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Abstract: Research over almost 40 years has established that reactive oxygen species are generated at
different sites in skeletal muscle and that the generation of these species is increased by various forms
of exercise. Initially, this was thought to be potentially deleterious to skeletal muscle and other tissues,
but more recent data have identified key roles of these species in muscle adaptations to exercise.
The aim of this review is to summarise our current understanding of these redox signalling roles of
reactive oxygen species in mediating responses of muscle to contractile activity, with a particular
focus on the effects of ageing on these processes. In addition, we provide evidence that disruption of
the redox status of muscle mitochondria resulting from age-associated denervation of muscle fibres
may be an important factor leading to an attenuation of some muscle responses to contractile activity,
and we speculate on potential mechanisms involved.
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1. Introduction

Loss of skeletal muscle occurs in many pathophysiological situations (e.g., disuse, age-
ing, weightlessness) and also secondary to multiple disorders, such as cancer and chronic
obstructive pulmonary disease (COPD). Muscle loss contributes to reduced mobility, lack
of independence, and poor recovery. Skeletal muscle rapidly adapts to changes in every-
day use by increasing or decreasing muscle mass and/or length. Extreme examples of
disuse-induced muscle loss include exposure to microgravity, where a substantial decrease
in muscle mass occurs in all skeletal muscles within 17 days [1], and extended bed rest,
which is commonly used as an experimental model of muscle disuse in mechanistic ex-
periments [2]. Loss of protein homeostasis (proteostasis) has been extensively reported as
the final common event leading to loss of muscle mass [3,4]. Multiple mechanisms con-
trolling muscle proteostasis are recognised [4], but understanding of the initiating signals
controlling the activation of these proteostatic pathways remains incomplete.

Regular exercise or training is essential for the maintenance of skeletal muscle mass
and function at all stages of the life course. Substantial research has identified mechanisms
by which exercise, or contractile activity, acts to maintain skeletal muscle mass and function,
and many key molecular and biochemical pathways have been identified, but knowledge
is incomplete on specific changes that occur in muscles during exercise to initiate the
signalling pathways leading to these adaptations. Reactive oxygen species (ROS) have been
proposed as key factors that initiate adaptive changes in contracting skeletal muscle, with
hydrogen peroxide (H2O2) thought to play the major role [5–7]. It is important to recognise
that these roles of H2O2 are as a signalling molecule and reflect H2O2 stimulation of redox-
signalling pathways. This is a role of H2O2 in physiological processes which is distinct
from “oxidative damage”. The recognition of both physiological and pathological roles
of H2O2 and other ROS has led to a redefinition of “oxidative stress”, with physiological
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processes being described as “oxidative eustress” and pathological or damaging events
described as “oxidative distress” [8]. There are multiple existing reviews of the potential
roles of oxidative distress or oxidative damage in skeletal muscle, and interested readers
are referred to References [9–12].

2. Muscle Weakness during Ageing Is Due to Loss and Weakness of Muscle Fibres and
Linked to Loss of Motor Units

In human beings, ageing leads to a reduction in skeletal muscle cross-sectional area
of 25–30% and strength by 30–40% [13]. This leads to an inability to undertake everyday
tasks, increasing risk of falls and loss of independence [14]. Both loss of muscle fibres and
atrophy of fibres contribute to the reduction in muscle mass and function in ageing humans
and rodents [15–17]. The age-related changes in rodents follow a similar pattern to those in
humans, supporting their use as relevant models [18,19]. Motor unit loss is also seen with
ageing in both humans and rodents [20,21], and the number of motor neurons is reported
to decrease in both humans and rodents with ageing, by 25–50% [22,23]. Studies from our
laboratory reported that full denervation of ∼15% of muscle fibres was seen in muscles of
old mice, with disruption of the NMJ apparent in ∼80% of the muscle fibres [24].

