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Self-assembly is one of the most promising strategies for making functional materials
at the nanoscale, yet new design principles for making self-limiting architectures, rather
than spatially unlimited periodic lattice structures, are needed. To address this challenge,
we explore the tradeoffs between addressable assembly and self-closing assembly of a
specific class of self-limiting structures: cylindrical tubules. We make triangular subunits
using DNA origami that have specific, valence-limited interactions and designed bind-
ing angles, and we study their assembly into tubules that have a self-limited width that
is much larger than the size of an individual subunit. In the simplest case, the tubules are
assembled from a single component by geometrically programming the dihedral angles
between neighboring subunits. We show that the tubules can reach many micrometers
in length and that their average width can be prescribed through the dihedral angles.
We find that there is a distribution in the width and the chirality of the tubules, which
we rationalize by developing a model that considers the finite bending rigidity of the
assembled structure as well as the mechanism of self-closure. Finally, we demonstrate
that the distributions of tubules can be further sculpted by increasing the number of
subunit species, thereby increasing the assembly complexity, and demonstrate that using
two subunit species successfully reduces the number of available end states by half.
These results help to shed light on the roles of assembly complexity and geometry in
self-limited assembly and could be extended to other self-limiting architectures, such as
shells, toroids, or triply periodic frameworks.
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Self-assembly is a fundamental building principle used by Nature to make functional ma-
terials, including virus capsids for encapsulation and delivery (1, 2), cytoskeletal filaments
for transport (3–5), and macromolecular machines with diverse roles, like the ribosome
for protein synthesis (6). Recently, there has been considerable effort aimed at mimicking
biological self-assembly to synthesize user-prescribed structures from synthetic nanometer-
and micrometer-scale particles. For example, by encoding short-range specific interactions,
DNA-grafted colloidal particles can be programmed to assemble into a variety of two- and
three-dimensional crystal phases with prescribed symmetry groups and lattice constants
(7–10). However, rather than unbounded crystal phases, the aforementioned biological
functionalities—encapsulation, motility, and protein synthesis—arise from self-limiting
structures that have one or more self-limited length scales.

How does one go beyond periodic lattice structures with macroscopically uncontrolled
dimensions, to program the assembly of self-limiting architectures that have self-limited
length scales that are arbitrarily large with respect to the size of the individual subunits
(11)? There are two prominent paradigms for prescribing self-limited assembly: 1) addre-
ssable assembly and 2) self-closing assembly. In addressable assembly, every component
of a multispecies ensemble is distinct and is programmed to occupy a specific location
within a target structure (12–14). Therefore, increasing the self-limited length scale
necessitates increasing the assembly complexity in terms of the number and interaction
specificity of the subunits. In self-closing assembly, anisotropic interactions give rise to the
accumulation of curvature during growth that causes the structure to self-close at a finite
size (11). In contrast to addressable assembly, the self-limited length scale in self-closing
assembly is therefore controlled by the binding angles between neighboring subunits and
is programmed geometrically rather than through specific interactions and, as such, may
require only one or relatively few subunits to target a specific self-closing size. But which
strategy should one select for a particular target geometry, and which approach is more
accurate, precise, or economical? Because the vast majority of examples either address
only one paradigm or do not distinguish between the two, as in DNA-coated colloids
(15), DNA tiles (16–19), hierarchical assembly of DNA origami (20–24), and designed
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proteins (25, 26), direct comparisons between addressability and
geometry in prescribing self-limited assembly are obscured.

In this article, we create an experimental platform using DNA
origami for examining the roles of geometric and interaction
specificity in arguably the simplest system that could in principle
be programmed by geometry alone: the assembly of cylindrical
tubules from rigid triangular monomers. The tubule is the ideal
target geometry because it represents an infinitely large class of
structures, each of which can be assembled from a single subunit
species by controlling the dihedral angles between neighboring
subunits. As anticipated, we show that we can vary the self-limited
width of the tubules by tuning the dihedral angles between neigh-
boring subunits without changing the interaction complexity.
However, we find that the width of the assembled tubules takes a
range of values and that the distribution broadens upon increasing
the mean tubule width. We discuss how this distribution of the
self-limited width is a generic feature of self-closing assembly
when the self-limited length scale is sufficiently large compared to
the size of the building block (27), which we understand using

a simple theory. We conclude by exploring how increasing the
assembly complexity enables us to constrain the width distribution
by using multiple species of triangles with increased numbers
of specific interactions. For a binary mixture of triangle species,
we validate that the allowed states of the assembled tubules are
reduced by half, as expected from simple geometrical arguments.

