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Abstract 12 
 13 
Temperature responses of many biological traits—including population growth, survival, and 14 

development—are described by thermal performance curves (TPCs) with phenomenological 15 

models like the Briere function or mechanistic models related to chemical kinetics. Existing TPC 16 

models are either simple but inflexible in shape, or flexible yet difficult to interpret in biological 17 

terms. Here we present flexTPC: a model that is parameterized exclusively in terms of 18 

biologically interpretable quantities, including the thermal minimum, optimum, and maximum, 19 

and the maximum trait value. FlexTPC can describe unimodal temperature responses of any 20 

skewness and thermal breadth, enabling direct comparisons across populations, traits, or taxa 21 

with a single model. We apply flexTPC to various microbial and entomological datasets, 22 

compare results with the Briere model, and find that flexTPC often has better predictive 23 

performance. The interpretability of flexTPC makes it ideal for modeling how thermal responses 24 

change with ecological stressors or evolve over time.  25 
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Introduction 26 
  27 
A fundamental problem in ecology is to understand how the growth, physiology, and behavior of 28 

organisms depend on their environment. Temperature variation is an important environmental 29 

characteristic due to its multiple effects on the physiology (Knapp & Huang 2022) and behavior 30 

(Ito & Awasaki 2022) of organisms. Through these effects, changes in temperature impact the 31 

fitness of organisms (Amarasekare & Savage 2012) and ultimately the distribution of species 32 

across geographic space (Jeffree & Jeffree 1994). Understanding the effects of temperature in 33 

organisms is thus crucial to predict how climate change will modify the geographic distribution 34 

of species and their interactions, as well as its potential impacts on biodiversity (Nunez et al. 35 

2019; Waldock et al. 2018), agriculture (Jägermeyr et al. 2021), the transmission of infectious 36 

disease (Rocklöv & Dubrow 2020), and other important ecosystem processes. 37 

 38 

Many traits, including rates of metabolism (Schulte 2015), population growth (Savage et al. 39 

2004), and development (Briere et al. 1999) vary continuously and nonlinearly with temperature. 40 

This dependence can be represented by a thermal performance curve (TPC) that describes the 41 

value or performance of the trait at different temperatures (Huey & Kingsolver 1989). 42 

Empirically, TPCs are often unimodal, reaching maximum performance at a single optimum 43 

temperature and decreasing to a thermal maximum and minimum where performance goes to 44 

zero (Angilletta Jr. 2009; Dell et al. 2011; Huey & Berrigan 2001).  45 

 46 

Various mathematical models have been developed to describe TPCs quantitatively (Arroyo et 47 

al. 2022; Briere et al. 1999; Hultin et al. 1955; Johnson & Lewin 1946; Ratkowsky et al. 1983, 48 

2005; Ritchie 2018; Schoolfield et al. 1981; Sharpe & DeMichele 1977; Shi & Ge 2010; Yin et al. 49 
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1995). These models make it possible to infer useful summaries of the temperature dependence 50 

of a trait (such as the optimum, maximum, and minimum temperatures) from experimental data. 51 

These summaries can then be compared between different populations of the same species, 52 

across species, or across traits (Barton & Yvon-Durocher 2019; Bennett 1980; Buckley & Huey 53 

2016; Couper et al. 2024; Gounot 1976; Knies et al. 2009; Shocket et al. 2020). Models of TPCs 54 

are also used as building blocks in more complex mathematical models that describe population 55 

dynamics and interactions between species. For instance, due to the sensitivity of ectotherm 56 

physiology to environmental temperature, transmission dynamics of vector-borne diseases are 57 

often highly sensitive to temperature. Mathematical models for the temperature-dependent 58 

transmission of these diseases can be constructed using TPC models for traits of the vector, host, 59 

and pathogen that affect disease transmission (Mordecai et al. 2013, 2017; Shocket et al. 2020). 60 

Models of predator-prey dynamics that incorporate the effects of temperature are also based on 61 

TPC models for traits of the prey and predator (Dell et al. 2014; Gilbert et al. 2014; Pepi et al. 62 