3. Importance of Exercise in Maintaining Muscle Mass

Different forms of exercise induce positive adaptations in skeletal muscle, including
an increase in aerobic capacity, increased muscle force generation, increased mass, and
decreased fatigability [25]. The importance of these processes becomes increasingly impor-
tant in older people [26,27]. H2O2 has been proposed as a key primary factor that initiates
adaptive changes in contracting skeletal muscle through redox-signalling pathways [5–7].

4. ROS Are Generated by Various Potential Sources in Skeletal Muscle during
Contractile Activity

Contractile activity increases superoxide and nitric oxide (NO) in skeletal muscle
fibres, and these species lead to the formation of secondary ROS and reactive nitrogen
species [5,28,29]. Initial studies of the sources of superoxide generation identified the mito-
chondrial electron transport chain as a potential source [30], but studies of short-duration
(15 min) contractions that induced adaptive responses indicated that NADPH oxidase was
the likely source of superoxide generation leading to the formation of H2O2 [31]. Few de-
tailed studies of longer-duration contractions have been undertaken, but Pearson et al. [32]
compared the response of dihydroethidium (localised to the cytosol) and mitoSox (dihy-
droethidium localised to mitochondria) in isolated fibres from the mouse flexor digitorum
brevis (FDB) and concluded that cytosolic superoxide increased rapidly during 10 min of
isometric contractile activity, but after two periods of contractions, mitochondrial superox-
ide was also increased (Figure 1). H2O2 has been increasingly recognised as a physiological
signalling molecule [33–35], and signalling by H2O2 appears to occur via redox modifica-
tions of specific residues in proteins, particularly redox-sensitive cysteines [36,37].
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Figure 1. (A). Time course of changes in relative fluorescence from skeletal muscle fibres loaded 
with MitoSox red (localised to mitochondria). Fibres were either maintained at rest (blue line) or 
subjected to two periods of electrically stimulated contractions (red line) during the time periods 
denoted by a black bar. (B). Fibres loaded with DHE (localizes to cytosol): time course of changes in 
relative fluorescence is shown. Fibres were either maintained at rest or subjected to two periods of 
electrically stimulated contractions, with the stimulation periods denoted by black bars. * p  < 0.05 
compared with non-stimulated fibres at the same time point (n  =  6–7 for all groups). Redrawn from 
[32], where full experimental details can be found. 

5. ROS Stimulation of Adaptations to Exercise Appears to Occur by Redox-Regulated 
Signalling Pathways 

Data from studies that have attempted to reduce the actions of ROS in exercising 
muscle by interventions using very high levels of single antioxidant nutrients, or mixtures 
of antioxidants, have been contradictory [38,39], but in some experiments, the antioxi-
dants were found to inhibit cytoprotective responses (e.g., exercise-induced increase in 
heat shock and other stress proteins) [40,41], reduce mitochondrial biogenesis [42–44], 
prevent an increase in muscle insulin sensitivity [42], and inhibit the release of cytokines 
and inflammatory mediators [45]. 

In parallel to these studies, several key signalling pathways involved in skeletal mus-
cle responses to contractile activity have been recognised as redox-regulated. Example 
pathways include mitogen-activated protein kinases (MAPK), protein tyrosine phospha-
tases (PTP), peroxisome proliferator-activated receptor gamma (PPAR-γ), and nuclear 
factor-κB (NF-κB) [46–50], all of which are increased in muscles by exercise and inhibited 
in some models by exogenous antioxidants. 
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Figure 1. (A). Time course of changes in relative fluorescence from skeletal muscle fibres loaded with
MitoSox red (localised to mitochondria). Fibres were either maintained at rest (blue line) or subjected
to two periods of electrically stimulated contractions (red line) during the time periods denoted by
a black bar. (B). Fibres loaded with DHE (localizes to cytosol): time course of changes in relative
fluorescence is shown. Fibres were either maintained at rest or subjected to two periods of electrically
stimulated contractions, with the stimulation periods denoted by black bars. * p < 0.05 compared
with non-stimulated fibres at the same time point (n = 6–7 for all groups). Redrawn from [32], where
full experimental details can be found.