1. Results and Discussion

A. Design Principles. Our system consists of rigid triangular
subunits made by DNA origami (24) that encode all of the in-
formation necessary to self-assemble tubules with user-prescribed
geometries (Fig. 1A). Assembling tubules from triangular sub-
units requires that we specify two types of information: 1) the
interaction specificity between the edges and 2) the local cur-
vature between neighboring subunits. We encode the specific
interactions by using unique protrusions and recesses that give
rise to shape-complementary lock-and-key interactions whose
attraction originates from blunt-end stacking (Fig. 1B) (28). At a
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Fig. 1. Overview of the design rules for tubule assembly. (A) Triangular subunits bind at the edges with dihedral angles φ that specify the principal curvatures
of the assembly to favor the formation of cylindrical tubules. (B and C) Design principles of triangular subunits assembling into tubules. (B) Each side has self-
complementary lock-and-key interactions encoded in shape-complementary protrusions and recesses. Holes on the faces are shaded, while protrusions are
highlighted with white. Black arrows indicate the sides that bind together. In this case, each side binds to itself. The subunits have edge lengths of 56 nm; each
side has a width of 10 nm and a height of 15 nm. (C) The sides are also beveled so that when two triangles bind, they form a unique dihedral angle φ that is
determined by the bevel angle. (D) A triangular lattice that is cut along two parallel lines can be rolled into a tubule, with periodicity determined by indexes
m and n. m denotes the number of steps along side 3, while n is the number of steps along side 1 or 2 (if n > 0, it is side 1, and if n < 0, it is side 2). (E) Any
tubule is identified by an index pair, (m, n). V tubule and X tubule, corresponding to (5,0) and (10,0), are achiral tubules with 5 and 10 triangles in circumference,
respectively. Tubules of varying width and chirality can be assembled by tuning the magnitudes of the dihedral angles φ1, φ2, and φ3. For the size of subunits
shown here, (5,0) and (10,0) tubules have wall thicknesses of 15 nm and cavity diameters of ∼60 nm and 150 nm, respectively.
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minimum, we require three specific interactions—one per side—
which are each homophilic. These three specific interactions allow
the triangular subunits to assemble into a deterministic triangu-
lar lattice, where each side aligns with one of the three lattice
directions.

Additionally, we encode the local curvature by specifying the
dihedral angles between neighboring subunits. Specifically, we
bevel each side of the triangular subunit, such that it forms the
three dihedral angles with its three neighbors (Fig. 1C ). Here, the
bevel angle is given by θB as (π − φ)/2, where φ is the dihedral
angle. The unique combination of the three dihedral angles can
be assigned to target a tubule geometry. For example, the subunit
in Fig. 1 B and C, which assembles into a tubule with five subunit
edges in circumference, has dihedral angles of 138.2, 138.2, and
−158.4◦ for sides 1, 2, and 3, respectively. The accumulation of
curvature from the dihedral angles upon assembly results in the
formation of a curved triangular lattice. For appropriately chosen
angles, the lattice will close upon itself to form a tubule (Fig. 1D),
which can be chiral or achiral depending on how the tubule closes
(Fig. 1E). See SI Appendix, section 2 for more details of the tubule
geometry.

Because the curvature originates from the combination of three
bevel angles, the width, handedness, and pitch of the resulting
tubules can be programmed using these three angles alone. Indeed,
the final tubule structure is equivalent to the equilateral Yoshimura
pattern of a buckled cylindrical shell (29), which constitutes a
class of origami tilings of cylinders via a single triangular facet
with a single set of fold angles on its three edges. In the case of
tubules, larger dihedral angles in the direction perpendicular to
the tubule axis produce wider tubules. Furthermore, setting the
dihedral angles of sides 1 and 2 to different values produces chiral
tubules with different pitch and handedness (Fig. 1E). The relative
magnitude of the two dihedral angles determines the handedness
and the difference between the two angles determines the pitch,
with a larger difference leading to a larger pitch. Thus, by tuning
the dihedral angles of the three sides, we can assemble a variety of
different tubule structures. We note that the ability to program any
tubule geometry using a single triangular facet is in contrast to the
ability to program assembly of an icosahedral shell, for example,
which requires a larger and larger number of unique facets upon
increasing the shell diameter (1, 24).

The resulting tubules can be uniquely classified using a pair of
lattice indexes, (m,n) (30). Here,m refers to the vector along side
3 of the triangle and n refers to the vector along side 1 (n > 0)
or side 2 (n < 0). Therefore, (m,n) defines the shortest distance
along the triangular lattice to go around the tubule and come back
to the same vertex. Note that we consider only the case m ≥ |n|.
With our convention, we use the positive index n to define right-
handed tubules and the negative index n for left-handed tubules.
Each tubule type is associated with a different set of dihedral angles
for the three sides.

B. Tubule Assembly. To demonstrate the utility of our
experimental approach, we design two different monomers
that assemble into tubules with different widths: V triangle,
which targets a (5,0) tubule, and X triangle, which targets a
(10,0) tubule (Fig. 2A).* Each side of the triangle has a cross-
section that is 4 × 6 double helices arranged on a square
lattice (SI Appendix, Fig. S3A). We specify the three unique bevel
angles required for a particular tubule geometry by varying the
relative lengths of the double helices (SI Appendix, Fig. S3B).

