¹ A flexible model for thermal performance

2 CUIVES

3

4 Mauricio Cruz-Loya¹, Erin A Mordecai¹, Van M Savage^{2,3,4}

- 5 1 Department of Biology, Stanford University
- 6 2 Department of Computational Medicine, University of California, Los Angeles
- 7 3 Department of Ecology and Evolutionary Biology, University of California, Los Angeles
- 8 4 Santa Fe Institute
- 9
- 10 Correspondence MCL (corresponding author) (cruzloya@stanford.edu), EAM
- 11 (emordeca@stanford.edu), VMS (vsavage@ucla.edu)

12 Abstract

14	Temperature responses of many biological traits-including population growth, survival, and
15	development-are described by thermal performance curves (TPCs) with phenomenological
16	models like the Briere function or mechanistic models related to chemical kinetics. Existing TPC
17	models are either simple but inflexible in shape, or flexible yet difficult to interpret in biological
18	terms. Here we present flexTPC: a model that is parameterized exclusively in terms of
19	biologically interpretable quantities, including the thermal minimum, optimum, and maximum,
20	and the maximum trait value. FlexTPC can describe unimodal temperature responses of any
21	skewness and thermal breadth, enabling direct comparisons across populations, traits, or taxa
22	with a single model. We apply flexTPC to various microbial and entomological datasets,
23	compare results with the Briere model, and find that flexTPC often has better predictive
24	performance. The interpretability of flexTPC makes it ideal for modeling how thermal responses
25	change with ecological stressors or evolve over time.

Introduction 26

2	7
7	/

27 28	A fundamental problem in ecology is to understand how the growth, physiology, and behavior of
29	organisms depend on their environment. Temperature variation is an important environmental
30	characteristic due to its multiple effects on the physiology (Knapp & Huang 2022) and behavior
31	(Ito & Awasaki 2022) of organisms. Through these effects, changes in temperature impact the
32	fitness of organisms (Amarasekare & Savage 2012) and ultimately the distribution of species
33	across geographic space (Jeffree & Jeffree 1994). Understanding the effects of temperature in
34	organisms is thus crucial to predict how climate change will modify the geographic distribution
35	of species and their interactions, as well as its potential impacts on biodiversity (Nunez et al.
36	2019; Waldock et al. 2018), agriculture (Jägermeyr et al. 2021), the transmission of infectious
37	disease (Rocklöv & Dubrow 2020), and other important ecosystem processes.
38	
39	Many traits, including rates of metabolism (Schulte 2015), population growth (Savage et al.
40	2004), and development (Briere et al. 1999) vary continuously and nonlinearly with temperature.
41	This dependence can be represented by a thermal performance curve (TPC) that describes the
42	value or performance of the trait at different temperatures (Huey & Kingsolver 1989).
43	Empirically, TPCs are often unimodal, reaching maximum performance at a single optimum
44	temperature and decreasing to a thermal maximum and minimum where performance goes to
45	zero (Angilletta Jr. 2009; Dell et al. 2011; Huey & Berrigan 2001).
46	
47	Various mathematical models have been developed to describe TPCs quantitatively (Arroyo et
48	<i>al.</i> 2022; Briere <i>et al.</i> 1999; Hultin <i>et al.</i> 1955; Johnson & Lewin 1946; Ratkowsky <i>et al.</i> 1983,
49	2005: Ritchie 2018: Schoolfield <i>et al.</i> 1981: Sharpe & DeMichele 1977: Shi & Ge 2010: Yin <i>et al.</i>

50 1995). These models make it possible to infer useful summaries of the temperature dependence 51 of a trait (such as the optimum, maximum, and minimum temperatures) from experimental data. 52 These summaries can then be compared between different populations of the same species, 53 across species, or across traits (Barton & Yvon-Durocher 2019; Bennett 1980; Buckley & Huey 54 2016; Couper et al. 2024; Gounot 1976; Knies et al. 2009; Shocket et al. 2020). Models of TPCs 55 are also used as building blocks in more complex mathematical models that describe population 56 dynamics and interactions between species. For instance, due to the sensitivity of ectotherm 57 physiology to environmental temperature, transmission dynamics of vector-borne diseases are 58 often highly sensitive to temperature. Mathematical models for the temperature-dependent 59 transmission of these diseases can be constructed using TPC models for traits of the vector, host, 60 and pathogen that affect disease transmission (Mordecai et al. 2013, 2017; Shocket et al. 2020). 61 Models of predator-prev dynamics that incorporate the effects of temperature are also based on 62 TPC models for traits of the prey and predator (Dell et al. 2014; Gilbert et al. 2014; Pepi et al. 63 2023).

64

65 Thermal performance models can broadly be classified into mechanistic models that derive from 66 an underlying theory (Arroyo et al. 2022; Hultin et al. 1955; Johnson & Lewin 1946; Ratkowsky 67 et al. 2005; Ritchie 2018; Schoolfield et al. 1981; Sharpe & DeMichele 1977) and 68 phenomenological models that fit empirical data without attempting to explain the underlying 69 mechanism that gives rise to the TPC (Briere et al. 1999; Logan et al. 1976; Ratkowsky et al. 70 1983; Yin et al. 1995). Mechanistic models have some advantages, as they can be used to link 71 TPCs to other biological traits, such as body size or metabolic rate through theoretical 72 frameworks like the metabolic theory of ecology (Kirk et al. 2018; Molnár et al. 2013, 2017;

73 Savage et al. 2004). However, mechanistic TPC models are often parametrized in terms of 74 quantities that can be difficult to interpret in ecological terms (e.g., the activation energy for a 75 potentially rate-limiting chemical reaction for the trait being measured). Because of this, many 76 ecological and epidemiological applications use phenomenological models that are parametrized 77 in terms of more interpretable quantities (such as maximum and minimum temperatures) while 78 still providing a good fit to experimental data, often with fewer parameters than mechanistic 79 models. Moreover, many phenomenological models have explicit thermal limits for trait 80 performance rather than an asymptotic decrease, which is desirable for modeling some traits 81 (e.g., probability of survival to adulthood). 82 83 One popular set of phenomenological models-the Briere models-are commonly used to 84 describe the temperature dependence of insect developmental rates (Briere *et al.* 1999) and have 85 been widely adopted in the ectotherm thermal biology literature (Haye et al. 2014; Lachenicht et 86 al. 2010; Lemoine 2017; Mordecai et al. 2013, 2017; Paaijmans et al. 2009; Sentis et al. 2012; 87 Tochen *et al.* 2014). These models are based on the same mathematical equation (Equation 1), 88 differing only in the number of free parameters. The sparser three-parameter model—commonly 89 referred to as the Briere1 model (or just the Briere model)-is popular in applications due to its 90 parsimony, the biological interpretability of two of its parameters (the minimum and maximum 91 temperatures), and its ability to describe many left-skewed TPCs for biological rates (Briere et 92 al. 1999; Mordecai et al. 2013, 2017). 93

However, both Briere models have shortcomings that should be carefully considered before their
use. First, the Briere1 model makes a very strong implicit assumption about the relationship

between the minimum, maximum, and optimum temperatures that does not have a biological
justification and that can potentially bias optimum temperature estimates. Second, due to their
mathematical structure, the Briere1 and Briere2 models cannot describe thermal performance
curves from psychrophilic organisms that can function below freezing temperatures. Lastly, the
Briere models can only describe thermal performance curves that are left-skewed but are unable
to describe TPCs with different shapes. This limitation is important when the goal is to compare
traits that differ in TPC shape, such as symmetric and asymmetric responses.