5. ROS Stimulation of Adaptations to Exercise Appears to Occur by Redox-Regulated
Signalling Pathways

Data from studies that have attempted to reduce the actions of ROS in exercising
muscle by interventions using very high levels of single antioxidant nutrients, or mixtures
of antioxidants, have been contradictory [38,39], but in some experiments, the antioxidants
were found to inhibit cytoprotective responses (e.g., exercise-induced increase in heat
shock and other stress proteins) [40,41], reduce mitochondrial biogenesis [42–44], prevent
an increase in muscle insulin sensitivity [42], and inhibit the release of cytokines and
inflammatory mediators [45].

In parallel to these studies, several key signalling pathways involved in skeletal muscle
responses to contractile activity have been recognised as redox-regulated. Example path-
ways include mitogen-activated protein kinases (MAPK), protein tyrosine phosphatases
(PTP), peroxisome proliferator-activated receptor gamma (PPAR-γ), and nuclear factor-κB
(NF-κB) [46–50], all of which are increased in muscles by exercise and inhibited in some
models by exogenous antioxidants.

Studies in vitro have demonstrated that H2O2 can activate specific signalling path-
ways which are also activated in muscle by contractile activity in vivo, and this has been
considered by some authors as evidence for redox regulation playing a role in activation of
these pathways during exercise in vivo. However, we have argued that the in vivo concen-
trations of H2O2 are not sufficiently high to directly activate key signalling molecules. [46].
Thus, key cysteines in the signalling molecules examined are relatively unreactive with
H2O2, and concentrations of H2O2 that have been shown to activate them are in the range
of 100−1000 µM. In comparison, we have calculated that muscle intracellular H2O2 con-
centrations are in the order of 1–10 nM [51], and during contractions may increase to a
maximum of 100 nM [46,52].

6. Are Additional Effector Proteins Required to Allow H2O2 to Stimulate Signalling
Pathways at the Intracellular Concentrations Calculated to Occur in Contracting
Muscle Fibres In Vivo?

It has been argued that oxidation of key signalling molecules may be facilitated
by the proximity of the target protein to the source of generation of H2O2, where local
concentrations may be increased [53,54], but computational modelling does not support
this [55]. Alternatively, the “floodgate” hypothesis proposes that local scavengers of H2O2
(such as peroxiredoxins) become rapidly oxidised and inactivated, subsequently allowing a
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local increase in the local H2O2 concentration to micromolar concentrations [56] to permit
oxidation of relatively unreactive target signalling molecules.

An alternate possibility requires the use of highly oxidisable effectors of redox sig-
nalling that allow transmission of the oxidising equivalents from H2O2 to less oxidisable
target signalling molecules. Only a small number of proteins appear capable of under-
taking a reaction with H2O2 at the concentrations found in the muscle cytosol, including
peroxiredoxins (Prx), thioredoxins (Trx), glutathione peroxidases, and catalase. In muscle
fibres, mass spectrometry data indicate that Prx concentrations are much higher than the
other proteins [57].

7. Peroxiredoxins as Effectors of H2O2 Signalling in Skeletal Muscle Contractions

Prx reduce hydroperoxides to water and are classified by the number of cysteine (Cys)
residues involved in the peroxidase activity. The 2-Cys Prx form a disulphide bond by
reacting with peroxides [58]. Prx are several orders of magnitude more reactive with H2O2
than the typical redox-responsive signalling proteins [37]. Winterbourn calculated the
selectivity of H2O2 for Prx in comparison with redox-sensitive signalling proteins such as
PTPs and reduced glutathione (GSH) at approximate cellular concentrations, and concluded
that Prx reacts with 99.9+% of the peroxide [59], further stating that “the oxidation (of PTPs
and related enzymes) observed in cells is likely to be an indirect effect of peroxide reacting
with a primary sensor”. Some studies have also recently indicated that Prx can function
as a signal peroxidase to activate specific pathways [37,60]. A schematic illustrating the
oxidation pathways for Prx is shown in Figure 2.