2023). 63 

 64 

Thermal performance models can broadly be classified into mechanistic models that derive from 65 

an underlying theory (Arroyo et al. 2022; Hultin et al. 1955; Johnson & Lewin 1946; Ratkowsky 66 

et al. 2005; Ritchie 2018; Schoolfield et al. 1981; Sharpe & DeMichele 1977) and 67 

phenomenological models that fit empirical data without attempting to explain the underlying 68 

mechanism that gives rise to the TPC (Briere et al. 1999; Logan et al. 1976; Ratkowsky et al. 69 

1983; Yin et al. 1995). Mechanistic models have some advantages, as they can be used to link 70 

TPCs to other biological traits, such as body size or metabolic rate through theoretical 71 

frameworks like the metabolic theory of ecology (Kirk et al. 2018; Molnár et al. 2013, 2017; 72 
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Savage et al. 2004). However, mechanistic TPC models are often parametrized in terms of 73 

quantities that can be difficult to interpret in ecological terms (e.g., the activation energy for a 74 

potentially rate-limiting chemical reaction for the trait being measured). Because of this, many 75 

ecological and epidemiological applications use phenomenological models that are parametrized 76 

in terms of more interpretable quantities (such as maximum and minimum temperatures) while 77 

still providing a good fit to experimental data, often with fewer parameters than mechanistic 78 

models. Moreover, many phenomenological models have explicit thermal limits for trait 79 

performance rather than an asymptotic decrease, which is desirable for modeling some traits 80 

(e.g., probability of survival to adulthood).  81 

 82 

One popular set of phenomenological models—the Briere models—are commonly used to 83 

describe the temperature dependence of insect developmental rates (Briere et al. 1999) and have 84 

been widely adopted in the ectotherm thermal biology literature (Haye et al. 2014; Lachenicht et 85 

al. 2010; Lemoine 2017; Mordecai et al. 2013, 2017; Paaijmans et al. 2009; Sentis et al. 2012; 86 

Tochen et al. 2014). These models are based on the same mathematical equation (Equation 1), 87 

differing only in the number of free parameters. The sparser three-parameter model—commonly 88 

referred to as the Briere1 model (or just the Briere model)—is popular in applications due to its 89 

parsimony, the biological interpretability of two of its parameters (the minimum and maximum 90 

temperatures), and its ability to describe many left-skewed TPCs for biological rates (Briere et 91 

al. 1999; Mordecai et al. 2013, 2017).  92 

 93 

However, both Briere models have shortcomings that should be carefully considered before their 94 

use. First, the Briere1 model makes a very strong implicit assumption about the relationship 95 
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between the minimum, maximum, and optimum temperatures that does not have a biological 96 

justification and that can potentially bias optimum temperature estimates. Second, due to their 97 

mathematical structure, the Briere1 and Briere2 models cannot describe thermal performance 98 

curves from psychrophilic organisms that can function below freezing temperatures. Lastly, the 99 

Briere models can only describe thermal performance curves that are left-skewed but are unable 100 

to describe TPCs with different shapes. This limitation is important when the goal is to compare 101 

traits that differ in TPC shape, such as symmetric and asymmetric responses. 102 

 103 

As an alternative to the Briere models we present a flexible model for thermal performance 104 

curves that addresses these limitations, and can describe left-skewed, symmetric, and right-105 

skewed unimodal TPCs of varying thermal breadth. This model, which we call flexTPC, is 106 

mathematically equivalent to the Beta model for crop development as originally presented by 107 