103

104 As an alternative to the Briere models we present a flexible model for thermal performance 105 curves that addresses these limitations, and can describe left-skewed, symmetric, and right-106 skewed unimodal TPCs of varying thermal breadth. This model, which we call flexTPC, is 107 mathematically equivalent to the Beta model for crop development as originally presented by 108 (Yin *et al.* 1995), which has not been widely adopted ectotherm animal physiology and ecology 109 literature, but is reparametrized in terms of biologically interpretable quantities to make it more 110 suitable for applications in ecology and infectious disease modeling. A previous version of this 111 model was derived in (Cruz-Loya et al. 2021) by modifying the Briere2 model (Equation 1) with 112 the goal of describing TPCs of bacterial growth under antibiotics. However, this previous work 113 focused primarily on how antibiotics modify TPCs rather than on the much broader potential 114 applications of the mathematical model, and the model as presented previously had a remaining 115 parameter without a direct biological interpretation.

116

117 In this work, we provide a novel, fully biologically interpretable parametrization of the flexTPC 118 model and compare its predictive performance with that of the Briere1 and Briere2 models in

119	real-world datasets. We find that flexTPC has similar or better performance than the Briere
120	models when describing insect development data, while performing much better when describing
121	thermal performance curves of psychrophilic organisms and TPCs that are symmetric or right-
122	skewed. Finally, we show that flexTPC can accurately describe many different mosquito life
123	history traits for which different functional forms (linear, quadratic, and Briere1) were used in
124	the past. Our results show that flexTPC is a flexible and interpretable descriptive model for
125	unimodal TPCs that has some important advantages compared to the Briere models, and that is
126	especially well-suited for applications where TPCs of different shapes need to be compared. Its
127	interpretability is well-suited for Bayesian approaches for parameter inference, enabling the use
128	of informative prior distributions based on biological knowledge such as the thermal range of the
129	species habitat and typical maximum trait values for the same trait in related species.

130 Methods

131

132 The Briere models

133

134 Thermal performance curve models describe trait performance *r* as a function of temperature *T*.
135 The Briere2 model is defined as follows:

136

137
$$r(T) = \begin{cases} cT(T - T_{min})(T_{max} - T)^{\frac{1}{m}} & T_{min} < T < T_{max} \\ 0 & otherwise \end{cases}$$
(1)

138

139 where T_{min} and T_{max} are the minimum and maximum temperatures for the trait, respectively, 140 and $c, m \ge 0$ are arbitrary constants. The Briere1 model is the special case of equation (1) where 141 m = 2. In general, r(T) has three roots (values of T where r(T)=0), with one at $T = 0^{\circ}C$. This 142 makes the Briere models unsuitable to describe TPCs of organisms that have nonzero

143 performance below freezing temperatures. Because of this, the Briere models are restricted to

144 $T_{min} \ge 0^{\circ}C$ so that there are only two roots (T_{min} and T_{max}).

146 The optimum temperature of the Briere models is given by the following expression (Briere *et al.*147 1999):
148

149
$$T_{opt} = \frac{(m+1)T_{min} + 2mT_{max} + \sqrt{4m^2 T_{max}^2 + (m+1)^2 T_{min}^2 - 4m^2 T_{min} T_{max}}}{4m+2}$$
(2)

150

151 For the Briere1 model (where m = 2 is fixed), T_{opt} is a deterministic function of T_{min} and T_{max} .

152 In other words, it is impossible to vary T_{opt} when T_{min} and T_{max} are fixed: the Briere1 model

153 implicitly assumes a strong relationship between these parameters. To our knowledge, this

assumption has no biological basis, and as a result, enforcing it will lead to biased inference of

155 these parameters.

156

157

- 158 The flexTPC model
- 159
- 160 The flexTPC model is defined as:

161

$$162 r(T) = \begin{cases} r_{max} \left[\left(\frac{T - T_{min}}{\alpha} \right)^{\alpha} \left(\frac{T_{max} - T}{1 - \alpha} \right)^{1 - \alpha} \left(\frac{1}{T_{max} - T_{min}} \right) \right]^{\frac{\alpha(1 - \alpha)}{\beta^2}} & T_{min} < T < T_{max} \quad (3) \\ 0 & \text{otherwise} \end{cases}$$

163

where r_{max} is the maximum performance/value of the trait, and T_{min} and T_{max} are the minimum and maximum temperatures, respectively. These three parameters determine the scaling of the TPC in the temperature and performance axes (Figure 1, right panel). Two additional parameters

167 determine the shape of the curve. Parameter $\alpha \in [0,1]$ determines the location of the temperature optimum T_{opt} relative to the maximum and minimum through the relationship 168 169 $T_{ont} = \alpha T_{max} + (1 - \alpha) T_{min} \quad (4)$ 170 171 172 This makes it possible for flexTPC to describe unimodal curves of any skewness by varying α , 173 where e.g. $\alpha = 0.5$ corresponds to a symmetric curve, and $\alpha = 0$ and $\alpha = 1$ correspond to $T_{opt} = T_{min}$ and $T_{opt} = T_{max}$, respectively. 174 175 176 The parameter $\beta > 0$ determines the upper thermal breadth (UTB) of the TPC, with larger values 177 corresponding to broader curves and smaller values to narrower curves. UTB, defined here as the temperature range for which $r(T) > e^{-\frac{1}{8}} r_{max} \approx 0.88 r_{max}$ (see Supplemental Information), is 178 179 approximately 180 $\text{UTB} \approx \beta (T_{max} - T_{min}) \quad (5)$ 181 182 As $T_{max} - T_{min}$ corresponds to the thermal breadth of nonzero performance (defined here as the 183 184 lower thermal breadth), β is the (approximate) ratio of the upper and lower thermal breadths.

185 This approximation has less than 10% relative error for TPCs that are not extremely skewed ($\alpha \in$

186 [0.06, 0.94]) and not too broad ($\beta \le 0.5$), which encompass the majority of TPC shapes that are

- 187 likely to be encountered in practice (Figure S4). For large β , the interpretation of β as the upper
- 188 thermal breadth at 88% of the peak height, as approximated in Equation 5, will no longer be
- 189 accurate, but larger β always corresponds to broader TPCs, with the limit $\beta \rightarrow \infty$ corresponding

190 to a constant model where $r(T) = r_{max}$ in the $[T_{min}, T_{max}]$ temperature range. Varying α and β 191 makes it possible for flexTPC to describe unimodal curves with many different shapes (Figure 1, 192 left panel).