Prx also undergo other post-translational modifications in addition to the oxidation
and formation of homodimers, including phosphorylation, acetylation, glutathionylation,
and nitrosylation [61], which have been proposed to influence peroxidase activity and may
play a role in signalling [61,62]. Finally, Prx become hyperoxidised by higher levels of
H2O2, and this process has also been claimed to be important in regulating different cell
signalling pathways [63] (Figure 2).

We examined the oxidation of Prx1, 2, and 3 by treatment with H2O2 and by con-
tractile activity in isolated intact muscle fibres from mice. Low concentrations of H2O2
caused oxidation and dimerization of all three Prx, but higher concentrations induced the
formation of hyperoxidised proteins that did not form dimers (Figure 2). The effects of
contractile activity were also examined in isolated mouse FDB muscle fibres. Following
commencement of contractile activity in fibres from adult mice, Prx1, 2, and 3 became
oxidised and formed dimers when analysed on non-reducing Western blots [64]. Prx1 and
2 are localised to the cytosol of skeletal muscle, while Prx3 is found in the mitochondria.
The contraction protocol used induces subsequent adaptations, including increased expres-
sion of cytoprotective and “antioxidant” proteins in skeletal muscle. Prx2 oxidation, in
particular, occurred very rapidly, and was seen within 12 contractions (1 min in total), and
oxidation of Prx1, 2, and 3 was seen by 15 min. Furthermore, Prx oxidation was rapidly
reversed following the end of contractions. No hyperoxidation of Prx was seen. In contrast,
our previous work found no evidence for a similar effect on Trx oxidation [65]. Thus, our
data are compatible with the hypothesis that all three 2-Cys Prx isoforms are oxidised
by physiological concentrations of H2O2 generated in skeletal muscle during contractile
activity. Furthermore, the location of Prx3 in the mitochondria in comparison with Prx1 and
2 (cytosolic) supports the possibility that oxidation of different Prx may mediate specific
adaptations to contractile activity depending on their location and interacting proteins
(Figure 3). In very recent studies [66], we have examined the oxidation of human peroxire-
doxins (Prdx) and redox-sensitive cysteines in peptides of proteins from muscle biopsies of
volunteer human subjects prior to and following repeated periods of high-intensity interval
training (HIIT) exercise. These studies indicated rapid oxidation of Prdx3 during muscle
exercise, as previously seen in mice, but failed to show any contraction-induced oxidation
of Prdx1 and 2. The reasons for these differences between the mouse and human data are
currently unclear.
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Figure 2. Schematic representation of the oxidation of 2-Cys Prx by H2O2. (a) Initial oxidation of
Prx peroxidatic cysteine to form sulfenic acid with condensation to form Prx homodimers. (b) With
further oxidation by H2O2, sulfinic or sulphonic acids are formed, which cannot form dimers (a
process called hyperoxidation). (c) Dimerised Prx can be reduced by thioredoxin (Trx) at the expense
of NADPH. (d) Dimerised Prx can also interact with reduced Cys in other proteins (indicated in grey),
forming mixed dimers with transfer of oxidizing equivalents to the target protein from [64].
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Figure 3. Potential mechanisms underlying generation of ROS (superoxide and H2O2) during muscle
contractions and oxidation of 2-Cys Prx in different cellular compartments, leading to activation
of specific groups of Prx-interacting signalling molecules involved in muscle adaptations to the
contractile activity.

