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Abstract
Intestinal homeostasis and regeneration are driven by intestinal stem cells
(ISCs) lying in the crypt. In addition to the actively cycling ISCs that maintain
daily homeostasis, accumulating evidence supports the existence of other
pools of stem/progenitor cells with the capacity to repair damaged tissue and
facilitate rapid restoration of intestinal integrity after injuries. Appropriate control
of ISCs and other populations of intestinal epithelial cells with stem cell activity
is essential for intestinal homeostasis and regeneration while their deregulation
is implicated in colorectal tumorigenesis. In this review, we will summarize the
recent findings about ISC identity and cellular plasticity in intestine, discuss
regulatory mechanisms that control ISCs for intestinal homeostasis and
regeneration, and put a particular emphasis on extrinsic niche-derived signaling
and intrinsic epigenetic regulation. Moreover, we highlight several fundamental
questions about the precise mechanisms conferring robust capacity for
intestine to maintain physiological homeostasis and repair injuries.
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Introduction
Intestinal epithelium is one of the fastest renewing tissues 
in mammals. Owing to the constant exposure of its luminal  
surface to injurious factors, such as pathogens and toxins, the  
average turnover rate is every three to five days in mice to replen-
ish damaged cells1. These single-layered intestinal epithelial 
cells are organized into a crypt-villus structure and are predomi-
nantly composed of absorptive enterocytes and four secretory 
lineages known as enteroendocrine, Paneth, goblet, and tuft cells  
(Figure 1). The thin intestinal epithelial sheet is responsible 
for nutrient absorption and stool compaction and also serves 
as a front-line barrier against microorganisms and infections2.  
Maintenance and regeneration of this high-turnover tissue upon 
injury are fueled primarily by intestinal stem cells (ISCs) that  
reside at the bottom of the crypt, while differentiated absorp-
tive and secretory cells are assembled as clusters or scattered  
along the crypt-villus axis3,4. More recently, considerable  
cellular plasticity was noted within intestine, and lineage- 
restricted progenitors or fully differentiated cells were able 
to replenish the tissue under certain conditions, such as DNA  
damage–induced injuries5–11.

ISCs possess both self-renewing capacity and multipotency to 
give rise to all types of intestinal epithelial cells. They divide 
and migrate upward to the middle region of the crypt to convert 
into transit-amplifying (TA) cells that divide rapidly for massive 

expansion before specializing into absorptive or secretory 
lineages4. Owing to the tremendous regenerative capacity 
and the simple anatomic structure, intestine and particularly 
its ISCs have become an elegant model system for studying  
homeostasis, regeneration, and oncogenic transformation of  
mammalian adult tissues12,13. Self-renewal and multipotency of  
ISCs and plasticity of intestinal epithelial cells are largely con-
trolled by external signals emanated from neighboring niche 
cells and intrinsic molecular processes, including epigenetic  
regulation14,15. In support of a central role of extracellular niche 
factors, ISCs embedded in the crypt bottom are sustained by  
signals emanated from both epithelial and mesenchymal niches. 
In the in vitro 3D culture system, ISCs are able to self-organ-
ize into crypt-villus–like structures referred to as “organoids” 
(or precisely enteroids or colonoids if derived from small intes-
tine or colon, respectively) in the presence of a defined set of 
growth factors16. These organoids comprise self-renewing ISCs 
intermingled with Paneth cells at the base of budding crypt and  
various differentiated lineages at blunt villus-like compartments 
and can be grown and maintained for many passages without  
losing normal karyotype over time17.