193

194 An alternate parametrization of the flexTPC model that replaces α (the relative position of the

195 thermal optimum) with the absolute optimum temperature T_{opt} and β (the relative approximate

196 upper thermal breadth) with the absolute approximate upper thermal breadth $B = \beta (T_{max} - \beta)$

197 T_{min}) can also be constructed:

- 198
- 199 r(T)

$$200 = \begin{cases} r_{max} \left[\left(\frac{T - T_{min}}{T_{opt} - T_{min}} \right)^{\frac{T_{opt} - T_{min}}{T_{max} - T_{min}}} \left(\frac{T_{max} - T}{T_{max} - T_{opt}} \right)^{\frac{T_{max} - T_{opt}}{T_{max} - T_{min}}} \right]^{\frac{(T_{opt} - T_{min})(T_{max} - T_{opt})}{B^2}} & T_{min} < T < T_{max} \quad (6) \\ 0 & \text{otherwise} \end{cases}$$

201

where $T_{opt} \in [T_{min}, T_{max}]$ and B > 0. In general, we expect Equation 6 to be useful for applied scientists who wish to automatically calculate confidence intervals on parameters of interest (absolute T_{opt} and thermal breadth) using standard statistical software that performs nonlinear least squares or maximum likelihood estimation. Using this parametrization will lead to a confidence interval for T_{opt} with no additional effort from the user of the statistical software. However, there can be numerical issues with estimation for highly skewed curves where T_{opt} is close to either T_{min} or T_{max} . When numerical issues arise, Equation 3 can be used instead.

210	Equation 3 is likely to be more useful when fitting TPCs through Bayesian methods, as it is more
211	straightforward to provide a reasonable prior distribution for α (which lies in the interval from 0
212	to 1) than for T_{opt} (which lies in-between two unknown model parameters: T_{min} and T_{max}). It is
213	also simple to obtain posterior samples and credible intervals for T_{opt} from MCMC output
214	through Equation 4.
215	
216	Equation 3 can also be used for maximum likelihood estimation: it is straightforward to obtain
217	confidence intervals for T_{opt} through bootstrap methods and any numerical issues regarding the
218	optimal temperature "crossing-over" past the maximum or minimum temperatures can be
219	avoided by constraining α to be in the unit interval. This parametrization also has the advantage
220	of clearly separating the parameters that determine the shape (α, β) and location/scaling
221	$(T_{min}, T_{max}, r_{max})$ of the TPC.
222 223 224 225	Datasets To illustrate the predictive performance and applications of flexTPC, we compared it with the
226	Briere model in various real-world datasets.
227	
228	The botrana dataset consists of the developmental time of various life stages of the grapevine
229	moth Lobesia botrana (eggs, instars 1-5, and pupae) measured at 14 temperatures, ranging from
230	8 to 34°C. This dataset, which was used to motivate development of the Briere models (Briere et
231	al. 1999), was taken from Table 1 in (Briere & Pracros 1998). This dataset is expected to be one
232	in which the Briere models perform well.
233	

234 The glacierbac dataset consists of the temperature dependence of the growth rate of bacterial 235 Arthrobacter and Pseudomonas strains isolated from glacial deposits (Gounot 1976). This 236 dataset was chosen to highlight the advantage of flexTPC over Briere in describing TPCs from 237 organisms from cold environments. 238 239 The abcoli dataset (Cruz-Loya et al. 2021) consists of measurements of total growth after 24 240 hours of laboratory cultures of the bacterium *Escherichia coli* in the presence of various 241 antibiotic backgrounds at seven temperatures. These antibiotics either kill or slow down the 242 growth of *E. coli* in a temperature-dependent manner, modifying the shape of the TPC. This 243 dataset was chosen to highlight the ability of flexTPC to describe curves of different shapes. 244 245 The lhculex dataset (Shocket et al. 2020) corresponds to various mosquito temperature-246 dependent life history traits (egg viability, probability of larval survival to adulthood, 247 development rate, and female adult lifespan) from *Culex pipiens* and *Culex quinquefasciatus*. 248 These traits have been previously modeled with different functional forms (linear, quadratic, and 249 Briere1). This dataset was chosen to highlight the ability of flexTPC to fit curves of various 250 shapes for which different functional forms were previously needed. 251 252 Parameter estimation 253 A nonlinear regression approach was used to fit the Briere1, Briere2, and flexTPC models to the 254 botrana, glacierbac, and abcoli datasets through maximum likelihood estimation. 255 The following model was used for the botrana and glacierbac datasets:

256

257
$$y_i \sim \text{Normal}(r_m(T_i; P_m), \sigma) \quad T \in (T_{min}, T_{max})$$

258 $y_i = 0$ otherwise

259

260 where y_i is the observed response at temperature T_i , σ the standard deviation of the data, r_m the

261 temperature response curve model (either Briere1, Briere2, or flexTPC), and P_m the set of all

262 parameters from the corresponding TPC model being fit. For example, $P_{\text{Briere1}} =$

263 $\{T_{min}, T_{max}, c\}.$

264

In the abcoli dataset, the response variable is optical density, which does not have zero values. For this dataset the model used was:

267

- 268 $y_i \sim \text{Normal}(r_m(T_i; P_m), \sigma)$
- 269

270 As a criterion for model selection, we compared the negative log-likelihood obtained under leave 271 one out cross-validation (LOOCV-nLL) for all models in the datasets described above. This is a 272 measure of the predictive out-of-sample model performance that is asymptotically equivalent to 273 AIC (Stone 1977) but makes fewer assumptions, and has been recommended as the approach of 274 choice for model selection when computationally feasible (Yates et al. 2023). It consists of 275 removing each data point in turn, fitting the model with maximum likelihood on the remaining 276 data points, and evaluating the negative log-likelihood (nLL) in the removed data point (which is 277 a measure of the quality of the model prediction for a data point that was not used in fitting). We 278 report the mean nLL when each data point is removed in turn. Alternate model comparison 279 criteria (AIC and BIC) are reported in the Supplemental Information.

280 281	Bayesian parameter estimation for mosquito trait data
282 283	For the lhculex dataset, we followed a Bayesian approach for parameter estimation. This
284	makes it possible to fit curves with reasonable thermal limits for traits that lack data at low
285	temperatures using weakly informative prior distributions and illustrates the benefits of fitting
286	flexTPC in a Bayesian context. For each mosquito life history trait, flexTPC was compared to a
287	TPC functional form that was used previously to describe the data being modeled, which varied
288	by trait (Shocket et al. 2020). Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002)
289	was used as a model selection criterion. For more details, see Table 1 and the Supplemental
290	Information.
291	
292	Models were fit using Markov Chain Monte Carlo (MCMC) with the r2jags R package, an
293	interface for JAGS (Just Another Gibbs Sampler) (Plummer 2003). Four independent MCMC
294	chains were run for 300,000 iterations, discarding the first 50,000 iterations as burn-in. The
295	resulting MCMC chains were thinned, saving every eight iterations. Chain convergence was
296	monitored both by visual inspection of trace plots and density plots of the individual chains and
297	by ensuring the potential scale reduction factor $\hat{R} < 1.01$ for all parameters.