(Yin et al. 1995), which has not been widely adopted ectotherm animal physiology and ecology 108 

literature, but is reparametrized in terms of biologically interpretable quantities to make it more 109 

suitable for  applications in ecology and infectious disease modeling. A previous version of this 110 

model was derived in (Cruz-Loya et al. 2021) by modifying the Briere2 model (Equation 1) with 111 

the goal of describing TPCs of bacterial growth under antibiotics. However, this previous work 112 

focused primarily on how antibiotics modify TPCs rather than on the much broader potential 113 

applications of the mathematical model, and the model as presented previously had a remaining 114 

parameter without a direct biological interpretation. 115 

 116 

In this work, we provide a novel, fully biologically interpretable parametrization of the flexTPC 117 

model and compare its predictive performance with that of the Briere1 and Briere2 models in 118 
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real-world datasets. We find that flexTPC has similar or better performance than the Briere 119 

models when describing insect development data, while performing much better when describing 120 

thermal performance curves of psychrophilic organisms and TPCs that are symmetric or right-121 

skewed. Finally, we show that flexTPC can accurately describe many different mosquito life 122 

history traits for which different functional forms (linear, quadratic, and Briere1) were used in 123 

the past. Our results show that flexTPC is a flexible and interpretable descriptive model for 124 

unimodal TPCs that has some important advantages compared to the Briere models, and that is 125 

especially well-suited for applications where TPCs of different shapes need to be compared. Its 126 

interpretability is well-suited for Bayesian approaches for parameter inference, enabling the use 127 

of informative prior distributions based on biological knowledge such as the thermal range of the 128 

species habitat and typical maximum trait values for the same trait in related species. 129 

Methods 130 
 131 
The Briere models 132 
 133 
Thermal performance curve models describe trait performance 𝑟 as a function of temperature 𝑇. 134 

The Briere2 model is defined as follows: 135 

 136 

𝑟(𝑇) = &𝑐𝑇(𝑇 − 𝑇!"#)(𝑇!$% − 𝑇)
&
! 𝑇!"# < 𝑇 < 𝑇!$%

0 																																															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
								(1) 137 

 138 

where 𝑇!"# and 𝑇!$% are the minimum and maximum temperatures for the trait, respectively, 139 

and 𝑐,𝑚 ≥ 0 are arbitrary constants. The Briere1 model is the special case of equation (1) where 140 

𝑚 = 2. In general, 𝑟(𝑇) has three roots (values of T where r(T)=0), with one at 𝑇 = 0°𝐶. This 141 

makes the Briere models unsuitable to describe TPCs of organisms that have nonzero 142 
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 8 

performance below freezing temperatures. Because of this, the Briere models are restricted to 143 

𝑇!"# ≥ 0°𝐶 so that there are only two roots (𝑇!"# and 𝑇!$%). 144 

 145 

The optimum temperature of the Briere models is given by the following expression (Briere et al. 146 
1999): 147 
 148 

𝑇'() =
(𝑚 + 1)𝑇!"# + 2𝑚𝑇!$% + ;4𝑚*𝑇!$%* + (𝑚 + 1)*𝑇!"#* − 4𝑚*𝑇!"#𝑇!$%

4𝑚 + 2 								(2) 149 

 150 

For the Briere1 model (where 𝑚 = 2 is fixed), 𝑇'() is a deterministic function of 𝑇!"# and 𝑇!$%. 151 

In other words, it is impossible to vary 𝑇'() when 𝑇!"# and 𝑇!$% are fixed: the Briere1 model 152 

implicitly assumes a strong relationship between these parameters. To our knowledge, this 153 

assumption has no biological basis, and as a result, enforcing it will lead to biased inference of 154 

these parameters.  155 

 156 
 157 
The flexTPC model 158 
 159 
The flexTPC model is defined as: 160 

 161 

𝑟(𝑇) = =𝑟!$% >?
𝑇 − 𝑇!"#

𝛼 A
+

?
𝑇!$% − 𝑇
1 − 𝛼 A

&,+

?
1

𝑇!$% − 𝑇!"#
AB

+(&,+)
/!