*Roman numerals V and X are used as shorthand for the target tubule types (5,0) and
(10,0), respectively.

We encode the specific shapes of the protrusions and recesses
by designing the scaffold routing, which we choose to disallow
off-target binding and to enforce the correct relative orientations
of neighboring subunits. The size of the subunits is set by the
length of the DNA scaffold, which is 8,064 nucleotides long. See
SI Appendix, section 3 for details of the subunit design.

We fold, purify, and assemble the subunits using standard DNA
origami protocols. In brief, we fold the origami using a slow, linear
temperature ramp, purify the resulting monomers by gel extrac-
tion, and then assemble them at constant temperature for 1 wk
in a rotating incubator (31) (SI Appendix, section 5). For a given
design, we perform multiple assembly experiments at different
concentrations of MgCl2 to tune the strength of the intersubunit
attraction. Finally, we characterize the structures of the individual
monomers using single-particle cryogenic electron microscopy
(cryo-EM) (32) and the entire assemblies using negative-stain
transmission electron microscopy (TEM).

The bevel angles of the folded monomers are close to the
target values but do not match them exactly. By fitting a pseu-
doatomic model to our cryo-EM reconstructions (33) we make
an estimate of the bevel angles of each of the three sides for
both of our monomers (Fig. 2A). We find that for the V triangle
the three sides have angles of (21.3± 0.1, 21.3± 0.1,−5.5±
0.1) compared with the target angles of (20.9, 20.9, −10.8).
Comparing these angles to the angles of different tubule types, this
monomer is closest to a (5,0) tubule, as designed.† In contrast,
for the X triangle, we see monomer bevel angles of (11.4±
0.1, 9.0± 0.1,−6.4± 0.1) compared with (10.4, 10.4,−5.2),
yielding a closest predicted state of a (9,−1) tubule. While the
(9,−1) tubule has a similar diameter to the (10,0) one, it is
chiral and left handed rather than achiral, as in the designed
monomer. See SI Appendix, section 8 for more details on the cryo-
EM reconstructions.

The assembly of the triangular subunits into self-limiting struc-
tures depends on the intersubunit attraction, which can be con-
trolled by varying the concentration of MgCl2. For both designs,
we observe the same sequence of outcomes upon increasing the
Mg2+ concentration (Fig. 2B). At low Mg2+ concentration, we
observe only monomers and oligomers containing a few sub-
units. At intermediate Mg2+ concentration, we see the assem-
bly of filament-like, self-limited structures in coexistence with
monomers. Given that we observe the coexistence of assemblies
and monomers, we hypothesize that the assembly occurred near
to equilibrium and that growth occurred by monomer addition.
However, we note that additional experiments are required to
test this hypothesis and uncover the detailed kinetic pathways
to assembly. At higher Mg2+ concentrations, we observe large
disordered aggregates and rarely observe monomers or small clus-
ters. Therefore, we hypothesize that these large aggregates are
likely due to kinetic arrest (34). While these results are consistent
with previous measurements of the stacking interactions between
blunt ends, which show that the interactions become stronger
upon increasing Mg2+ concentration (35), we highlight that our
experimental estimates of the binding free energies per side differ
by roughly a factor of 2 from the sum of all of the stacking
energies (SI Appendix, Table S2). Therefore, given the importance
of the binding free energy in the assembly outcome, experimental
techniques to directly measure the binding free energies, as well as
more complete models of these types of lock-and-key interactions,
are needed.

†The closest state is the tubule type whose bevel angles have the minimum distance in
quadrature from the measured angles.
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Fig. 2. Self-assembly of tubules. (A) Cryo-EM single-particle reconstructions for V triangle and X triangle. Shown are cross-sections of three sides of the triangles
(gray) and the estimated bevel angles, θ, from fitting the cryo-EM reconstruction to a pseudoatomic model (maroon) (SI Appendix, section 8). Tubule illustrations
show the target geometry (labeled target) and the expected tubule geometry predicted from our cryo-EM measurements (labeled cryo) for the V tubule and
the X tubule. (B) Negative-stain transmission electron micrographs of V triangles after incubation at different MgCl2 concentrations for 1 wk at 40 ◦C. The
points above the images show the MgCl2 concentrations that lead to assembly of monomers (orange), tubules (cyan), or aggregates (purple). (C) Tomography
reconstructions of the V and X tubules, showing different z positions. The orientation of side 3 is illustrated with white lines. (D) Images of tubules observed with
V triangles (Right) and X triangles (Left). For the X tubule one can see a Moiré pattern where the tubule has closed on itself. (E) Histograms of the tubule length
observed with epifluorescence for V tubules (orange) and X tubules (cyan). Note that the length distribution combines statistics from tubules with different
lattice numbers. Dashed lines are guides for the eye to highlight the exponential decay in length (SI Appendix, section 7.A). Inset shows an example fluorescence
image.