8. Effect of Ageing on Prx Oxidation in Contracting Skeletal Muscle Fibres

We also examined the effect of contractile activity on muscle Prx oxidation in muscle
from old mice [64]. The baseline level of oxidation of Prx2 was significantly lower in FDB
fibres from old compared with that from adult mice. Oxidation of the protein also occurred
over a slower time course in fibres from old compared with adult mice, and the proportion of
Prx2 in the oxidised form remained lower than the adult throughout. Prx1 and Prx3 oxidation
in fibres from old mice were unchanged in comparison with that from adult mice [64].

9. Redox-Regulated Pathways Underpinning Adaptations to Contractile Activity in
Skeletal Muscle Are Attenuated during Ageing

Failure of adaptations to stress occurs in many cellular models of ageing and tissues
of old organisms [67]. In skeletal muscle, acute stress responses [68], mitochondrial biogen-
esis [19,69,70], and anabolic responses [71] in response to exercise are reduced by ageing.
These age-related changes appear to reduce the efficacy of exercise in maintaining muscle,
and previous data indicate that transgenic correction of specific responses to exercise help
maintain muscle mass and function in old age [72–74]. A chronic increase in mitochondrial
H2O2 generation has been claimed to cause the attenuation of redox-mediated adapta-
tions to contractile activity in ageing. A chronic increase in ROS activities was found in
muscle from old mice at rest, with no further increase following contractions [75], and we
speculated that this was caused by increased mitochondrial ROS generation [46]. Mice
with knockout of Cu, Zn superoxide dismutase (SOD1null mice), a model of accelerated
muscle ageing in which muscle mitochondrial ROS generation is also elevated [76], also
show attenuated responses to contractions. Martinez-Guimera et al. developed a molecular
model in which they described a process termed “molecular habituation”, which may help
to explain the attenuation of responses. They characterised this as “a sustained ROS signal



Cells 2022, 11, 1698 7 of 14

which reduced the responsiveness of signalling pathways through prolonged activation of
negative regulators”, such as has been reported to occur in ageing with upregulation of
regulatory proteins for ROS, including catalase, glutathione peroxidase 1, thioredoxin (Trx)1
and 2, and peroxiredoxins (Prx) 3–6 [77]. In a recent hypothesis article, we have reviewed
this area and argued for an alternate mechanism for the attenuation of redox-regulated
responses to contractile activity, in which key protein cysteine thiols become increasingly
reduced (i.e., less oxidised) with ageing [78].

10. Denervation of Individual Muscle Fibres Leads to Increased Mitochondrial
Peroxide Generation during Ageing

Loss of both motor units and innervation of individual fibres has been reported in
muscles from older humans and animals [20,21]. Transection of the innervating nerve
caused a large increase in muscle mitochondrial peroxide generation [79], and these stud-
ies identified a key role for motor neuron and NMJ integrity in the regulation of muscle
mitochondrial ROS generation in old mice. Furthermore, partial denervation of the mouse
TA muscle caused an increase in mitochondrial peroxide generation in the denervated
fibres and also in adjacent innervated fibres [80]. These data suggest that loss of innerva-
tion in fibres contributes to increased mitochondrial ROS generation [80] and associated
mitochondrial degeneration [81] in ageing.