𝑇!"# < 𝑇 < 𝑇!$%

0 otherwise

						(3) 162 

 163 

where 𝑟!$% is the maximum performance/value of the trait, and 𝑇!"# and 𝑇!$% are the minimum 164 

and maximum temperatures, respectively. These three parameters determine the scaling of the 165 

TPC in the temperature and performance axes (Figure 1, right panel). Two additional parameters 166 
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 9 

determine the shape of the curve. Parameter 𝛼 ∈ [0,1] determines the location of the temperature 167 

optimum 𝑇'() relative to the maximum and minimum through the relationship 168 

 169 

𝑇'() = 𝛼𝑇!$% + (1 − 𝛼)𝑇!"#						(4) 170 

 171 

This makes it possible for flexTPC to describe unimodal curves of any skewness by varying 𝛼, 172 

where e.g. 𝛼 = 0.5 corresponds to a symmetric curve, and 𝛼 = 0 and 𝛼 = 1  correspond to 173 

𝑇'() = 𝑇!"# and 𝑇'() = 𝑇!$%, respectively. 174 

 175 

The parameter 𝛽 > 0 determines the upper thermal breadth (UTB) of the TPC, with larger values 176 

corresponding to broader curves and smaller values to narrower curves. UTB, defined here as the 177 

temperature range for which 𝑟(𝑇) > 𝑒,
"
#𝑟!$% ≈ 0.88𝑟!$% (see Supplemental Information), is 178 

approximately 179 

 180 

UTB ≈ 𝛽(𝑇!$% − 𝑇!"#)						(5) 181 

 182 

As 𝑇!$% − 𝑇!"# corresponds to the thermal breadth of nonzero performance (defined here as the 183 

lower thermal breadth), 𝛽 is the (approximate) ratio of the upper and lower thermal breadths. 184 

This approximation has less than 10% relative error for TPCs that are not extremely skewed (𝛼 ∈185 

[0.06, 0.94]) and not too broad (𝛽 ≤ 0.5), which encompass the majority of TPC shapes that are 186 

likely to be encountered in practice (Figure S4). For large 𝛽, the interpretation of 𝛽 as the upper 187 

thermal breadth at 88% of the peak height, as approximated in Equation 5, will no longer be 188 

accurate, but larger 𝛽 always corresponds to broader TPCs, with the limit 𝛽 → ∞ corresponding 189 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.01.605695doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.605695
http://creativecommons.org/licenses/by-nd/4.0/


 10 

to a constant model where 𝑟(𝑇) = 𝑟!$% in the [𝑇!"#, 𝑇!$%] temperature range.  Varying 𝛼 and 𝛽 190 

makes it possible for flexTPC to describe unimodal curves with many different shapes (Figure 1, 191 

left panel).  192 

 193 

An alternate parametrization of the flexTPC model that replaces 𝛼 (the relative position of the 194 

thermal optimum) with the absolute optimum temperature 𝑇'() and 𝛽 (the relative approximate 195 

upper thermal breadth) with the absolute approximate upper thermal breadth 𝐵 = 𝛽(𝑇!$% −196 

𝑇!"#) can also be constructed: 197 

 198 

𝑟(𝑇)199 

=

⎩
⎪
⎨

⎪
⎧

𝑟!$% bc
𝑇 − 𝑇!"#
𝑇'() − 𝑇!"#

d

0$%&,0'()
0'*+,0'()

c
𝑇!$% − 𝑇
𝑇!$% − 𝑇'()

d

0'*+,0$%&
0'*+,0'()

e

10$%&,0'()2(0'*+,0$%&)
3!

𝑇!"# < 𝑇 < 𝑇!$%	

0 																																																																																																																																			otherwise

						(6) 200 

 201 

where 𝑇'() ∈ [𝑇!"#, 𝑇!$%] and 𝐵 > 0. In general, we expect Equation 6 to be useful for applied 202 

scientists who wish to automatically calculate confidence intervals on parameters of interest 203 

(absolute 𝑇'() and thermal breadth) using standard statistical software that performs nonlinear 204 

least squares or maximum likelihood estimation. Using this parametrization will lead to a 205 

confidence interval for 𝑇'() with no additional effort from the user of the statistical software. 206 

However, there can be numerical issues with estimation for highly skewed curves where 𝑇'() is 207 

close to either 𝑇!"# or 𝑇!$%. When numerical issues arise, Equation 3 can be used instead. 208 