In this review, we summarize the latest advances in our  
understanding of ISC identity, cellular plasticity, the basis for  
intestinal homeostasis and regeneration as well as how ISC self-
renewal and multipotency are regulated, with a particular focus 

Figure 1. Hierarchy and plasticity of intestinal stem cells (ISCs). Under homeostatic conditions, active ISCs such as Lgr5 crypt base 
columnar cells (CBCs) migrate upwards to become transit-amplifying (TA) cells in the TA zone. TA cells divide rapidly and specify into 
either absorptive or secretory progenitors. Absorptive progenitors further differentiate into large quantities of enterocytes, while secretory 
progenitors commit to the Paneth, goblet, enteroendocrine (EEC), or goblet cells. Interconversion between reserve ISCs and active ISCs 
occurs occasionally in this setting (demonstrated by double-headed dash line). In response to radio- or chemo-therapies, the highly 
proliferative Lgr5 CBCs and TA cells are ablated. Reserve ISCs enter the cell cycle to replenish CBCs for subsequent regenerative process. 
Plasticity of differentiated progenies, including secretory and absorptive progenitors as well as terminally differentiated EEC and Paneth cells, 
has been observed when CBCs are damaged. These cells can revert to active ISCs and give rise to all intestinal cell types. However, whether 
they can bypass CBCs to transdifferentiate directly into other intestinal lineages and their functional importance to intestinal regeneration 
upon injuries remain to be determined.
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on extrinsic niche-derived signaling and intrinsically epigenetic  
regulation. Considering such progress in the mechanistic under-
standing of intestinal homeostasis and regeneration as well as the 
development of new models and techniques to faithfully mimic 
intestinal pathophysiology, we envision a variety of potent and 
effective therapeutic approaches for the treatment of intestinal  
diseases.

Intestinal stem cells and cellular plasticity in intestine
For decades, crypts have been known as compartments compris-
ing cellular sources for continuous intestinal homeostasis and 
robust post-injury regeneration18. However, the cellular basis  
and nature of ISCs that fuel the rapid renewal of intestine have  
been among the mysteries in the field of adult stem cell biology. 
It has long been assumed that mammalian tissue-resident adult  
stem cells, including ISCs, predominantly reside out of the 
cell cycle in a relatively quiescent G

0
 state so that genomic 

integrity can be sustained in response to genotoxic insults2,19.  
However, this prevailing notion has been amended by the  
identification of long-lived yet rapidly dividing intestinal crypt  
base columnar cells (CBCs) with relatively specific expres-
sion of Lgr520. They self-renew and are capable of differenti-
ating into all types of intestinal epithelial cells in in vivo, as 
evidenced by lineage-tracing studies of in vivo and in vitro  
cultured organoids16,20,21. Owing to their mitotically active 
feature, Lgr5 CBCs were termed active ISCs and thought 
to sustain physiological homeostasis of the rapid renewing  
intestine3. Intriguingly, a subset of epithelial cells residing  
specifically at +4 position relative to the base of crypts was  
observed to share some properties of tissue-resident adult 
stem cells, such as the ability of long-term DNA label retention 
and a strong resistance to stress, including chemotherapy and  
irradiation19,22,23, and thus had been postulated to represent ISCs 
long before Lgr5 CBCs were identified.

Lgr5 CBCs are mitotically active and can regenerate whole  
intestinal epithelium under homeostatic conditions20. However, 
owing to their exquisite sensitivity to genotoxic stresses, Lgr5 
CBCs are rapidly lost upon radio-/chemo-induced damage and 
thus could not account for the robust regenerative potential of  
post-injury intestine24. Moreover, studies with genetic ablation 
of Lgr5 CBCs by diphtheria toxin (DT) treatment of mice  
harboring Lgr5-driven DT receptor (DTR) allele revealed that  
these cells are dispensable for normal intestinal homeostasis, 
implying the existence of other epithelial cells with both stem 
cell activity and DNA damage–resistant capacity to replace Lgr5  
CBC loss for intestinal regeneration25. Multiple populations of 
rare crypt cells marked by Bmi126, Hopx26, mTert27, Krt1928,  
Lrig129, Sox930, Mex3a31, or Prox16 have been found to reside at 
approximately +4 position by short-term CreER-activated cell 
fate mapping assay. In sharp contrast to Lgr5 CBCs, most cells  
labeled by these reporter alleles are slowly cycling and injury-
resistant and can give rise to clonal lineage-tracing events albeit 
at much lower frequency than Lgr5 CBCs5. In light of the above 
features, these reporter-marked, predominantly +4 resident cells  
were defined as reserve ISCs in the literature3.

