A upper 1/3 group experiences significantly more severe
cybersickness than the sMSSQ,A lower 1/3 group for these scenes. For the CUA scenes, we
observe significantly higher sO and sT scores of the sMSSQ,A upper 1/3 group than those of
the sMSSQ,A lower 1/3 group.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9. SSQ score comparison: individual sickness susceptibility and the scene categories. The
three treatment groups (lower, middle, and upper 1/3 percentiles of susceptibility) are composed
based on sMSSQ,A (a–d), sMSSQ,B (e–h), and sMSSQ (i–l), respectively. *, **, and *** represent that
p-value is less than 0.05, 0.01, and 0.001, respectively.

Figure 9e–h show the SSQ results based on the sMSSQ,B score. The results show that
the sickness experience of adults was more sensitively reflected in cybersickness. The sO,
sD, and sT values of the sMSSQ,B upper 1/3 group are significantly higher than those of
the sMSSQ,B lower 1/3 group in all of the scene categories. However, in the case of sN ,
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no relationship is observed between previous sickness experience and nausea caused by
viewing the VR scenes.

Figure 9i–l show the relationship between motion sickness susceptibility, sMSSQ, and
SSQ scores. All of the SSQ scores of the sMSSQ upper 1/3 group are significantly higher
than those of the sMSSQ lower 1/3 group, except for sN , after viewing uncontrollable scenes.

Despite some exceptions in the statistical results, an individual’s susceptibility for
motion sickness is mostly correlated with cybersickness. Moreover, the general cybersick-
ness symptoms when viewing a controllable scene strongly depend on motion sickness
susceptibility. Consequently, motion sickness susceptibility is a major individual factor
related to cybersickness. These results might be considered when providing the VR services,
for example, embedding a certain interface that pre-determines the difficulty level of VR
games based on the obtained sMSSQ from an arbitrary user.

4.4. Cybersickness Prediction

After obtaining the cybersickness score for each VR scene during the evaluation
session, this subjective score can be used as the label corresponding to the VR scene for the
supervision of the cybersickness prediction model. Thus, apart from the previous schemes
that employed SSQ results as labels of long-term content [26,75], more data-label pairs (i.e.,
VR scene and cybersickness score) are available to train the predictor, which might yield a
more reliable performance. To show how this constructed dataset can quantify the level of
cybersickness, we extracted simple visual features from the VR scenes. These features were
regressed onto the subjective score by using support vector regression.

As stated in Section 4.1, a scene movement is an important contributing factor of
cybersickness; these results are also consistent with Bos’s theory. Sensory conflict remains
a hypothetical parameter that cannot be measured directly, but which is driven by visual
stimuli (i.e., visual motion) in a virtual environment [76]. In this context, to extract repre-
sentative features that reflect visual motion, we used an optical flow algorithm [77]. Then,
the motion vector was estimated as shown in Figure 10. Let ~mn,t be the motion vector of
the nth pixel at the tth frame. The first visual feature f1 is an average magnitude of motion,
which is obtained by the spatio-temporal mean pooling of ~mn,t in the VR scene:

f1 =
1

T · N ∑
t

∑
n
|~mn,t|, (2)

where N and T are the total number of motion vectors and frames, respectively. Moreover,
we assumed that the holistic distribution of motion vectors is an effective visual feature
that represents the perception of self-motion. Thus, the variance of motion magnitude was
extracted:

f2 =
1

T · N ∑
t

∑
n
(|~mn,t| − f1)

2. (3)

Additionally, we utilized the pth percentile-pooling method, which is a well-known
technique reflecting the human visual system or the human perceptual characteristic that
the most severe spatial visual stimulus has a dominant effect on the overall delivered
quality experience, which was employed in several studies related to quantifying the
quality of experience fields [78–82]. In this paper, we captured such characteristics as the
visual features by calculating the average and variance for both the upper and lower pth
percentiles of motion vectors (we set p = 10%):
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f3 =
1

T · N/10 ∑
t

∑
n∈np,u

|~mn,t|, (4)

f4 =
1

T · N/10 ∑
t

∑
n∈np,u

(|~mn,t| − f3)
2, (5)

f5 =
1

T · N/10 ∑
t

∑
n∈np,l

|~mn,t|, (6)

f6 =
1

T · N/10 ∑
t

∑
n∈np,l

(|~mn,t| − f5)
2, (7)

where |~mt|p,u and |~mt|p,l denote the upper and lower pth |~mn,t|s; thus,

np,u =
{

n
∣∣∣|~mn,t| > |~mt|p,u

}
and np,l =

{
n
∣∣∣|~mn,t| < |~mt|p,l

}
, respectively.

(a) (b)

Figure 10. Motion vector visualization. (a,b) are the rendered VR scene and the estimated motion
vector, respectively.