 209 
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Equation 3 is likely to be more useful when fitting TPCs through Bayesian methods, as it is more 210 

straightforward to provide a reasonable prior distribution for 𝛼 (which lies in the interval from 0 211 

to 1) than for 𝑇'() (which lies in-between two unknown model parameters: 𝑇!"#	and 𝑇!$%). It is 212 

also simple to obtain posterior samples and credible intervals for 𝑇'() from MCMC output 213 

through Equation 4.  214 

 215 

Equation 3 can also be used for maximum likelihood estimation: it is straightforward to obtain 216 

confidence intervals for 𝑇'() through bootstrap methods and any numerical issues regarding the 217 

optimal temperature “crossing-over” past the maximum or minimum temperatures can be 218 

avoided by constraining 𝛼 to be in the unit interval. This parametrization also has the advantage 219 

of clearly separating the parameters that determine the shape (𝛼, 𝛽) and location/scaling 220 

(𝑇!"#, 𝑇!$% , 𝑟!$%) of the TPC. 221 

 222 
Datasets 223 
 224 
To illustrate the predictive performance and applications of flexTPC, we compared it with the 225 

Briere model in various real-world datasets.  226 

 227 

The botrana dataset consists of the developmental time of various life stages of the grapevine 228 

moth Lobesia botrana (eggs, instars 1-5, and pupae) measured at 14 temperatures, ranging from 229 

8 to 34°C. This dataset, which was used to motivate development of the Briere models (Briere et 230 

al. 1999), was taken from Table 1 in (Briere & Pracros 1998). This dataset is expected to be one 231 

in which the Briere models perform well.  232 

 233 
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The glacierbac dataset consists of the temperature dependence of the growth rate of bacterial 234 

Arthrobacter and Pseudomonas strains isolated from glacial deposits (Gounot 1976). This 235 

dataset was chosen to highlight the advantage of flexTPC over Briere in describing TPCs from 236 

organisms from cold environments. 237 

 238 

The abcoli dataset (Cruz-Loya et al. 2021) consists of measurements of total growth after 24 239 

hours of laboratory cultures of the bacterium Escherichia coli in the presence of various 240 

antibiotic backgrounds at seven temperatures. These antibiotics either kill or slow down the 241 

growth of E. coli in a temperature-dependent manner, modifying the shape of the TPC. This 242 

dataset was chosen to highlight the ability of flexTPC to describe curves of different shapes. 243 

 244 

The lhculex dataset (Shocket et al. 2020) corresponds to various mosquito temperature-245 

dependent life history traits (egg viability, probability of larval survival to adulthood, 246 

development rate, and female adult lifespan) from Culex pipiens and Culex quinquefasciatus. 247 

These traits have been previously modeled with different functional forms (linear, quadratic, and 248 

Briere1). This dataset was chosen to highlight the ability of flexTPC to fit curves of various 249 

shapes for which different functional forms were previously needed. 250 

 251 

Parameter estimation 252 

A nonlinear regression approach was used to fit the Briere1, Briere2, and flexTPC models to the 253 

botrana, glacierbac, and abcoli datasets through maximum likelihood estimation. 254 

The following model was used for the botrana and glacierbac datasets: 255 

 256 
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𝑦"~Normal(𝑟!(𝑇"; 𝑃!), 𝜎)					𝑇 ∈ (𝑇!"#, 𝑇!$%) 257 

𝑦" = 0																																																				otherwise 258 

 259 

where 𝑦" is the observed response at temperature 𝑇", 𝜎	the standard deviation of the data,  𝑟!  the 260 

temperature response curve model (either Briere1, Briere2, or flexTPC), and 𝑃! the set of all 261 

parameters from the corresponding TPC model being fit. For example, 𝑃456757& =262 