TEM tomography confirms that the filament-like structures
are indeed tubules. First, we observe a single filament assembled
from V triangles (Fig. 2C ). Looking at different slices through
the filament in the direction normal to the EM grid, or z stack,
we see that the structure clearly shows two triangular lattices at
different z positions, separated by a hollow core. The distance
between the top and bottom lattices is around 40 nm, which is
shorter than the expected diameter of 88 nm, but longer than 20
nm, or twice the thickness of a triangle. Therefore, we hypothesize
that the cross-section of the tubule deposited on grid is elliptical.
Finally, we also see that the top and bottom lattices have different
orientations of the triangular lattice with respect to one another,
as would be expected for a chiral tubule. Taken together, these
observations confirm that the filament is indeed a tubule. Going
further, the lattice orientation can be tracked around the tubule,

yielding a (4,1) tubule for this case. While this determination gives
us only the magnitude of n , we also determine the handedness
by comparing our reconstructions to reconstructions of a DNA
origami nanohelix labeled with gold nanoparticles in a right-
handed, chiral arrangement (SI Appendix, section 7.B) (36, 37).

Similarly, we find that the wider filaments formed from X
triangles are also tubules. As with the V triangles, the tomograms
of the wide filaments show two triangular lattices, which are
mirror images of one another and spaced apart along the z
direction. In this case, the distance between the bottom and the
top lattices is around 20 nm, which matches the height of two
triangles. We suspect that this spacing is due to the flattening of the
X tubule during the sample preparation. This hypothesis is further
supported by the observation that the two triangular lattices ap-
pear to be planar, as expected for a flattened tubule. Finally, similar
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to the example V tubule, the specific X tubule shown in Fig. 2C
is also chiral and right handed, as seen in the mirror reflection of
the top and bottom lattices (SI Appendix, section 7.B).

Remarkably, we find that both V tubules and X tubules can
grow to micrometers in length and exhibit length distributions
that are characteristic of equilibrium one-dimensional growth.
Fig. 2D shows examples of some of the longest tubules that we
observe in electron microscopy for both designs. The V tubule
is roughly 1,200 nm in length and is made from about 210
subunits. The X tubule is nearly 3 μm long and is assembled from
about 1,400 subunits. To complement our EM observations,
we also perform epifluorescence microscopy experiments to
get a more complete view of the tubule lengths (Fig. 2E) (see
SI Appendix, section 7.A for details). We find that both V and
X tubules are characterized by length distributions that decay
exponentially, with means of 0.5 and 0.9 μm, respectively, which
are consistent with expectations for equilibrium one-dimensional
assembly (38). In the extremes, we find assemblies reaching up
to 5 μm in length. Comparing our X-tubule results to earlier
attempts to assemble tubules of similar width from DNA origami
subunits (23) shows that our approach yields assemblies that are
roughly an order of magnitude longer and contain about five
times the number of subunits. Furthermore, our results show that
although the width of the tubule is self-limited, the tubule lengths
are unconstrained.

C. Tubule Distributions. Whereas the results above show the
structure of single tubules, our assembly experiments yield an
ensemble of tubules that exhibits a variety of widths and lattice
orientations, despite being formed from a single monomer type.
For both the V- and X-tubule designs, we identify the pair of
indexes (m,n) that classifies the structure for each of hundreds of
individual tubules observed under TEM and create a distribution
(Fig. 3A). The distribution shows that the most probable tubule
types are (4,0) and (9,4) for the V and X tubules, respectively,
with the probability of different states falling off with distance
from this tubule type. Furthermore, we find that the breadth of the
X-tubule distribution is larger than that of the V-tubule distribu-
tion. Although we cannot easily determine the chirality of every
tubule, we examined 13 chiral V tubules and 15 chiral X tubules
using tomography. In both cases, all of the tubules that we exam-
ined were right handed. See SI Appendix, sections 7.B and 7.C for
a detailed description of the tubule classification.

The observed distributions beg two important questions:
1) Why are the tubule distributions not centered around the
target structures? And, 2) What determines the breadth of the
tubule distribution around the most probable tubule type? We
address the first question by returning to our single-particle
reconstructions of the monomers from cryo-EM (Fig. 2A). While
the bevel angles of the cryo-EM map for the V triangle predict a
tubule state of (5,0), which is close to the peak of the experimental
distribution, (4,0), the X-triangle prediction of (9,−1) is 13%
narrower in width than the (9,4) peak that we observe. We note
that the cryo-EM map of the X triangle shows that some parts
of the lock-and-key design protrude from the structure due to a
missed cross-over in the origami design (SI Appendix, Fig. S18).
Therefore, we hypothesize that this aspect of the structure causes
a poor fit for the lock-and-key shapes of the interaction, leading
to unintended torques that could skew the dihedral angles to a
different value. This misfit would cause a shift in the mean of the
distribution away from what is expected from the geometry of the
monomer alone.