In contrast to their unique spatial localization noted in  
genetic-marked reporter assays, transcriptomic analyses revealed 
that endogenous Bmi1, mTert, and Hopx are broadly expressed 

throughout crypt cells, even in the active Lgr5 CBCs, reflecting 
a certain inconsistency between reporter activity and actual  
mRNA expression of the endogenous alleles32–34. Multiple reasons 
could underlie this discrepancy, such as (1) difference in the 3′ 
untranslated region (UTR) sequence between CreER reporter  
and endogenous alleles. A direct comparison between the mRNA 
level of CreER reporter and endogenous alleles among distinct 
populations of crypt cells could determine whether CreER reporter 
can faithfully recapitulate expression of its endogenous coun-
terpart at transcriptional and post-transcriptional levels. (2) As 
activation of genetic reporters in lineage-tracing studies requires 
reaching a certain threshold of CreER activity, cells marked by 
genetic reporters following short-term tamoxifen administration 
may point to a stronger CreER activity in these cells than in  
other populations of crypt cells, which could result from  
differential levels of CreER protein or tamoxifen permeability 
in distinct types of crypt cells. Ideally, development of immu-
nohistological grade antibodies that can specially recognize the  
endogenous protein of reported markers for ISCs will resolve  
these discrepancies and help determine their actual distribution  
pattern throughout crypts.

As reserve ISCs marked by Bmi1+, Hopx+, mTert, Lrig1, and 
so on can give rise to all types of epithelial lineages, including 
the active Lgr5 CBCs in lineage-tracing studies, they have  
initially been posited to sit at the apex of the cellular hierarchy 
in intestine25,26. However, single- or bulk-cell transcriptomic pro-
filing analyses have invariably detected the expression of a few  
enteroendocrine markers within reserve populations of ISCs, 
indicating some common features between reserve ISCs and  
committed enteroendocrine cells or hinting at a potential  
developmental plasticity of lineage-restricted secretory pro-
genitors in intestine35. It should be mentioned that definition of 
reserve ISCs hinges solely on the functional criteria, includ-
ing injury resistance, multipotency, cell cycle entry from G

0
 

to G
1
 upon damage, and long-term maintenance, all of which 

can be illustrated by Cre recombinase–induced lineage-tracing  
assays3,5. Cells marked with Bmi1+, Hopx+, mTert, and so on  
fulfill these functionally defining criteria and could act as bona 
fide reserve ISCs for tissue regeneration24,26,27,36. The fact that  
stem cells can express multiple-lineage genes in a fluctuating  
way, assumed as priming, has been reported in adult stem cells37 
as well as in pluripotent embryonic stem cells, which express  
a significant level of representative genes for primordial germ 
cells in an undifferentiated pluripotent state38–40. Therefore,  
caution should be exercised when defining ISC identity  
simply on the basis of transcriptomic analysis. Nevertheless, 
more intense studies to further investigate the heterogeneity of 
+4 epithelial cells with single-cell high-throughput strategies are 
required to deepen our understanding of the identity of reserve  
stem cells in intestine.