298 Results

299 300	In this work, we present flexTPC—a flexible model for unimodal thermal performance curves
301	(TPCs) in which the optimum temperature can lie at any point in between the minimum and
302	maximum temperatures. This model is parameterized in terms of biologically meaningful
303	quantities and can describe TPCs of a wide variety of shapes (Figure 1). We compare the
304	performance of flexTPC to that of the Briere1 and Briere2 models (Equation 1), which are
305	phenomenological models for TPCs that are popular in applications in various real-world
306	datasets.
307 308 309 310	Insect developmental rates The Briere models were initially developed to describe the thermal dependence of insect
311	developmental rates. We compared the flexTPC and Briere models for describing Briere and
312	Pacros's data on the rates of development of the life stages of the grapevine moth Lobesia
313	botrana (Figures 2 (left panel), S1) to evaluate the relative performance of these models in a real
314	dataset for which the Briere models would be typically used.
315	
316	Based on leave-one-out cross validation (LOOCV), we found that flexTPC was the best
317	performing model for six life stages (eggs, instars 1, 2, 3, 5 and pupae) while the Briere2 model
318	was the best performing model for one life stage (instar 4; Table 1). The Briere1 model was the
319	worst performing model for all life stages in this dataset.
320 321 322	Organisms that live below freezing temperatures The Drive word the form twittee formula to be seen at $T = 0.000$ and out there exists to be write
323	The Briere models force trait performance to be zero at $I = 0^{\circ}$ C and are thus unable to describe
324	thermal performance curves for traits of living organisms that function below freezing

325	temperatures. In order to provide a real-world example, we next compared the Briere and
326	flexTPC models for describing the growth rate of three facultative psychrophile bacterial strains
327	(Arthrobacter sp strain SI 55, Arthrobacter sp strain SI 60, and Pseudomonas strain SII 76) and
328	two obligate psychrophile strains (Arthrobacter glacialis strains SI 137 and SI 158) isolated from
329	glaciers (Gounot 1976) (Figures 2 (middle column), S2). We found that flexTPC provides better
330	fits than both Briere models for all bacterial species in the dataset (Table 1). This was especially
331	so for both Arthrobacter glacialis strains since they exhibit substantial growth at and below 0°C,
332	which is impossible to capture with the Briere models.
333	
334	Thermal performance curves (TPCs) of varying shapes
335 336	Thermal performance curves (especially those for growth and developmental rates) are often left-
337	skewed, with the temperature optimum closer to the maximum than the minimum temperature
338	for the trait. However, some traits have symmetric or right-skewed TPCs, and environmental
339	stressors can change the shape of TPCs (Bestion et al. 2018; Brett et al. 1969; Cruz-Loya et al.
340	2021; Cuppers et al. 1997). As a real-world example, we next considered a dataset consisting of
341	the temperature-dependent growth of Escherichia coli under 12 different antibiotics, and a
342	control condition in the absence of antibiotics (Cruz-Loya et al. 2021). We again compared the
343	fit of the Briere1, Briere2, and flexTPC models (Figures 2 (right column), S3, Table 1).
344	
345	While the TPC of <i>E. coli</i> growth is left-skewed in the absence of antibiotics, its shape can be
346	modified in their presence because antibiotic effectiveness can vary at different temperatures.
347	Some antibiotics give rise to left-skewed curves (e.g., TET, TMP, FOX), while others result in
348	curves that are closer to symmetric and can be either nearly flat (GEN, TOB, STR) or narrow
349	(ERY). FlexTPC was the best performing model for all 13 antibiotic backgrounds in this dataset

(Table 1) and is the only model out of the three that can describe TPCs that are symmetric orright-skewed.

352

353 Fitting thermal performance curves that vary in shape across multiple traits and species 354 355 Organisms have multiple temperature dependent traits, giving rise to TPCs that can have 356 different shapes. In practice, this has often meant that a different TPC functional form (such as 357 Briere or quadratic) must be chosen for each trait, and sometimes even for the same trait in 358 different species. This raises the issue that the inferred parameters (like minimum, optimal, and 359 maximum temperatures) may differ across traits or species partially because of using different 360 functional forms rather than only because of the data. A flexible model such as flexTPC makes it 361 possible to compare TPCs of different shapes with the same model, allowing the direct 362 comparison of inferred parameters. In addition, having interpretable model parameters allows the 363 use of informative Bayesian priors based on curves fit to related species or knowledge of the 364 temperature range in the habitat of the species of interest.

365

366 As an example, we fit TPC models to a dataset with four life history traits (lifespan, egg 367 viability, larval survival to adulthood, and mosquito development rate) of the mosquitoes Culex 368 pipiens and Culex quinquefasciatus using a Bayesian approach (Figure 3). In a previous study 369 (Shocket et al. 2020), these data were analyzed using various different functional forms (linear, 370 quadratic, and Briere), depending on the trait and species (Table 1). We find that flexTPC gives 371 very similar fits to using these different models for lifespan, larval survival, and development 372 rate. Moreover, it provides substantially better fits for egg viability compared to the previous 373 models chosen in the literature (quadratic for *Cx. pipiens* and Briere1 for *Cx. quinquefasciatus*). 374

375	For adult lifespan, flexTPC results in a near-identical fit to that of a piecewise linear model
376	(which was previously used to describe this trait) within the range of the data. Although this
377	dataset does not contain temperatures low enough to observe a reduction in lifespan, it must
378	necessarily decrease at lower temperatures, so it is likely more realistic to model this trait as a
379	right-skewed unimodal TPC (as can be done with flexTPC) rather than a linear model. If
380	Bayesian methods are used, this can be done even in cases where there is a lack of data near
381	temperature extremes.
382	
383	In Bayesian approaches, uncertainty in model parameters is described by probability
384	distributions. Before the analysis, a prior distribution for each parameter is chosen that represents
385	how likely each parameter value is assumed to be <i>a priori</i> (before observing the data). Prior
386	distributions can be based on biological knowledge from previous experiments in related species
387	or known characteristics of the habitat of the population being studied. For example, as the
388	mosquito species of interest are ectotherms that live in temperate (Cx. pipiens) or
389	tropical/subtropical (<i>Cx. quinquefasciatus</i>) climates, we assume that T_{min} and T_{max} for adult
390	lifespan are <i>a priori</i> 95% likely to be in the interval (0°C, 10°C) and (25°C, 45°C), respectively.
391	Choosing reasonable prior distributions based on biological knowledge is much easier when the
392	model parameters are interpretable (e.g., for minimum and maximum temperatures and the
393	maximum trait value) rather than mathematical constants with no direct biological meaning.
394	Because of its interpretable parameters (Figure 4 and Box 1), flexTPC is well-suited for
395	Bayesian parameter estimation.