Skeletal muscle mitochondria exist in a complex reticulum [82] that is hypothesised to
rapidly distribute energy through direct coupling of mitochondrial membrane potential to
drive local ATP production. The reticulum acts as a ‘power-grid’, forming subnetworks that
are proposed to effectively act as circuit breakers within the interconnected organelle, pre-
venting the propagation of local dysfunction while preserving energetic homeostasis [82,83].
The structure and distribution of mitochondrial networks are extremely dynamic and are
regulated by several key processes, including mitochondrial fission, fusion, biogenesis, and
mitophagy [84]. Under physiological conditions, mitochondrial fission and fusion events
occur in a balanced frequency to maintain not only the size and shape of the mitochondrial
network, but also its gross distribution. Fusion results in the elongation of mitochondria
into interconnected, tubular networks, enabling the mixing of their contents (i.e., metabo-
lites, proteins, and mtDNA) and the redistribution of energy [82,85]. Furthermore, a fused
network is thought to prevent the local accumulation of dysfunctional mitochondria [82,86].
In contrast, mitochondrial fission is a process that acts to fragment the network into smaller,
discrete organelles [87]. Fission appears to segregate network components, which may be
damaged or dysfunctional, for removal by mitophagy. Together with mitochondrial biogen-
esis, these processes ensure restructuring of the reticulum in response to stimuli, including
nutrient availability, cellular stress, and other molecular signals. The mitochondrial reticu-
lum is closely associated with and attached to the muscle cytoskeleton, and the reticulum
structure is determined by factors including the regulation of dynamin-like proteins on
individual mitochondria [88], interactions between mitochondria and organelles, such as
nuclei and sarcoplasmic reticulum [89], and direct connections between mitochondria and
the cytoskeleton [90].

Disuse, such as with exposure of muscle to microgravity or extended bed rest, induces
disorganisation of the muscle cytoskeleton and triggers mitophagy, implicating a mechanis-
tic link between cytoskeletal dynamics and mitochondrial content [91], and space-flown
rats showed an aberrant distribution of mitochondria and a decrease in the expression of
cytoskeletal genes in muscle [92]. Immobility, or extended bed rest, also lead to increased
muscle mitochondrial ROS production [93]. Increased mitochondrial ROS, low respiration
rates, and increased apoptosis are known to be consequences of the reorganisation of the
mitochondrial reticulum via increased fission and reduced fusion [94–96].

Studies performed in models of ageing suggest that mitochondria show a change
to a phenotype reflecting modified fusion, together with a change in orientation more
perpendicular to the fibre axis [97] in association with other changes in mitochondrial dy-
namics [98]. We speculate that during ageing, the repeated episodes of muscle denervation
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led to a loss of cytoskeletal organisation and caused disruption of links to mitochondria that
may be a pre-requisite for mitochondrial disruption and increased mitochondrial peroxide
generation (Figure 4).
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Figure 4. In normal physiology, skeletal muscle mitochondria are maintained in a complex reticulum
by interactions with the actin cytoskeleton and intermediate filaments. This condition is associated
with balanced mitochondrial dynamics, high capacity for energy production, low mitochondrial
peroxide production, and minimal apoptotic signalling. With disuse of the muscle, or, as we speculate,
denervation associated with ageing, the supportive interactions with the cytoskeleton are lost, leading
to disruption of the reticulum, a change in mitochondrial dynamics (increased fission, reduced fusion,
and increased mitophagy), and increased degenerative signalling through reduced energy production,
increased mitochondrial peroxide, and increased apoptotic signalling.

11. Conclusions

Research into the generation of ROS by contracting skeletal muscle came to prominence
in the 1980s [30,99], and in the intervening ~30 years, many key aspects of the processes
and their consequences for muscle health and vitality have been identified. This has
had multiple consequences in terms of our understanding of the need for (antioxidant)
supplements and optimum training regimens to maintain redox homeostasis. Recent
studies are revealing fundamental, but subtle, interacting roles of ROS in modulating
multiple aspects of muscle responses to physiological and pathological stimuli. Obtaining
a full understanding of these processes offers great potential for manipulation of redox-
regulated processes to modify and maintain skeletal muscle mass and function in ageing
and multiple disease states.