Cellular plasticity has been observed in several mammalian  
tissues and could act as an additional mechanism for tissue  
regeneration41. Direct evidence showing developmental plasticity  
of enteroendocrine progenitors comes from lineage tracing of  
cells marked with Prox1, which is a transcription factor expressed 
predominantly in mature enteroendocrine cells and is essential 
for its commitment from ISCs6,42–45. Prox1 enteroendocrine cells 
can function as reserve ISCs as they assume both homeostatic 
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and injury-inducible stem activity in lineage-tracing reporter  
assays6. Besides mature enteroendocrine cells, considerable  
plasticity and clonal lineage-tracing events have been noted in 
other progenies of Lgr5 CBCs, such as enteroendocrine progeni-
tors marked by Bmi17, Alpi+ absorptive progenitors8, secretory  
precursors expressing Atoh110 or Dll111, CD69+ CD274+ gob-
let precursor7, fully differentiated Paneth cells46,47, and a small 
population of Dclk1+ tuft cells48 in certain situations, such as  
inflammation, radio-/chemo-induced intestinal injuries, or upon 
loss of Lgr5 CBCs by DT administration (Figure 1). However, 
the functional robustness and contribution of these lineage-
committed cells to intestinal homeostasis and restoration upon  
tissue damage remain unclear and will be worth future investi-
gation. Furthermore, whether these differentiated epithelia can  
bypass Lgr5 CBCs and transdifferentiate directly into other 
epithelial lineages is also instrumental for understanding the  
mechanisms of regenerative process and awaits clarification in 
forthcoming studies. Another concern to be considered is that  
haploinsufficiency in the knocked-in allele used in current genetic 
tracing assays was recently reported to result in a misleading  
phenotype as seen in pancreatic systems49.

Extrinsic niche regulation of intestinal stem cells
The activity of ISCs is stringently controlled to ensure  
proper proliferation and differentiation. Tight regulation of ISCs 
is achieved primarily through extrinsic signaling molecules  
emanated from their surrounding cells that altogether constitute 
a unique niche microenvironment15,50. Recent intensive studies 
have led to gradual identification of vital niche components that 
include both epithelial progenies of ISCs and mesenchymal  
cells, such as Paneth cells, fibroblasts, immune cells, enteric  
neurons, and endothelial cells51,52. When perturbed by injuri-
ous factors, these intestinal niche cells can be rewired for coor-
dinated production of cytokines and growth factors to activate  
ISCs for rapid regeneration. To date, various niche factor– 
derived signaling pathways have been identified to be essential 
for ISC activity, intestinal homeostasis, and regeneration. In this 
section, we will briefly summarize the central roles of Wnt, bone  
morphogenetic protein (BMP), Notch, epidermal growth factor 
(EGF), and Hippo signaling in ISC regulation.

In the Wnt pathway, binding of Wnt ligands to their Frizzled  
receptor on targeted cells induces collapse of cytoplasmic APC 
destruction complex and subsequent nuclear translocation of  
β-catenin to activate Wnt target genes through association with  
T-cell factor (TCF) transcription factors53. Wnt signaling is  
progressively reduced from crypt to villus axis and is indispen-
sable for ISC maintenance and intestinal regeneration32,54,55. Its  
abrogation via inactivating Tcf1/2 mutation56, Tcf4 deletion57, 
or exogenous expression of Wnt inhibitor Dkk158,59 invariably 
leads to Lgr5 CBC loss and decreased crypt cell proliferation. 
Augmentation of activity of this pathway by Apc inactivating 
mutation, constitutive activating mutation in β-catenin, or simul-
taneous deletion of two E3 ligases (Rnf43 and Znrf3) targeting 
Wnt ligand receptors for degradation unanimously result in 
crypt expansion and rapid appearance of intestinal adenomas  
in mice60–64. Although the functional importance of Wnt sig-
naling and its contribution to intestinal regulation have been 
well appreciated55, the cellular source for Wnt ligands remains 

incompletely understood. Various types of niche cells have 
been found to express a significant level of Wnt ligands, such as 
small intestinal Paneth cells51, colonic Reg4+65 or cKit+66 secre-
tory cells, and numerous subsets of stromal cells67,68. Although  
epithelial Wnts can promote expansion of Lgr5 CBCs during 
in vitro organoid culture, their ablation does not demonstrate a  
notable impact on crypt cell proliferation and intestinal home-
ostasis in vivo, suggesting a significant redundancy of cellular  
origin of Wnt ligands in sustaining intestinal integrity67–70. In 
line with this assumption, recent studies found that Foxl1+71,72,  
Pdgfrα+73, Gli1+55,74, and CD34+ Gp38+ αSMA–75 mesenchymal  
cells serve as major sources of Wnt activity and play pivotal 
roles in sustaining intestinal homeostasis in vivo. Abolition of  
Wnt secretion in Foxl1+, Gli1+, or Pdgfrα+ cells by genetic  
excision of porcupine (Porcn) impairs proliferation of Lgr5  
CBCs and leads to corruption of intestinal integrity71,73,74. Whether 
these mesenchymal cells with distinct markers overlap with 
each other to some extent or even represent the same subsets of 
non-epithelial cells is currently unclear. Moreover, how Wnt  
activity in these mesenchymal cells is regulated in response 
to intestinal injuries, such as inflammation and chemo-/radio- 
toxicity, remains unanswered. Future investigations combining 
genetic approaches with single-cell RNA-sequencing technology 
will address these critical questions.