396 Discussion

397

398	In this work we introduce flexTPC, a flexible mathematical model for thermal performance
399	curves (TPCs) that can describe unimodal TPCs of various shapes (including left-skewed,
400	symmetric, and right-skewed curves). FlexTPC is mathematically equivalent to the Beta model
401	(Yin et al. 1995), but is reparametrized to be biologically interpretable and better suited for
402	applied ecology and infectious disease applications. We show that this model addresses various
403	limitations of the Briere models, such as not being able to describe TPCs from species that can
404	survive below freezing temperatures, or TPCs that vary in skewness/thermal breadth. This leads
405	to better predictive performance in various real-world datasets. Based on these results, we
406	propose flexTPC as a general-purpose descriptive model to describe unimodal TPCs.
407	
408	FlexTPC is parametrized in terms of biologically meaningful quantities that are of interest to
409	ecologists: the minimum and maximum temperatures, the maximum value of the trait, a choice
410	of either the relative or absolute position of the optimum temperature, and a choice of the
411	approximate relative or absolute upper thermal breadth. This has several advantages when
412	compared to models in which some parameters are mathematical constants without a clear
413	interpretation. First, the model behaves more predictably when changing its parameter values,
414	since these quantities can be kept constant or modified intentionally as opposed to changing in
415	possibly unintuitive ways as other parameters vary (Figure 4). This aids in the clear
416	interpretation of parameter sensitivity analysis and facilitates modeling how TPCs change over
417	time and/or space (Box 1). Second, it simplifies finding reasonable initial values for the
418	parameters when fitting the model with optimization-based methods (e.g., least squares or
419	maximum likelihood estimation). Third, statistics such as confidence intervals can often be

420	obtained automatically with standard software when a quantity of interest is an explicit
421	parameter of the model. Lastly, an interpretable parametrization makes it easier to incorporate
422	information from previous experiments in similar species or other sources (e.g., the
423	environmental temperature range from the habitat of the organism) when using informative
424	priors in Bayesian approaches to parameter inference.
425	

426 FlexTPC has several important advantages over other popular models like the Briere models. 427 First, in any model describing TPCs, at least three parameters are necessary in order to set the 428 curve height and the minimum and maximum temperatures independently. Because of this, the 429 optimal temperature in any TPC model that has three parameters or fewer (like the Brierel 430 model or the quadratic model) will necessarily be a deterministic function of some subset of 431 these parameters. This may lead to biased estimates for the optimum temperature (and the other 432 parameters involved in the deterministic relationship) whenever the true relationship between 433 these parameters deviates from the implicit assumption made by the TPC functional form, which 434 often lacks a biological justification in phenomenological models. FlexTPC (and Briere2) can 435 vary the optimum temperature for fixed values of the minimum and maximum temperature and 436 are thus likely better suited for estimating optimal temperatures, especially when thermal limits 437 are tightly constrained by the data. Conversely, when using the Brierel function to describe a 438 TPC where most data are near the optimum, the estimated thermal minimum and maximum 439 might be inaccurate due to the constraints imposed by the functional form.

440

441 Second, organisms may function below freezing temperatures, and while the Briere1 and the
442 Briere2 models cannot describe positive performance below freezing, flexTPC can describe

TPCs at any temperature range (Figures 2, S2). Although it is possible to use the Briere models
in these cases by shifting the model in the temperature axis, this requires choosing an arbitrary
temperature shift, and the shape of the resulting TPC depends on the chosen shift (Figure S5).

447 Another advantage of flexTPC over the Briere models is its ability to describe TPCs of many 448 different shapes. This will be especially useful in studies comparing multiple TPCs from 449 different traits and/or from different organisms. Currently, different functional forms are 450 commonly used in these studies when the TPC shape changes across species or traits. This can 451 potentially introduce issues when comparing inferred parameters, as parameters might vary 452 between conditions partially due to the use of a different model rather than because of 453 meaningful differences in the data. This issue can be avoided by using a flexible model that 454 allows fitting all conditions with the same functional form.

455

456 As flexTPC is a more complex model that the Briere models, with five free parameters, it is 457 natural to consider whether it can be used in data-limited situations where measurements are only 458 available at a few temperatures, as frequently occurs in lab and field data. In this work we show 459 that, despite this additional complexity, flexTPC has better predictive performance than the 460 Briere1 and Briere2 models in many real-world scenarios. Moreover, as illustrated in the data for 461 mosquito lifespan (Figure 3), flexTPC can be used in situations with limited data at some 462 temperature ranges when using Bayesian methods. Even in cases with severe data limitations, the 463 use of a flexible model with Bayesian methods with strongly informative priors based on 464 biological knowledge of the species being modeled and its habitat may be preferable to the use of 465 a more parsimonious model that assumes a strong relationship between the optimal, minimum,

and maximum temperatures without biological justification, especially when the main purpose of
the analysis is to estimate an optimal temperature. However, more parsimonious models can be
obtained from the flexTPC equation for researchers under severe data constraints that do not
wish to take a Bayesian approach to parameter inference (see Supplemental Information).

471 Our work shows that flexTPC is a general-purpose model for unimodal TPCs that is well-suited 472 for comparing populations or experimental conditions where the curves may vary in thermal 473 breadth and skewness. To our knowledge, flexTPC is the first descriptive TPC model to 474 simultaneously have an explicit parameter corresponding to all of the main TPC features of 475 interest for ecologists-the temperature minimum, maximum, and optimum, along with the 476 maximum trait performance value and thermal breadth. This inclusion of parameters of interest 477 results in a model that is both flexible and interpretable, which we believe will be useful for both 478 fitting empirical data and for theoretical work that models how TPCs change under evolution or 479 in the presence of external factors like other stressors. FlexTPC can also be used as a flexible 480 functional form to describe the response of biological traits to other environmental factors (e.g., 481 precipitation or humidity) when these responses are unimodal.

482 Acknowledgements

- 483 MCL and EAM were supported by NIH grants R35GM133439 and R01AI168097. MCL was
- 484 also supported by a Stanford PRISM Baker Fellowship. EAM was also supported by NSF grant
- 485 DEB-2011147 with Fogarty International Center, NIH grant R01AI102918, and seed grants from
- 486 the Stanford Woods Institute for the Environment, King Center on Global Development, and
- 487 Center for Innovation in Global Health. VMS was supported by a James F. McDonnell
- 488 Foundation Complex Systems Scholar Award.

489 Data and code availability

- 490 All data and code are provided in a <u>GitHub</u> repository.
- 491

492 References

- Amarasekare, P. & Savage, V. (2012). A framework for elucidating the temperature dependence
 of fitness. *Am. Nat.*, 179, 178–191.
- Angilletta Jr., M.J. (2009). *Thermal Adaptation: A Theoretical and Empirical Synthesis*. Oxford
 University Press, Oxford.
- 497 Arroyo, J.I., Díez, B., Kempes, C.P., West, G.B. & Marquet, P.A. (2022). A general theory for
 498 temperature dependence in biology. *Proc. Natl. Acad. Sci.*, 119, e2119872119.
- 499Barton, S. & Yvon-Durocher, G. (2019). Quantifying the temperature dependence of growth rate500in marine phytoplankton within and across species. *Limnol. Oceanogr.*, 64, 2081–2091.
- 501 Bennett, A.F. (1980). The thermal dependence of lizard behaviour. *Anim. Behav.*, 28, 752–762.
- 502 Bestion, E., Schaum, C.-E. & Yvon-Durocher, G. (2018). Nutrient limitation constrains thermal
- tolerance in freshwater phytoplankton. *Limnol. Oceanogr. Lett.*, 3, 436–443.
 Brett, J.R., Shelbourn, J.E. & Shoop, C.T. (1969). Growth Rate and Body Composition of
- 505 Fingerling Sockeye Salmon, Oncorhynchus nerka, in relation to Temperature and Ration 506 Size. J. Fish. Res. Board Can., 26, 2363–2394.
- 507Briere, J.F. & Pracros, P. (1998). Comparison of temperature-dependent growth models with508the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. USA.