{𝑇!"#, 𝑇!$% , 𝑐}.  263 

 264 

In the abcoli dataset, the response variable is optical density, which does not have zero 265 

values. For this dataset the model used was: 266 

 267 

𝑦"~Normal(𝑟!(𝑇"; 𝑃!), 𝜎) 268 

 269 

As a criterion for model selection, we compared the negative log-likelihood obtained under leave 270 

one out cross-validation (LOOCV-nLL) for all models in the datasets described above. This is a 271 

measure of the predictive out-of-sample model performance that is asymptotically equivalent to 272 

AIC (Stone 1977) but makes fewer assumptions, and has been recommended as the approach of 273 

choice for model selection when computationally feasible (Yates et al. 2023). It consists of 274 

removing each data point in turn, fitting the model with maximum likelihood on the remaining 275 

data points, and evaluating the negative log-likelihood (nLL) in the removed data point (which is 276 

a measure of the quality of the model prediction for a data point that was not used in fitting). We 277 

report the mean nLL when each data point is removed in turn. Alternate model comparison 278 

criteria (AIC and BIC) are reported in the Supplemental Information. 279 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.01.605695doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.605695
http://creativecommons.org/licenses/by-nd/4.0/


 14 

 280 
Bayesian parameter estimation for mosquito trait data 281 
 282 
For the lhculex dataset, we followed a Bayesian approach for parameter estimation. This 283 

makes it possible to fit curves with reasonable thermal limits for traits that lack data at low 284 

temperatures using weakly informative prior distributions and illustrates the benefits of fitting 285 

flexTPC in a Bayesian context. For each mosquito life history trait, flexTPC was compared to a 286 

TPC functional form that was used previously to describe the data being modeled, which varied 287 

by trait (Shocket et al. 2020). Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002) 288 

was used as a model selection criterion. For more details, see Table 1 and the Supplemental 289 

Information. 290 

 291 

Models were fit using Markov Chain Monte Carlo (MCMC) with the r2jags R package, an 292 

interface for JAGS (Just Another Gibbs Sampler) (Plummer 2003). Four independent MCMC 293 

chains were run for 300,000 iterations, discarding the first 50,000 iterations as burn-in. The 294 

resulting MCMC chains were thinned, saving every eight iterations. Chain convergence was 295 

monitored both by visual inspection of trace plots and density plots of the individual chains and 296 

by ensuring the potential scale reduction factor 𝑅r 	< 1.01 for all parameters.   297 
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Results 298 
 299 
In this work, we present flexTPC—a flexible model for unimodal thermal performance curves 300 

(TPCs) in which the optimum temperature can lie at any point in between the minimum and 301 

maximum temperatures. This model is parameterized in terms of biologically meaningful 302 

quantities and can describe TPCs of a wide variety of shapes (Figure 1). We compare the 303 

performance of flexTPC to that of the Briere1 and Briere2 models (Equation 1), which are 304 

phenomenological models for TPCs that are popular in applications in various real-world 305 

datasets. 306 

  307 
Insect developmental rates 308 
 309 
The Briere models were initially developed to describe the thermal dependence of insect 310 

developmental rates. We compared the flexTPC and Briere models for describing Briere and 311 

Pacros’s data on the rates of development of the life stages of the grapevine moth Lobesia 312 

botrana (Figures 2 (left panel), S1) to evaluate the relative performance of these models in a real 313 

dataset for which the Briere models would be typically used. 314 

 315 

Based on leave-one-out cross validation (LOOCV), we found that flexTPC was the best 316 

performing model for six life stages (eggs, instars 1, 2, 3, 5 and pupae) while the Briere2 model 317 

was the best performing model for one life stage (instar 4; Table 1). The Briere1 model was the 318 

worst performing model for all life stages in this dataset. 319 

 320 
Organisms that live below freezing temperatures 321 
 322 
The Briere models force trait performance to be zero at T = 0°C and are thus unable to describe 323 

thermal performance curves for traits of living organisms that function below freezing 324 
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temperatures. In order to provide a real-world example, we next compared the Briere and 325 

flexTPC models for describing the growth rate of three facultative psychrophile bacterial strains 326 