BMP signaling assumes an increasing gradient along the  
intestinal crypt-villus axis and serves as a critical inducer for 
ISC differentiation, thereby playing a vital role in balancing the  
effect of Wnt signaling on intestinal homeostasis76,77. BMPs 
belong to the transforming growth factor-beta superfamily of  
ligands and can induce phosphorylation of cytoplasmic R-Smads 
(Smad1/5/8) through binding to the membrane-embedded  
serine/threonine kinase type I and II receptors. Phosphorylated  
R-Smads form a complex with Co-Smad (Smad4) and subse-
quently enter the nucleus, where they regulate expression of tar-
geted genes through association with a variety of co-factors78,79. 
The initial experimental evidence implicating an inhibitory role 
of BMP signaling in ISC self-renewal comes from conditional  
deletion of BMP receptor Bmpr1a and transgenic expression 
of BMP antagonist Noggin in mice, both of which unanimously 
lead to development of multiple polyposis in small intestine80–82.  
Similarly, aberrant expression of BMP antagonist Gremlin1 
was noted in patients with hereditary mixed polyposis syndrome 
and its transgenic expression in mice leads to the appearance of  
ectopic crypts and subsequent oncogenic transformation83,84. 
Gene expression and in situ hybridization analyses demonstrated 
that BMP ligands and BMP antagonists are produced primarily 
by mesenchymes residing at different regions of the crypt-villus 
unit. BMP2 and BMP4 are secreted by intravillus and intercrypt 
mesenchymal cells, whereas Noggin, Gremlin1, Gremlin2, and 
chordin-like 1 antagonists are expressed by cryptal myofibroblasts 
and smooth muscle cells beneath the crypt bottom80,85. To date, 
little is known about the role and cellular source of other BMP  
ligands in intestine and whether ablation of these niche cells has  
an impact on intestinal integrity and tumorigenesis. Future studies 
are needed to address questions in this regard.

Notch receptors are single-pass type I transmembrane het-
erodimer proteins that comprise functional extracellular truncation, 
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transmembrane, and intracellular (NICD) domain. Activation  
of Notch receptors begins with their binding to Notch ligands 
presented on an adjacent cell, which leads to cytoplasmic  
proteolytic cleavage of Notch receptors by γ-secretase com-
plex and subsequent nuclear translocation of intracellular 
NICD to regulate transcription of target genes86. Notch signal-
ing has been shown to contribute to Lgr5 CBC maintenance and  
proliferation87–89 and its inhibition skews intestinal differentia-
tion toward goblet lineage90–92. Paneth cells express and present  
Notch ligands Dll1 and Dll4 to adjacent Lgr5 CBCs to facilitate 
their self-renewal51. Moreover, activation of Notch signaling in 
Paneth cells by forced expression of NICD can result in acqui-
sition of a stem-like property in these cells46. Notch signaling is 
also involved in controlling secretory and absorptive lineage  
determination when CBCs start to differentiate. Its activation  
stimulates Hes1 expression for transcriptional silencing of 
Atoh1, a master transcription factor for secretory lineage  
determination, thereby blocking secretory differentiation but 
promoting enterocyte specification of Notch receptor activated  
cells93. Expression of Notch ligand Dll1 on secretory cells  
prevents a secretory fate of neighboring cells but drives these 
cells toward absorptive lineage through Notch signaling 
activation, which is a biological event referred to as lateral  
inhibition88. Although Notch signaling contributes to CBC  
proliferation and intestinal homeostasis, the role of niche cells  
expressing Notch ligands remains unclear.