509 Briere, J.-F., Pracros, P., Roux, A.-Y. & Pierre, J.-S. (1999). A Novel Rate Model of Temperature-510 Dependent Development for Arthropods. *Environ. Entomol.*, 28, 22–29.

511	Buckley, L.B. & Huey, R.B. (2016). How Extreme Temperatures Impact Organisms and the
512	Evolution of their Thermal Tolerance. Integr. Comp. Biol., 56, 98–109.
513	Couper, L.I., Farner, J.E., Lyberger, K.P., Lee, A.S. & Mordecai, E.A. (2024). Mosquito thermal
514	tolerance is remarkably constrained across a large climatic range. Proc. R. Soc. B Biol.
515	<i>Sci.</i> , 291, 20232457.
516	Cruz-Loya, M., Tekin, E., Kang, T.M., Cardona, N., Lozano-Huntelman, N., Rodriguez-Verdugo, A.,
517	et al. (2021). Antibiotics Shift the Temperature Response Curve of Escherichia coli
518	Growth. <i>mSystems</i> , e0022821.
519	Cuppers, H.G., Oomes, S. & Brul, S. (1997). A model for the combined effects of temperature
520	and salt concentration on growth rate of food spoilage molds. Appl. Environ. Microbiol.,
521	63, 3764–3769.
522	Dell, A.I., Pawar, S. & Savage, V.M. (2011). Systematic variation in the temperature dependence
523	of physiological and ecological traits. <i>Proc. Natl. Acad. Sci. U. S. A.,</i> 108, 10591–10596.
524	Dell, A.I., Pawar, S. & Savage, V.M. (2014). Temperature dependence of trophic interactions are
525	driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol., 83, 70–
526	84.
527	Gilbert, B., Tunney, T.D., McCann, K.S., DeLong, J.P., Vasseur, D.A., Savage, V., et al. (2014). A
528	bioenergetic framework for the temperature dependence of trophic interactions. <i>Ecol.</i>
529	Lett., 17, 902–914.
530	Gounot, A.M. (1976). Effects of temperature on the growth of psychrophilic bacteria from
531	glaciers. Can. J. Microbiol., 22, 839–846.
532	Haye, T., Abdallah, S., Gariepy, T. & Wyniger, D. (2014). Phenology, life table analysis and
533	temperature requirements of the invasive brown marmorated stink bug, Halyomorpha
534	halys, in Europe. J. Pest Sci., 87, 407–418.
535	Huey, R.B. & Berrigan, D. (2001). Temperature, demography, and ectotherm fitness. Am. Nat.,
536	158, 204–210.
537	Huey, R.B. & Kingsolver, J.G. (1989). Evolution of thermal sensitivity of ectotherm performance.
538	Trends Ecol. Evol., 4, 131–135.
539	Hultin, E., Uusitalo, E., Larsen, I. & Prydz, H. (1955). The Influence of Temperature on the Rate
540	of Enzymic Processes. Acta Chem. Scand., 9, 1700–1710.
541	Ito, F. & Awasaki, T. (2022). Comparative analysis of temperature preference behavior and
542	effects of temperature on daily behavior in 11 Drosophila species. Sci. Rep., 12, 12692.
543	Jägermeyr, J., Müller, C., Ruane, A.C., Elliott, J., Balkovic, J., Castillo, O., et al. (2021). Climate
544	impacts on global agriculture emerge earlier in new generation of climate and crop
545	models. <i>Nat. Food</i> , 2, 873–885.
546	Jeffree, E.P. & Jeffree, C.E. (1994). Temperature and the Biogeographical Distributions of
547	Species. Funct. Ecol., 8, 640–650.
548	Johnson, F.H. & Lewin, I. (1946). The growth rate of E. coli in relation to temperature, quinine
549	and coenzyme. J. Cell. Comp. Physiol., 28, 47–75.
550	Kirk, D., Jones, N., Peacock, S., Phillips, J., Molnár, P.K., Krkošek, M., et al. (2018). Empirical
551	evidence that metabolic theory describes the temperature dependency of within-host
552	parasite dynamics. <i>PLOS Biol.</i> , 16, e2004608.
553	Knapp, B.D. & Huang, K.C. (2022). The Effects of Temperature on Cellular Physiology. Annu. Rev.
554	Biophys., 51, 499–526.

555	Knies, J.L., Kingsolver, J.G. & Burch, C.L. (2009). Hotter Is Better and Broader: Thermal
556	Sensitivity of Fitness in a Population of Bacteriophages. Am. Nat., 173, 419–430.
557	Lachenicht, M.W., Clusella-Trullas, S., Boardman, L., Le Roux, C. & Terblanche, J.S. (2010).
558	Effects of acclimation temperature on thermal tolerance, locomotion performance and
559	respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J. Insect
560	Physiol., 56, 822–830.
561	Lemoine, N.P. (2017). Predation Risk Reverses the Potential Effects of Warming on Plant-
562	Herbivore Interactions by Altering the Relative Strengths of Trait- and Density-Mediated
563	Interactions. <i>Am. Nat.</i> , 190, 337–349.
564	Logan, J., Wollkind, D., Hoyt, S. & Tanigoshi, L. (1976). An Analytic Model for Description of
565	Temperature Dependent Rate Phenomena in Arthropods. Environ. Entomol., 5, 1133–
566	1140.
567	Molnár, P.K., Kutz, S.J., Hoar, B.M. & Dobson, A.P. (2013). Metabolic approaches to
568	understanding climate change impacts on seasonal host-macroparasite dynamics. Ecol.
569	Lett., 16, 9–21.
570	Molnár, P.K., Sckrabulis, J.P., Altman, K.A. & Raffel, T.R. (2017). Thermal Performance Curves
571	and the Metabolic Theory of Ecology-A Practical Guide to Models and Experiments for
572	Parasitologists. J. Parasitol., 103, 423–439.
573	Mordecai, E.A., Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R., Lippi, C.A., et al. (2017).
574	Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya
575	using mechanistic models. PLoS Negl. Trop. Dis., 11, e0005568.
576	Mordecai, E.A., Paaijmans, K.P., Johnson, L.R., Balzer, C., Ben-Horin, T., de Moor, E., et al.
577	(2013). Optimal temperature for malaria transmission is dramatically lower than
578	previously predicted. <i>Ecol. Lett.</i> , 16, 22–30.
579	Nunez, S., Arets, E., Alkemade, R., Verwer, C. & Leemans, R. (2019). Assessing the impacts of
580	climate change on biodiversity: is below 2 °C enough? <i>Clim. Change</i> , 154, 351–365.
581	Paaijmans, K.P., Read, A.F. & Thomas, M.B. (2009). Understanding the link between malaria risk
582	and climate. <i>Proc. Natl. Acad. Sci.,</i> 106, 13844–13849.
583	Pepi, A., Hayes, T. & Lyberger, K. (2023). Thermal asymmetries influence effects of warming on
584	stage and size-dependent predator–prey interactions. <i>Theor. Ecol.</i> , 16, 105–115.
585	Plummer, M. (2003). JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs
586	Sampling. 3rd Int. Workshop Distrib. Stat. Comput. DSC 2003 Vienna Austria, 124.
587	Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N. & Chandler, R.E. (1983). Model for
588	bacterial culture growth rate throughout the entire biokinetic temperature range. J.
589	Bacteriol., 154, 1222–1226.
590	Ratkowsky, D.A., Olley, J. & Ross, T. (2005). Unifying temperature effects on the growth rate of
591	bacteria and the stability of globular proteins. J. Theor. Biol., 233, 351–362.
592	Ritchie, M.E. (2018). Reaction and diffusion thermodynamics explain optimal temperatures of
593	biochemical reactions. Sci. Rep., 8, 11105.
594	Rocklöv, J. & Dubrow, R. (2020). Climate change: an enduring challenge for vector-borne
595	disease prevention and control. Nat. Immunol., 21, 479–483.
596	Savage, V.M., Gillooly, J.F., Brown, J.H., West, G.B. & Charnov, E.L. (2004). Effects of body size
597	and temperature on population growth. Am. Nat., 163, 429–441.