Next, we tackle the origin of the breadth of the distribution.
We start by noting that tubules with neighboring lattice numbers

A

B C

Fig. 3. Measured distributions of the lattice numbers of observed tubules.
(A) Lattice number distribution of the two tubules. The size of each circle
is proportional to the number of tubules found for that lattice number.
Orange represents data for the V tubule, while cyan represents data for
the X tubule. The square symbols denote the target states. Contours show
the expected spread based on model predictions, described in the text,
where the spacing between contours is 20% of the peak probability. The plot
shows distributions from n = 70 and n = 182 tubules for V and X tubules,
respectively. (B) Histograms of the measured circumferences of the tubules.
Points come from a model prediction using a bending rigidity of B = 1.8 ±
0.3 kBT ; bars show experimental data. (C) The corresponding distributions of
the circumferences normalized by the mean, whose variance, σ2

circ, is used to
estimate B. σcirc = 0.137 is the average of the SDs obtained from the V- and
X-tubule distributions.

vary only by small changes in their dihedral angles. Therefore, if
the bending rigidity of the assembly is sufficiently small, thermal
fluctuations will cause the dihedral angles between neighboring
triangles to explore a range of possible values, leading to tubules
with larger or smaller diameters.

This idea can be captured by considering the Helfrich energy of
an elastic sheet, EH = 1

2BA(Δκ⊥)
2, where A is the surface area,

B is the bending rigidity, and Δκ⊥ is the fluctuation of the sheet’s
curvature in the circumferential direction (39). We assume that
as the assemblies grow, they must first form a patch-like circular
sheet before closing into a tubule. Thermal fluctuations will cause
this sheet to accommodate different curvatures from its preferred
value, but once it grows large enough to close into a tubule, we
assume that it cannot open into a sheet again, thereby locking in a
specific tubule circumference. If the growth rate is faster than the
dissociation of a subunit–subunit bond, then once a tubule forms
and starts to grow, the possibility of opening a large number of
bonds to allow the tubule to reform into a different type becomes
increasingly unlikely. Therefore, we estimate the size of assemblies
at this closure point as a disk with a diameter that corresponds
to the circumference of the closed tubule. The fluctuations of the
sheet’s curvature at the point of closure will inherently lead to a
distribution of tubule circumferences. Under these assumptions,
we can write the Helfrich energy for a tubule at closure as

EH =
1

2
Bπ3

(
ΔC

C

)2

, [1]
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where C is the circumference of a tubule. Assuming that the
circumferences follow a Boltzmann distribution, P ∼ exp(−EH),
we can relate the spread of the widths to the bending rigidity (27)
(see SI Appendix, section 9 for details).

The predictions from the Helfrich energy are consistent with
our experimental observations, suggesting that the width distribu-
tion is determined by the bending rigidity of the growing assembly
and the irreversibility of closure. Fig. 3B shows the distribution
of the tubule circumference for both V and X tubules. Following
the insight we gained from considering the Helfrich energy, we
rescale the circumference by the mean circumference of each
distribution. Fig. 3C shows that for both V and X tubules the
scaled distributions have similar breadths, with SDs of 0.149 and
0.125, respectively. The importance of this observation is that it is
an inherent feature of self-closing assemblies at finite temperature:
Whenever the assembly has a finite bending rigidity, the system
will form a distribution of end states with a breadth that depends
on the self-limited length scale relative to the size of the subunit.

Using the variance of the width distributions, we make an
estimate of the bending rigidity of the V and X tubules. Assuming
both assemblies have the same bending rigidity, we find B =
1.8± 0.3 kBT . Interestingly, the bending modulus that we find
is orders of magnitude smaller than a naive estimate from the
“worm-like” bundle model (40), which predicts that the elastic
stiffness of the edges of triangles in a tubular assembly is of
the order of 103 to 104 kBT , suggesting that flexibility of the
intersubunit connections plays a dominant role. We can also
use our measured bending rigidity as an input to perform more
detailed energetics calculations (SI Appendix, section 9) to get a
complete (m,n) distribution for the expected tubules (27), which
is shown in the contours of Fig. 3A. Similarly, we can compute
the circumference distributions for the model. In both cases, we
find that our model predictions match the experimental data well
(Fig. 3B), further supporting the idea that the distribution of
tubules we observe in the experiment is due to finite bending
rigidity and is therefore expected for self-closing structures. We
note that an even more sophisticated computational model of
tubule assembly predicts a bending modulus of roughly B =
10 kBT (41), slightly higher than our simple model, but still only
different by a factor of 5.