Using (2)–(7), the above-defined six visual features were extracted from the motion
vectors and compared with the learned model using support vector regression along with
the subjective cybersickness score. For this analysis, the visual features were learned by the
cross-validation method with 100 train-test trials. For each trial, the randomly chosen train-
ing set consisted of 80% of the constructed dataset, i.e., 6396 (123 participants× 52 scenes)
data-label pairs, and the test set consists of the remaining 20%, i.e., 1612 (31 participants×
52 scenes) data-label pairs. The predictive performance was evaluated using the Spear-
man’s rank-order correlation coefficient (SROCC) and the Pearson’s linear correlation
coefficient (PLCC) relative to the cybersickness score.

Table 6 shows the performance of the tested models in terms of SROCC and PLCC.
To better understand the contributions of each extracted visual feature, we compared the
performance of the subsets of ( f1, f2), ( f1, f2, f3, f4), ( f1, f2, f5, f6), and ( f1, f2, f3, f4, f5, f6).
Although simple visual features were extracted, the prediction model shows reasonable
performance. Note that when f1– f4 (i.e., the mean and variance of all of the vectors and the
upper pth percentiles of motion vector) were employed to train the model, we achieved
the best predictive performance. Otherwise, when the mean and variance of the lower pth
percentiles of the motion vectors were added as the visual features f5 and f6, the predictive
performance decreased. The result shows that a stronger visual motion stimulates a higher
degree of sensory conflicts, which provokes severe cybersickness.

Moreover, to verify that the constructed dataset is also valid for the previous meth-
ods of cybersickness prediction, we compared three previously developed cybersickness
prediction schemes: Padmanaban et al., Kim et al. [61], and Kim et al. [27]. The first and sec-
ond schemes are regression methods based on hand-crafted features, and the third model
captures cybersickness-related representations automatically via supervised learning with
a deep neural network. Table 7 shows the performance of previous schemes in terms of
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SROCC and PLCC. Notably, the deep learning approach could achieve reliable predictive
performance with our dataset without any data augmentation since we constructed a
massive dataset with 8008 (154 participants × 52 scenes) labels. Our results imply that the
constructed dataset is applicable in various scenarios, including amelioration, suppression,
and prediction of cybersickness.

Table 6. Performance of 100 trials of randomly chosen training and test sets.

Visual Features SROCC PLCC

( f1, f2) 0.635 0.602

( f1, f2, f3, f4) 0.665 0.642

( f1, f2, f5, f6) 0.603 0.574

( f1, f2, f3, f4, f5, f6) 0.606 0.602

Table 7. Performance of 100 trials by features of the previous schemes.

SROCC PLCC

Padmanaban et al. [26] 0.532 0.577

Kim et al. [61] 0.621 0.581

Kim et al. [27] 0.733 0.780

4.5. General Discussion

Our results show that the lower-level attributes of the CYRE content that were con-
sidered are significantly related to the degree of cybersickness. In particular, camera
movement, including rotation, translation, navigating speed, and acceleration, is a domi-
nant factor that determines cybersickness incidence and its severity (Figure 6). Due to the
fact that the environmental setting is designed to evaluate visually induced cybersickness,
such results conclude that CYRE content and the dataset are well constructed to reflect
previous neurological theories in terms of sensory conflict. Additionally, the hand-crafted
features of brain signals (Fp1 delta, Fp1 beta, Fp2 delta, Fp2 gamma, T4 delta, and T4
beta) effectively represent the level of cybersickness (Table 3 and Figure 7); this implies
that an advanced cybersickness monitoring system can be achieved by employing these
features as biomarkers in various VR therapy scenarios. Moreover, we observed that some
human factors are also related to cybersickness in terms of individual characteristics: age
(Table 5 and Figure 8) and sickness susceptibility (Figure 9). This work also shows the
possibility of quantification/objectification of the cybersickness level based on substan-
tial data-label pairs (Tables 6 and 7); this would lead to the development of advanced
data-driven approaches for modeling an accurate cybersickness predictor.

5. Conclusions

In this study, we created CYRE content with 52 scenes reflecting different cybersickness
factors. For these VR scenes, we collected subjective opinions and objective data using
a protocol designed for cybersickness evaluation. Using the constructed dataset, we
analyzed cybersickness in terms of each factor. We verified that a large number of data-label
pairs could be used in supervised learning to produce a reliable cybersickness prediction.
Although we showed a simple cybersickness predictor based on the rendered VR scene, it
would also be possible to train the predictor based on biological signals since our dataset
contains biological data-label pairs. The presented results are limited by a part of the
analysis, compared with the considerable amount of data that would ensure that a number
of combinations of variables are available to be analyzed; furthermore, an additional in-
depth study might be available. We expect that the constructed dataset and the reported
results can be applied to create improved VR services since this work is in parallel with
the IEEE standard association activities [83]. Additionally, the results can be applied to
the development of the next-generation visual content targeted to the extended reality
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and holography beyond VR. In particular, this study shows a direction to quantitatively
analyze the more subjective and psychological quality of experience (including presence,
attentiveness, emotion, and aesthetic quality) in terms of visual content and services in
conjunction with statistics and learning-based methods. To achieve this, we are now
attempting to generalize and quantify immersion in accordance with these additional
human factors.
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