(Arthrobacter sp strain SI 55, Arthrobacter sp strain SI 60, and Pseudomonas strain SII 76) and 327 

two obligate psychrophile strains (Arthrobacter glacialis strains SI 137 and SI 158) isolated from 328 

glaciers (Gounot 1976) (Figures 2 (middle column), S2). We found that flexTPC provides better 329 

fits than both Briere models for all bacterial species in the dataset (Table 1). This was especially 330 

so for both Arthrobacter glacialis strains since they exhibit substantial growth at and below 0°C, 331 

which is impossible to capture with the Briere models. 332 

 333 
Thermal performance curves (TPCs) of varying shapes 334 
 335 
Thermal performance curves (especially those for growth and developmental rates) are often left-336 

skewed, with the temperature optimum closer to the maximum than the minimum temperature 337 

for the trait. However, some traits have symmetric or right-skewed TPCs, and environmental 338 

stressors can change the shape of TPCs  (Bestion et al. 2018; Brett et al. 1969; Cruz-Loya et al. 339 

2021; Cuppers et al. 1997). As a real-world example, we next considered a dataset consisting of 340 

the temperature-dependent growth of Escherichia coli under 12 different antibiotics, and a 341 

control condition in the absence of antibiotics (Cruz-Loya et al. 2021). We again compared the 342 

fit of the Briere1, Briere2, and flexTPC models (Figures 2 (right column), S3, Table 1). 343 

 344 

While the TPC of E. coli growth is left-skewed in the absence of antibiotics, its shape can be 345 

modified in their presence because antibiotic effectiveness can vary at different temperatures. 346 

Some antibiotics give rise to left-skewed curves (e.g., TET, TMP, FOX), while others result in 347 

curves that are closer to symmetric and can be either nearly flat (GEN, TOB, STR) or narrow 348 

(ERY). FlexTPC was the best performing model for all 13 antibiotic backgrounds in this dataset 349 
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(Table 1) and is the only model out of the three that can describe TPCs that are symmetric or 350 

right-skewed.  351 

 352 
Fitting thermal performance curves that vary in shape across multiple traits and species  353 
 354 
Organisms have multiple temperature dependent traits, giving rise to TPCs that can have 355 

different shapes. In practice, this has often meant that a different TPC functional form (such as 356 

Briere or quadratic) must be chosen for each trait, and sometimes even for the same trait in 357 

different species. This raises the issue that the inferred parameters (like minimum, optimal, and 358 

maximum temperatures) may differ across traits or species partially because of using different 359 

functional forms rather than only because of the data. A flexible model such as flexTPC makes it 360 

possible to compare TPCs of different shapes with the same model, allowing the direct 361 

comparison of inferred parameters. In addition, having interpretable model parameters allows the 362 

use of informative Bayesian priors based on curves fit to related species or knowledge of the 363 

temperature range in the habitat of the species of interest.  364 

 365 

As an example, we fit TPC models to a dataset with four life history traits (lifespan, egg 366 

viability, larval survival to adulthood, and mosquito development rate) of the mosquitoes Culex 367 

pipiens and Culex quinquefasciatus using a Bayesian approach (Figure 3). In a previous study 368 

(Shocket et al. 2020), these data were analyzed using various different functional forms (linear, 369 

quadratic, and Briere), depending on the trait and species (Table 1). We find that flexTPC gives 370 

very similar fits to using these different models for lifespan, larval survival, and development 371 

rate. Moreover, it provides substantially better fits for egg viability compared to the previous 372 

models chosen in the literature (quadratic for Cx. pipiens and Briere1 for Cx. quinquefasciatus).  373 

 374 
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For adult lifespan, flexTPC results in a near-identical fit to that of a piecewise linear model 375 

(which was previously used to describe this trait) within the range of the data. Although this 376 

dataset does not contain temperatures low enough to observe a reduction in lifespan, it must 377 

necessarily decrease at lower temperatures, so it is likely more realistic to model this trait as a 378 

right-skewed unimodal TPC (as can be done with flexTPC) rather than a linear model. If 379 