- Schoolfield, R.M., Sharpe, P.J. & Magnuson, C.E. (1981). Non-linear regression of biological
 temperature-dependent rate models based on absolute reaction-rate theory. *J. Theor. Biol.*, 88, 719–731.
- Schulte, P.M. (2015). The effects of temperature on aerobic metabolism: towards a mechanistic
 understanding of the responses of ectotherms to a changing environment. *J. Exp. Biol.*,
 218, 1856–1866.
- Sentis, A., Hemptinne, J.-L. & Brodeur, J. (2012). Using functional response modeling to
 investigate the effect of temperature on predator feeding rate and energetic efficiency.
 Oecologia, 169, 1117–1125.
- 607 Sharpe, P.J. & DeMichele, D.W. (1977). Reaction kinetics of poikilotherm development. *J. Theor.* 608 *Biol.*, 64, 649–670.
- Shi, P. & Ge, F. (2010). A comparison of different thermal performance functions describing
 temperature-dependent development rates. *J. Therm. Biol. J THERM BIOL*, 35, 225–
 231.
- 612 Shocket, M.S., Verwillow, A.B., Numazu, M.G., Slamani, H., Cohen, J.M., El Moustaid, F., *et al.*613 (2020). Transmission of West Nile and five other temperate mosquito-borne viruses
 614 peaks at temperatures between 23°C and 26°C. *eLife*, 9, e58511.
- 615 Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & Van Der Linde, A. (2002). Bayesian measures of 616 model complexity and fit. *J. R. Stat. Soc. Ser. B Stat. Methodol.*, 64, 583–639.
- Stone, M. (1977). An Asymptotic Equivalence of Choice of Model by Cross-Validation and
 Akaike's Criterion. J. R. Stat. Soc. Ser. B Methodol., 39, 44–47.
- Tochen, S., Dalton, D.T., Wiman, N., Hamm, C., Shearer, P.W. & Walton, V.M. (2014).
 Temperature-Related Development and Population Parameters for Drosophila suzukii
- 621 (Diptera: Drosophilidae) on Cherry and Blueberry. *Environ. Entomol.*, 43, 501–510.
- Waldock, C., Dornelas, M. & Bates, A.E. (2018). Temperature-Driven Biodiversity Change:
 Disentangling Space and Time. *BioScience*, 68, 873–884.
- 624Yates, L.A., Aandahl, Z., Richards, S.A. & Brook, B.W. (2023). Cross validation for model625selection: A review with examples from ecology. *Ecol. Monogr.*, 93, e1557.
- 626 Yin, X., Kropff, M.J., McLaren, G. & Visperas, R.M. (1995). A nonlinear model for crop 627 development as a function of temperature. *Agric. For. Meteorol.*, 77, 1–16.
- 627 628

629 Figures, Tables and Boxes

630

Figure 1. The flexTPC model can describe unimodal thermal performance curves of 632 633 various shapes. A. The flexTPC model (Equation 3) has two parameters that determine the 634 shape of the curve: α (varying from left to right) corresponds to the position of the temperature 635 optimum relative to the minimum and maximum temperatures while β (varying from top to 636 bottom) determines the thermal breadth near the top of the curve. B. Three additional parameters 637 determine how the curve is scaled in the temperature and trait performance axes: the minimum 638 and maximum temperatures (T_{min} and T_{max} , respectively), and the maximum value of the response r_{max} . The optimum temperature T_{opt} can be at any point between T_{min} and T_{max} : its 639 position is determined by parameter $\alpha \in [0,1]$. The upper thermal breadth (UTB), defined as the 640 temperature range where $r(T) > e^{-\frac{1}{8}} r_{max} \approx 0.88 r_{max}$, is approximately the product of β and the 641 lower thermal breadth $T_{max} - T_{min}$ where r(T) > 0 (for details on the accuracy of this 642 643 approximation, see Methods and Figure S4).

644 645 Figure 2. FlexTPC outperforms the Briere1 and Briere2 models in various real-world 646 datasets. Data (shown as blue triangles) and fitted TPC models (Briere1: red lines, Briere2: 647 yellow lines, flexTPC: green lines) for selected examples from various real-world datasets 648 (botrana, glacierbac and abcoli, see Methods). Left column. Rate of development of 649 various life stages of the grapevine moth Lobesia botrana. A subset of the life stages (eggs, 650 instar 3 and pupae) is shown. Middle column. Growth rate of psychrophile bacterial species 651 (Pseudomonas and Arthrobacter glacialis) isolated from glacial deposits. Right column. Optical 652 density (OD, a proxy for the number of bacteria) of *Escherichia coli* cultures after 24-hour 653 growth under various antibiotic backgrounds (ERY: erythromycin, GEN: gentamycin, no drug:

- 654 growth media without antibiotics). The fitted TPC models for all traits in each dataset are shown
- 655 in Figures S1-S3 in the Supplemental Information.