The Hippo pathway functions as a vital regulator of tissue  
homeostasis and organ size and its deregulation is implicated 
in the development of multiple types of cancer in humans. In 
the presence of extracellular stimuli, transcriptional activator  
YAP/TAZ complex is phosphorylated by upstream serine– 
threonine kinase MST1/MST2/Sav1-LATS1/2/MOB1A/B cas-
cade, leading to either cytoplasmic sequestration or proteasomal 
degradation of YAP/TAZ. Without Hippo activation, non-phos-
phorylated YAP/TAZ enters the nucleus and acts as a co-activator 
for the TEAD transcription factor to regulate expression of  
genes associated with cell growth and proliferation94,95. The Hippo 
pathway is constitutively active in intestine under homeostatic 
conditions and its genetic inactivation via transgenic expression 
of YAP/TAZ or conditional deletion of Sav1, an upstream nega-
tive regulator of YAP, increases ISC proliferation and leads to 
crypt hyperplasia96,97. Hippo signaling is also indispensable for 
intestinal regeneration in mouse models of dextran sodium sulfate 
(DSS)-induced colitis and radiation-induced injury97,98. Trans-
genic expression of YAP induces an EGF signaling–dependent 
regenerative program to facilitate intestinal regeneration98. 
Appropriate activation of Wnt signaling is essential for 
intestinal recovery following injury. However, its aberrant  
activation could lead to oncogenic transformation or reduce ISC 
survival through increasing radio-sensitivity of ISCs to DNA  
damage during intestinal regeneration99. In addition to the  
transcriptional regulatory activity of nuclear YAP/TAP complex, 
unphosphorylated cytoplasmic complexes are integral compo-
nents of β-catenin destruction complex and thus play a criti-
cal role in restricting Wnt signaling activity100. Paradoxically, 
it has been noted that conditional deletion of YAP in intestinal 
epithelia augments Wnt activity and causes crypt hyperplasia 
and overgrowth throughout small intestine and colon after  

radiation-induced injury101. These findings suggest that the  
Hippo pathway has dual roles in regulating both Wnt and Egf 
signaling and its impact on intestinal regeneration is context-
dependent and could be determined by net activity of these two 
pathways. More work is needed to deepen our understand-
ing of the molecular mechanisms that control the balanced  
activation of Wnt and Egf pathways by Hippo signaling during 
intestinal regeneration.

EGF communicates with target cells through the EGF recep-
tor, which is a member of the ErbB family of tyrosine recep-
tor kinases102. Paneth cells express EGF and sustain proliferation 
of Lgr5 CBCs through its receptor ErbB103. EGF supplementa-
tion of culture medium dramatically increases the efficiency 
of organoid formation in vitro17. Lrig1 is a negative feedback  
regulator of ErbB receptor and its ablation causes crypt expan-
sion in mice29,104. Although these findings support a crucial role 
of EGF signaling in CBC proliferation, the additional cellular  
source of EGF growth factor except for Paneth cells in intestine 
remains ambiguous.

Intrinsically epigenetic regulation of intestinal stem 
cells
Intestinal homeostasis and regeneration are accompanied by 
drastic transcriptional alterations that are achieved through the 
cooperation between extrinsic niche signaling–controlled tran-
scription factors/co-activators and intrinsic epigenetic regulators.  
Epigenetics refers to the inherited alteration in gene expression 
and phenotype that occur without changes in DNA sequence. 
It consists primarily of DNA methylation, histone modifica-
tion, and chromatin remodeling105,106. In contrast to the exten-
sively studied extrinsic niche factors, the role of intrinsically 
epigenetic mechanisms in intestinal homeostasis and regenera-
tion is poorly understood. In this section, we will briefly discuss 
the currently limited knowledge of epigenetic mechanisms in  
intestinal regulation.