D. Pruning the Tubule Distribution by Increasing the Assembly
Complexity. Our observations of the X-tubule assembly highlight
an inherent challenge in using self-closing assembly alone to target
finite-sized soft materials: As we target larger self-closing lengths,
the distribution of the self-limited dimension also gets broader.
So how do we overcome this challenge to assemble wider tubules
without compromising the accuracy of the assembly?

Here we turn our attention toward the other paradigm for
encoding self-limitation: addressable assembly. The rationale of
this approach is relatively easy to understand. By increasing the
number of particle species per structure, and therefore the total
number of specific interactions, the location of any given particle
within that structure becomes more precisely defined. In the
fully addressable limit, each particle species can only occupy a
single position within the final structure while simultaneously
maximizing the number of its favorable interactions. Therefore, by
eliminating the other ways in which the particles can be arranged,
the yield of the target assembly can be increased.

We explore this approach by assembling a (10,0) tubule from
two unique species of triangular subunits. Fig. 4 shows our specific
realization of this concept using a binary tiling that is compatible
with tubule self-assembly (Fig. 4A and SI Appendix, section 4).
The two species are placed periodically and unidirectionally in
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Fig. 4. Schematics for binary species tubules and their lattice number dis-
tributions. (A) Triangular tiling using two types of monomers. The highlighted
region in the lower left shows the primitive cell of the tiling. Red and blue dots
denote the two distinct vertices present in the pattern, which are highlighted
as well. (B) Schematic representation of the two types of monomers we use to
construct the tubule. Black arrows represent the binding pairs of the lock-
and-key interactions. (C) Diagram of the intended (10,0) tubule structure.
(D) Negative-stain TEM micrograph of a tubule made from the two species,
whose tubule type is (15,2). (Scale bar, 200 nm.) (E) Tubule type distribution
of the binary mixture. The size of each circle is proportional to the number of
tubules found for that pair of lattice indexes. The square symbol denotes the
target state. Contours show the expected spread based on model predictions
with B = 3.1 kBT , where the spacing between contours is 20% of the peak
probability. This B value is estimated in the same manner as described
previously. Red regions are disallowed due to the tiling pattern of the binary
species, as seen in the experiments. The plot shows distribution from n = 113
tubules.

the pattern. Since each side encodes a specific dihedral angle,
the sides must always remain in the same orientation. As before,
a triangular lattice of these two species can be rolled up into a
(10,0) tubule. However, unlike before, the binary lattice contains
two distinct types of vertices. As a result, the assembled tubules
have an additional constraint: When the triangular lattice closes
to form a tubule, the closing vertices must match. Therefore, for
our specific case, we expect that only tubules with an even lattice
number n can assemble. The specific implementation of the lock-
and-key geometries and their interactions is shown in Fig. 4B and
the expected assembly is shown in Fig. 4C.

The distribution of assembled tubules demonstrates that
increasing the assembly complexity limits the accessible states.
Fig. 4D shows an example tubule and Fig. 4E is the tubule distri-
bution that we measure. We find that the distribution is maximal
at (13,2), with some tubules being chiral and others achiral. All
seven tomography reconstructions of chiral tubules were identified
to be right handed (SI Appendix, section 7.B). Most importantly,
we do not find a single tubule classified by an odd value of n , as
we intended by our design. We also find that the probability of
the most common state is increased compared to what it would be
with a single particle type. The binary assembly has a larger average
circumference than the X tubule, which would suggest that the
probability for the most common state would be comparatively
lower. However, we find that the most populated state for the
binary assembly is 22.1% compared to 17.6% for the X tubule.
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This increase in probability is a result of using more species of
triangles for the assembly since some fraction of tubules that
might have had an odd n are distributed to nearby even n states.

As before, although the distribution is not centered around the
target state, it has a width that is consistent with our energetics
model. We hypothesize that the shift in the center of the distribu-
tion is again due to the experimental design challenge of accurately
encoding the dihedral angles in our DNA origami subunits. The
bevel angles of the triangles are designed to target X tubules,
similar to the previous case. However, cryo-EM reconstructions of
the individual subunits reveal bevel angles that predict a (13,−1)
tubule (SI Appendix, section 8).

2. Conclusion

In summary, we devised a versatile class of colloidal particles
using DNA origami and studied the roles of geometry and in-
teraction complexity in their self-limited assembly into tubules.
Our DNA origami design scheme allows for control over the
valence, interaction specificity, and local curvature of the subunits,
independently. We demonstrate that the DNA origami colloids
enable the assembly of complex structures, such as tubules, with
self-limited dimensions that are much larger than the individual
subunits. Using this design principle, we designed and assem-
bled tubules of different widths, demonstrating that information
encoded in the geometry of individual subunits can be used to
program the geometry of the entire assembly. However, due to
the intrinsic flexibility of the binding, tubules with a variety of
widths and chiralities assembled from the same subunits, which
was especially prominent for wider tubules. Such a distribution of
assembled tubules for a single monomer type is an inherent feature
of bending fluctuations in curvature-limited assemblies.