669

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.01.605695; this version posted August 6, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

671 Figure 4. Single parameter changes in the Briere and flexTPC models. In each panel, we 672 show the effects on the thermal performance curve when a single parameter of the corresponding 673 TPC model is changed while keeping all other parameters constant. For parameters other than m 674 in the Briere model, a fixed value of m = 2 is used (corresponding to the Briere 1 model). We 675 show the parameter values for both parametrizations of flexTPC (Equations 3 and 6), which 676 differ on whether the optimal temperature and approximate upper thermal breadth are in unitless (α, β) or dimensional (T_{ont}, B) form, but are otherwise identical and describe the same set of 677 678 curves. Since flexTPC has biologically interpretable parameters, changing a single parameter 679 (e.g., T_{min}) will change the thermal performance curve in a predictable way (as the rest of the 680 parameters that are kept constant correspond to known curve properties). In contrast, in a model 681 where some parameters are mathematical constants without a direct biological interpretation, 682 changing a parameter can lead to unintuitive and possibly unintended changes in the thermal 683 performance curve (e.g., changing T_{min} also leads to changes on the height of the curve for the 684 Briere model). This has important consequences when modeling changes in TPCs due to

- 685 evolutionary or environmental factors, and when interpreting sensitivity analyses of derived
- 686 quantities from TPC models (see Box 1). Note that decreasing parameter T_{min} to negative values
- 687 in the Briere model does not lead to models with positive performance below 0°C (see Methods).

Dataset				
botrana	life stage	Briere1	Briere2	flexTPC
LOOCV-nLL	eggs	2.00	-1.79	-2.20
	instar 1	-1.46	-2.32	-2.64
	instar 2	-2.24	-2.88	-3.08
	instar 3	7.16	-1.55	-2.60
	instar 4	2.14	-2.61	-2.51
	instar 5	-0.48	-3.04	-3.12
	рирае	10.80	-2.95	-3.95
glacierbac	species (strain)	Briere1	Briere2	flexTPC
LOOCV-nLL	Arthrobacter sp (55)	0.27	-3.35	-3.61
	Arthrobacter sp (60)	2.53	-3.13	-3.79
	Pseudomonas (76)	inf	-2.23	-2.71
	Arthrobacter glacialis (137)	0.70	-3.49	-4.46
	Arthrobacter glacialis (158)	-2.64	-4.23	-5.68
abcoli	antibiotic	Briere1	Briere2	flexTPC
LOOCV-nLL	AMP	-0.97	-1.33	-2.08
	CLI	-1.43	-1.47	-1.67
	CPR	-0.78	-1.23	-1.70
	ERY	-0.34	-0.70	-1.21
	FOX	-1.87	-1.88	-2.36
	GEN	-0.80	-1.00	-1.68
	LVX	-1.50	-1.50	-1.74
	NTR	-1.72	-1.89	-2.10
	STR	-0.96	-1.24	-1.78
	TET	-1.65	-1.70	-1.92
	TMP	-1.90	-1.91	-2.59
	ТОВ	-1.08	-1.39	-2.10
	no drug	-0.96	-1.17	-2.67
lhculex		Culex pipiens		
DIC	trait	lit. function	lit. model	flexTPC
	EV	quadratic	105.7	47.4
	pLA	quadratic	-17.3	-14.8
	MDR	Briere1	-313.9	-312.8
	lf	linear	280.7	280.0
		Culex quinque	fasciatus	
	trait	lit. function	lit. model	flexTPC
	EV	Briere1	979.0	370.2

pLA	quadratic	-42.6	-39.2
MDR	Briere1	-152.0	-149.5
lf	linear	110.3	113.5

690 691	Table 1. Model comparison in real-world datasets. We compare the predictive performance of
692	flexTPC and Briere models. The best performing model has its values highlighted in bold. The
693	model comparison criteria are indicated below the corresponding dataset. For datasets that were
694	fit with a maximum likelihood approach (botrana, glacierbac, lhculex), we use mean
695	leave one out cross-validated negative log-likelihood (LOOCV-nLL, lower is better) as the
696	model comparison criterion to compare between the Briere1, Briere2, and flexTPC models. For
697	the lhculex dataset, which was fit with a Bayesian approach, we use the Deviance Information
698	Criterion (DIC, lower is better) as a model comparison criterion between a TPC functional form
699	that was previously used in the literature to describe that trait (lit.function) and flexTPC.

700 Box 1: Advantages of thermal performance curve models with biologically interpretable

701 parameters

702

703 For many applications (for example, studying the evolution of TPCs or predicting the effect of 704 thermal adaptation on infectious disease spread), it is of interest to model how thermal 705 performance curves change across time, across space, in the presence of a stressor other than 706 temperature, and/or when exposed to other factors that vary across populations. It is natural to do 707 this by making assumptions about how parameters of interest (e.g., minimum, optimum, or 708 maximum temperatures) change as a function of the variable of interest. However, when some 709 parameters in the chosen TPC functional form are mathematical constants without a clear 710 biological interpretation, this can lead to unintuitive changes in the predicted values for the TPC, 711 even when the parameter being modified is interpretable.

712

713 To illustrate this, we show the effects of changing a single parameter while keeping all other 714 parameters constant for the Briere and flexTPC models (Figure 4). In the Briere model there is a 715 multiplicative constant c that is proportional to the height of the curve when all other model 716 parameters are fixed. Changing the value of c while keeping the other model parameters constant 717 will change the TPC in a predictable way by modifying its height while keeping the same 718 minimum and maximum temperatures. However, changing the value of a different model 719 parameter in the Briere model (e.g., T_{min} or T_{max} , which are interpretable parameters) while 720 keeping all other parameters constant will not keep the height of the curve constant, as the value 721 of c that is needed to keep the same height changes when the other model parameters change. In 722 contrast, in the flexTPC model the maximum trait value r_{max} (i.e., the curve height) is explicitly

a model parameter. Thus, keeping r_{max} constant will keep the same TPC height regardless of the values of the other parameters. When modeling changes in TPCs, it is advantageous to choose a functional form where parameters are biologically interpretable, especially if it is of interest to assume certain aspects of the TPC remain constant or change in a predictable way. This will lead to a clearer interpretation of changes in model parameters which is not confounded by changes in other aspects of the TPC that are not of interest.

729

730 Using TPC models where some of the parameters are mathematical constants without a 731 biological interpretation can lead to potentially misleading conclusions in applications that 732 require the interpretation of partial derivatives of the model or quantities derived from them. 733 Importantly, this includes sensitivity analyses of mathematical models that include TPCs as a 734 submodel (such as infectious disease or predator-prey models) with respect to the underlying 735 parameters of the TPC functional form. For example, sensitivity analysis based on partial 736 derivatives might indicate that the transmission of a disease is very sensitive to the parameter 737 T_{max} of a TPC modeled with the Brierel function. However, as increasing T_{max} (while keeping 738 all other parameters constant) also increases the height of the TPC, this could be either due to the 739 increased maximum temperature or the increased curve height. In contrast, using a model where 740 all parameters have a clear biological interpretation (and where the maximum value of the TPC 741 is an explicit parameter) enables separating the effect of increasing the maximum temperature 742 and increasing the curve height.

743

744 In general, parametrizing models in terms of biologically interpretable quantities is useful as it 745 makes it possible to keep them constant or to change them in specified ways when varying other

- parameters (as needed for modeling change in TPCs). It is also advisable to explore the effects of
- changing individual parameters in the TPCs to be aware of what aspects of the curve are being
- 748 modified by the parameter in question when interpreting sensitivity analyses.