With the tremendous advancements in fluorescence-activated 
cell sorting, identification of lineage-specific markers, and next- 
generation sequencing technology, epigenetic characterization 
of distinct types of intestinal epithelial cells has recently become 
feasible. Initial studies with DNase I mapping for accessi-
ble chromatin regions and H3K4me2 and H3K27ac ChIP-seq  
(chromatin immunoprecipitation sequencing) for active enhanc-
ers showed that ISCs and enterocyte and secretory progeni-
tors assume remarkable similarity in distribution pattern of 
open chromatin elements and active enhancers throughout the  
genome107. However, these observations are not in line with 
the subsequent studies that employ assay for transposase- 
accessible chromatin using sequencing (ATAC-seq) to profile  
open chromatin regions among ISCs and enterocyte and secre-
tory progenitors. The latter studies identified thousands of unique  
open chromatin regions among these populations and found 
that accessible chromatin states in secretory progenitors shift to 
resemble ISCs during dedifferentiation upon injuries (Figure 2)7. 
Although the discrepancy between the two studies can be 
explained by cellular heterogeneity and the different sensitiv-
ity of technologies employed, the functional importance of 
those unique open chromatin elements in secretory lineage  
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Figure 2. Epigenetic reprogramming for intestinal homeostasis and regeneration. During homeostasis, intestinal stem cells (ISCs) 
adopt a unique epigenetic signature and chromatin accessibility that collaboratively lead to expression of ISC-related genes and shutdown 
of lineage-specific factors. Lineage specification of ISCs is accompanied by epigenetic remodeling and chromatin accessibility changes 
that turn off ISCs genes while activating lineage-restricted genes. During the regenerative process, epigenetic landscape and chromatin 
accessibility are reconfigured to resemble ISCs during dedifferentiation of ISC progenies.

specification, dedifferentiation, and regeneration has not been 
determined experimentally. In addition, comprehensive profiling 
of distinct histone modifications in purer populations of intes-
tinal lineages will determine whether the epigenetic landscape  
varies during intestinal homeostasis and regeneration.

Initial bisulfite-sequencing of ISCs and their differentiated  
progenies in villus revealed minimal dynamics of DNA methy-
lome during intestinal differentiation108. This study used a cutoff 
of a minimal differential methylation of 40% to identify differen-
tially methylated regions (DMRs) between ISCs and villous cells. 
As the distal regulatory regions are low-methylated at an overall  
methylation level of 30% in intestinal cells and display aver-
age change of about 15% in DNA methylation during intestinal 
differentiation, the cutoff criteria of analysis used in the study 
eliminates the identification of DMRs during differentiation of  
ISCs108,109. Subsequent bisulfite-sequencing studies with dis-
tinct analytic standards identified many DMRs at enhancers 
and disclosed a tight correlation between the DMRs and tran-
scriptional alterations between two populations of cells, imply-
ing that the DNA methylation may have a vital role in intestinal  
renewal110. This viewpoint has been proven by genetic ablation 
of Dnmt1 and Tet1 in intestine, which are maintenance methyl-
transferase and hydroxylase for DNA methylation, respectively106.  
Dnmt1 is essential for intestinal development in newborn mice 
as inducible deletion of Dnmt1 at perinatal stage causes genomic 
instability, premature differentiation, apoptosis, loss of villi, and 
decreased proliferation of crypt cells111,112. The essential role of 
DNA methylation for intestinal development is also reflected in 
Tet1-deleted mice. Tet1-null mice exhibit retarded growth, shorter 
intestines, weaker capability to form in vitro organoids, and  
reduced postnatal viability113. Acute ablation of Dnmt1 in adult 
intestinal epithelia causes a slight expansion of the proliferative 
crypt zone. However the crypt morphology recovers and DNA 
methylation restores to normal level several days after Dnmt1  
deficiency. A subsequent study revealed that de novo methyl-
transferase Dnmt3b can compensate for Dnmt1 loss to maintain  
intestinal integrity as ablation of both enzymes leads to genome 
demethylation, genomic instability, increased apoptosis, and 
decreased survival114. Taken together, these pieces of genetic 
evidence strongly support that dynamic regulation of DNA  

methylation acts as an essential epigenetic mechanism underlying 
intestinal development and homeostasis.