Here, we experimentally demonstrated one path toward remov-
ing off-target structures to focus the distribution on the target of
interest. The precision in reaching a specific state can be increased
by combining interaction specificity with geometric specificity in a
multispecies design. As one specific realization of this concept, we
assembled tubules using two species of subunits, which effectively
reduced the number of accessible states by half. Therefore, as more
species of subunits are added to the system, we anticipate that the
yield of the target state will increase, although likely at the cost of
longer timescales for assembly (27). Another possibility other than
interaction specificity that follows from our observations is that
one can exploit the geometric specificity of the system to mitigate
the formation of off-target structures. For example, designing ever
more rigid binding sites should increase the energetic cost to
deform the structure away from the target geometry. While it is
not clear how much control there is over this aspect given the
material properties of the subunits themselves, one might expect
the bending rigidity to vary with the particle aspect ratio (i.e.,
thickness to width) based on elastic considerations alone. Finally,
Nature, confronted with the same design challenge of assembling
tubules from few components, has evolved a third strategy for
eliminating off-target states: employing seeded nucleation, as seen
with the in vivo assembly of microtubules (3, 42, 43). Thus, if one
can tune the supersaturation level to avoid nucleation while still
allowing for growth by monomer addition, having templates off
of which tubules grow would improve the specificity of a given
target structure without impeding the kinetics (19).

A somewhat surprising result of the origami design is how
different the bevel angles of the three different versions of the X
triangle are (SI Appendix, Table S4). Even though all three of these
structures were constructed using the same design principle, re-
sulting in the same length of scaffold for each helix, this approach

did not result in the same bevel angles for the different sides. One
main difference is that the cross overs between helices had to be
placed in different locations to accommodate the different lock-
and-key designs. This subtle change may cause unintended torsion
within the sides that impacts the relative angles of adjacent sides.
One avenue to address this issue would be to use interior sup-
porting struts to add additional length constraints to the system.
Another possible issue is that the short (1 to 3 nucleotide) single-
stranded DNA segments connecting helices at the vertices might
overconstrain the vertices and add stress to the subunit. A design
modification that might avoid this issue is to connect the sides
at the vertices only in a few locations. Finally, it seems prudent
to use existing simulation software, such as oxDNA (44), ENRG
MD (45), and mrdna (46), to screen different arrangements of
cross-overs to find ones that yield the desired bevel angles.

Overall, our DNA origami colloids represent a powerful plat-
form for programming the assembly of self-limiting architec-
tures. We argue that our ability to program the local curvature
with the precision of a few degrees per subunit opens up addi-
tional directions in materials design that surpass what is currently
possible. Whereas tubules assembled from DNA tiles are made
from “floppy” components and therefore prescribed mainly by
the interaction specificity encoded in the tile sequences (16–18,
26), our tubule structures can be programmed by both interac-
tion specificity and geometrical specificity. As we showed, these
two paradigms can play important complementary roles in self-
limited assembly. Geometric specificity can enable economical
designs that require only a few subunit species and interaction
specificity can improve the accuracy of assembly by eliminating
off-target structures. Therefore, we anticipate that being able to
prescribe both mechanisms of self-limited assembly, together with
the ability to make subunits with ever more complex geometries
(47, 48), will allow access to an expanded library of self-assembled
structures with interesting material applications. Examples in-
clude two-dimensional (2D) lattice-like membranes for pattern-
ing or separations (21, 49), spherical shells for encapsulation and
delivery (24), fibers or length-limited tubules through geometrical
frustration (50, 51), and three-dimensional periodic structures for
structural coloration (52).

Materials and Methods

Brief descriptions of our experimental methods are provided below. For more
detailed methods see SI Appendix, section 1.

Assembly of Triangular Subunits. DNA origami subunits are assembled in a
one-pot reaction with 50 nM of p8064 scaffold DNA (Tilibit) and 200 nM of each
staple strand (IDT; see SI Appendix for sequences) in a standard “folding buffer.”
Standard folding buffers, described previously (31), contain X mM MgCl2, 5 mM
Tris base, 1 mM EDTA, and 5 mM NaCl (FoBX). Reaction solutions are subjected
to a thermal annealing cycle in a Tetrad (Bio-Rad) thermocycler. Optimal MgCl2

concentrations and annealing protocols are described in SI Appendix, Table S1.