11.1. Are There Species Differences in Redox Regulation of Muscle Responses to Exercise?

The vast majority of basic studies of ROS and redox-mediated processes in skeletal
muscle have been undertaken in rodent (usually mouse) models, or even in cell culture.
Considering the differences in the whole body and skeletal muscle physiology between
quadruped rodents and biped humans, it is appropriate to consider how relevant studies of
exercising rodents or contracting rodent muscles are to understanding redox regulation of
muscle responses in humans. Key studies over many years have shown that fundamental
processes of muscle contraction are essentially comparable across mammalian species, but
can this be extrapolated to studies of, for example, the effects of antioxidant supplements
on muscle function from the rodent to humans? Three examples from the work described
above will be discussed to illustrate the issues involved and provide support for the
relevance of rodent data to understand human muscle redox processes.
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11.2. Role of NADPH Oxidase in Mediating Redox Responses to Exercise

As previously discussed, initial studies indicated that mitochondrial generation of
ROS might predominate during muscle contractile activity [30], but subsequent detailed
studies in isolated mouse fibres indicated activation of NADPH oxidase to be the pre-
dominant source over short periods of contractile activity [31]. There is considerable
interest in the potential role of muscle-derived ROS in regulating skeletal muscle glucose
metabolism [100,101], and Jensen and Henriquez-Olguin [102–104] have utilised state-
of-the-art approaches to demonstrate a role for muscle NADPH oxidase in mediating
adaptations in muscle glucose metabolism. They showed a role for NADPH oxidase in
studies of exercise in mice and examined ROS generation in human muscle samples using
a DCFH oxidation approach. These data appear to confirm the increase in ROS activities in
human vastus lateralis muscle that follows treadmill running.

11.3. Redox-Related Adaptations to Exercise in Muscle of Elderly Subjects

Cobley and colleagues worked with our group to examine the influence of age and
training status on the redox-related adaptations of human muscle to exercise [19]. They
took biopsies from the vastus lateralis muscle of healthy volunteers and examined the
expression of HSPs, antioxidant enzymes, and NO synthase isoenzymes before and after
HIIT exercise. They included groups of young and older volunteers with differing lifelong
exercise training status. We concluded that in the untrained state, exercise in the older
subjects did not upregulate multiple proteins, in comparison with that seen in younger
subjects, but lifelong training preserved some but not all (e.g., SOD2, HSP72, PRX5) of the
exercise responses. From this study, we argued that the data support many, but not all,
findings from previous animal studies, and suggested that there are parallel ageing effects
in humans and mice at rest and after exercise that are not corrected by lifelong training in
human skeletal muscle.

11.4. Oxidation of Muscle Protein Cysteine Thiols Following Exercise in Human Subjects

In a complementary study to that described above, Pugh and colleagues used a
muscle biopsy approach and redox proteomics to study vastus lateralis muscles of adult
(18–30 years) and old (64–79 years) male and female subjects who undertook high-intensity
cycling exercise. This consisted of 5 sets of 2 min intervals performed at 80% maximal
aerobic power output (PPO), with 2 min recovery cycling at 40% PPO between sets [66].
Samples of muscle were taken prior to and immediately following the first, second, and
fifth high-intensity intervals. Analysis of redox cysteines indicated five cytosolic proteins
in older subjects with lower oxidation (i.e., greater reduction) than that in young adults.
Muscle peroxiredoxin 3 (Prdx3) oxidation occurred rapidly in response to exercise in both
adult and older subjects, supporting the possibility that Prdx3 is a key effector protein
for mitochondrial redox signalling. These data are similar to those previously reported in
mice (e.g., see [78]), but this human study also revealed that overall, redox homeostasis
was well-maintained in adult subjects following exercise, but with a significant increase in
oxidation of multiple mitochondrial and cytosolic protein cysteines in old subjects.

It is apparent for these three brief examples that many fundamental aspects of the
muscle redox signalling are conserved between rodents and humans, but detailed aspects
of the processes may not always be identical. There is some evidence that this may be
related to the training state of the subjects, with some ageing changes being reversed
(or prevented) by regular training exercise [19]. Training status is very rarely modified
in essentially sedentary laboratory rodents, and there is concern in attempting to make
cross-species comparisons because exercise protocols used in the two species may not be
comparable. Further studies are required to address these issues.
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