Post-translational modification of histones, such as methylation 
and ubiquitination, constitutes an additional component of epige-
netic mechanism in transcriptional regulation, embryonic devel-
opment, and adult tissue homeostasis115. Monoubiquitination of  
lysine 119 on H2A (H2A119 mUb) and methylation of lysine 
27 on H3 (H3K27me) correlate with transcriptional repression 
and are implemented by polycomb repressive complex 1 (PRC1) 
and polycomb repressive complex 2 (PRC2), respectively116. The  
activity of PRC1 and PRC2 stems from Ring1a/1b E3 ligase 
and Ezh1/2 methyltransferases and has been shown to be essen-
tial for normal intestinal homeostasis or regeneration following  
injuries. Loss of function of the total PRC1 activity via  
Ring1a/b double deletion in intestinal epithelia compromises 
ISC self-renewal and intestinal integrity and results in morbidity  
through de-repression of a number of transcription factors that  
negatively regulate Wnt signaling117.

Loss of PRC2 activity via AhCre or VillinCreER-induced epithe-
lial deletion of the Eed, a scaffold protein of the complex, leads 
to a clear defect in cell proliferation in crypts, a marked increase 
in the number of goblet cells, mislocalized Paneth cells, and  
compromised regenerative capacity118–120. The homeostatic and 
regenerative defect of intestine in the absence of PRC2 results 
at least in part from aberrant upregulation of Cdkn2a and some 
master regulators for secretory lineages that are bivalently  
marked, normally targeted, and repressed by this complex118.  
Conditional ablation of catalytic subunit of PRC2 complex Ezh2 
does not show any abnormalities in the intestinal homeostasis,  
indicating that the other H3K27 methyltransferase Ezh1 could 
compensate for Ezh2 loss to maintain intestinal integrity120.  
Further studies are needed to know the role and target genes of 
individual non-canonic PRC1 and PRC2 complexes in intestinal 
renewal and regeneration.

Conclusions and future perspectives
Over the past decade, remarkable progress has been made in 
our understanding of intestinal biology. It has become evident 
that active Lgr5 CBCs and reserve ISCs work in a coordinated  
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manner to maintain intestinal homeostasis and replenish the  
tissue upon injuries. In addition, differentiated epithelial cells  
possess considerable plasticity and can dedifferentiate to ISCs 
for intestinal regeneration in mouse models when active CBCs 
are damaged or artificially removed. Many niche-derived factors 
and a few epigenetic regulators have been identified and charac-
terized for their roles in intestinal morphogenesis, homeostasis, 
and regeneration. Despite these considerable advances in recent 
years, several fundamental questions remain to be addressed 
about the precise molecular mechanisms controlling self-renewal, 
lineage commitment, and plasticity of ISCs. First, the cellular 
source of distinct environmental factors crucial for ISC function 
and the role of immune cells, peripheral nerve cells, and other  
ISC-proximal cells remain poorly understood; thus, extensive 
studies of these niche components will offer more insight into 
the extrinsic regulatory mechanisms for ISC function. Second, 
comprehensive characterization of the epigenetic landscape of 
various intestinal cells coupled with conditional ablation of key 
chromatin regulators in murine models will help determine the  
molecular basis underlying the remarkable plasticity of intes-
tine in response to injuries. Third, the physiological function 
and contribution of differentiated crypt cells to radio-/chemo- 
induced intestinal regeneration remain to be experimentally  
evaluated. Fourth, the molecular mechanisms that reserve ISCs 
and differentiated crypt cells use to sense and replenish lost  
CBCs are largely unexplored; future investigation in this regard 

will help design effective therapeutic approaches to facilitate  
intestinal recovery after damage. Lastly, does aging-associated 
loss of regenerative potential of ISCs result from alterations in 
niche factors or epigenetic regulation or both121–123? The more we  
understand the above fundamental questions, the better we can 
employ ISCs for regenerative medicine.
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