Purification of Subunits. All origami subunits are purified by gel extrac-
tion and concentrated by ultrafiltration. We use a 1.5% agarose gel with 0.5×
Tris/Borate/EDTA (TBE) buffer, 5.5 mM MgCl2, and 0.5× SYBR-safe (Invitrogen).
Custom-made gel combs that can hold 0.2 mL per well were used to increase the
throughput. The folded solution is mixed 5:1 with loading dye (30% wt/vol Ficoll
400, 0.1% wt/vol bromophenol blue, 3× TBE) and run at 110 V for 2 h. We remove
the monomer band with a razor blade and dice it into small pieces. Gel pieces
are placed in a Freeze ’N Squeeze spin column (Bio-Rad) and kept at −20 ◦C for
5 min and then spun down for 5 min at 13 krcf. The subnatant is concentrated
by ultrafiltration with 0.5 mL Amicon 100-kDa filters. Amicon filters are first
equilibrated by centrifuging down 0.5 mL of 1× FoB5 at 5 krcf for 7 min, after
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which the flow-through is removed. The DNA origami solution is added up to
0.5 mL and centrifuged at 14 krcf for 15 min, and then the flow-through is
removed. This process is repeated until all of the DNA origami solution has been
filtered. Finally, we place the filter upside down over a new Amicon tube and
centrifuge at 1 krcf for 2 min. The DNA origami concentration of the final solution
is measured using a Nanodrop (Thermo Scientific).

Self-Assembly of Tubules. Purified subunits are assembled in 50-μL mixtures
of 1× FoBX with a monomer concentration of 10 nM. The MgCl2 concentration
(X) is varied from 5 to 30 mM. The assembly solution is pipetted into a capped
0.1-mL strip tube (Rotor-Gene), which is subsequently placed into a 0.2-mL strip
tube (Corning) to suppress evaporation and condensation within the tube. Tubes
are loaded into a rotating incubator (Roto-Therm; Benchmark Scientific) at 40 ◦C
for 1 wk.

Negative Stain TEM. Assembly samples are incubated on glow-discharged
FCF400-Cu TEM grids (Electron Microscopy Sciences) for 60 to 120 s. Grids are
then stained with 2% aqueous uranyl formate solution with 20 mM NaOH for up
to 30 s before blotting on filter paper and using vacuum suction to remove excess
fluid. Images of the grids are acquired on an FEI Morgagni TEM operated at 80 kV
with a Nanosprint5 CMOS camera (AMT) at magnifications between×8,000 and
×20,000. Tomograms of grid samples are acquired on a Tecnai F20 TEM with an
field emission gun run at 200 kV with a Gatan Ultrascan 4k × 4k CCD camera.
Tilt series were observed at a magnification of ×32,000 from−50◦ to 50◦ in 2◦

increments. Subsequent analysis is performed using Etomo (IMOD) (53).

Cryo-Electron Microscopy. Higher concentrations of DNA origami are used to
prepare cryo-EM grids, summarized in SI Appendix, Table S3. Samples are placed
on glow-discharged C-flat 1.2/1.3 400-mesh grids (Protochip). Plunge freezing of
the grids in liquid ethane is performed with an FEI Vitrobot with sample volumes
of 3 μL, blot times of 5 to 8 s, a blot force of −1, and a drain time of 0 s at 20 ◦C
and 95% humidity. All cryo-EM images were acquired with a Tecnai F30 TEM with
the field emission gun electron source operated at 300 kV and equipped with
an FEI Falcon II direct electron detector at a magnification of ×39,000. Single-
particle acquisition was performed with SerialEM. The defocus was set to−2μm
for all acquisitions with a pixel size of 2.87 Å.

Image processing was performed using RELION-3 (32). Contrast-transfer-
function (CTF) estimation was performed using CTFFIND4.1 (54). After picking
single particles we performed a reference-free 2D classification from which the

best 2D class averages were selected for processing, estimated by visual inspec-
tion. The particles in these 2D class averages were used to calculate an initial
3D model. A single round of 3D classification was used to remove heteroge-
neous monomers and the remaining particles were used for 3D autorefine-
ment and postprocessing. A summary of the cryo-EM reconstructions is shown
in SI Appendix, Table S3. All postprocessed maps are deposited in the Electron
Microscopy Data Bank.

Epifluorescence Imaging of Tubules. To dye our samples, we incubate our
assemblies with YOYO-1 dye (Invitrogen) at room temperature for at least 0.5
h in a solution of 5 nM DNA origami, 500 nM YOYO-1 dye, and 1× FoB, at the
same MgCl2 concentration as that of the assembly. We pipette 1.6 μL of the
solution onto a microscope slide that has been cleaned with Alconox, ethanol
(90%), acetone, and deionized water and subsequently plasma cleaned. After
deposition, a plasma-cleaned coverslip is placed on top to create a thin liquid
layer. Samples are then imaged on a TE2000 Nikon inverted microscope with a
Blackfly USB3 (FLIR) camera.

Data Availability. Data are available upon request. The dataset consists of
thousands of very large electron micrographs that cannot be easily stored in an
online repository. The cryo-EM data from this study have been deposited in the
Electron Microscopy Data Bank with the following accession codes: EMD-26847,
EMD-26848, EMD-26849, and EMD-26850 (55–58).
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