Bayesian methods are used, this can be done even in cases where there is a lack of data near 380 

temperature extremes. 381 

 382 

In Bayesian approaches, uncertainty in model parameters is described by probability 383 

distributions. Before the analysis, a prior distribution for each parameter is chosen that represents 384 

how likely each parameter value is assumed to be a priori (before observing the data). Prior 385 

distributions can be based on biological knowledge from previous experiments in related species 386 

or known characteristics of the habitat of the population being studied. For example, as the 387 

mosquito species of interest are ectotherms that live in temperate (Cx. pipiens) or 388 

tropical/subtropical (Cx. quinquefasciatus) climates, we assume that 𝑇!"# and 𝑇!$% for adult 389 

lifespan are a priori 95% likely to be in the interval (0°C, 10°C) and (25°C, 45°C), respectively. 390 

Choosing reasonable prior distributions based on biological knowledge is much easier when the 391 

model parameters are interpretable (e.g., for minimum and maximum temperatures and the 392 

maximum trait value) rather than mathematical constants with no direct biological meaning. 393 

Because of its interpretable parameters (Figure 4 and Box 1), flexTPC is well-suited for 394 

Bayesian parameter estimation.  395 
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Discussion 396 
 397 
In this work we introduce flexTPC, a flexible mathematical model for thermal performance 398 

curves (TPCs) that can describe unimodal TPCs of various shapes (including left-skewed, 399 

symmetric, and right-skewed curves). FlexTPC is mathematically equivalent to the Beta model 400 

(Yin et al. 1995), but is reparametrized to be biologically interpretable and better suited for 401 

applied ecology and infectious disease applications. We show that this model addresses various 402 

limitations of the Briere models, such as not being able to describe TPCs from species that can 403 

survive below freezing temperatures, or TPCs that vary in skewness/thermal breadth. This leads 404 

to better predictive performance in various real-world datasets. Based on these results, we 405 

propose flexTPC as a general-purpose descriptive model to describe unimodal TPCs. 406 

 407 

FlexTPC is parametrized in terms of biologically meaningful quantities that are of interest to 408 

ecologists: the minimum and maximum temperatures, the maximum value of the trait, a choice 409 

of either the relative or absolute position of the optimum temperature, and a choice of the 410 

approximate relative or absolute upper thermal breadth. This has several advantages when 411 

compared to models in which some parameters are mathematical constants without a clear 412 

interpretation. First, the model behaves more predictably when changing its parameter values, 413 

since these quantities can be kept constant or modified intentionally as opposed to changing in 414 

possibly unintuitive ways as other parameters vary (Figure 4). This aids in the clear 415 

interpretation of parameter sensitivity analysis and facilitates modeling how TPCs change over 416 

time and/or space (Box 1). Second, it simplifies finding reasonable initial values for the 417 

parameters when fitting the model with optimization-based methods (e.g., least squares or 418 

maximum likelihood estimation). Third, statistics such as confidence intervals can often be 419 
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obtained automatically with standard software when a quantity of interest is an explicit 420 

parameter of the model. Lastly, an interpretable parametrization makes it easier to incorporate 421 

information from previous experiments in similar species or other sources (e.g., the 422 

environmental temperature range from the habitat of the organism) when using informative 423 

priors in Bayesian approaches to parameter inference. 424 

 425 

FlexTPC has several important advantages over other popular models like the Briere models. 426 

First, in any model describing TPCs, at least three parameters are necessary in order to set the 427 

curve height and the minimum and maximum temperatures independently. Because of this, the 428 

optimal temperature in any TPC model that has three parameters or fewer (like the Briere1 429 

model or the quadratic model) will necessarily be a deterministic function of some subset of 430 

these parameters. This may lead to biased estimates for the optimum temperature (and the other 431 

parameters involved in the deterministic relationship) whenever the true relationship between 432 

these parameters deviates from the implicit assumption made by the TPC functional form, which 433 

often lacks a biological justification in phenomenological models. FlexTPC (and Briere2) can 434 

vary the optimum temperature for fixed values of the minimum and maximum temperature and 435 

are thus likely better suited for estimating optimal temperatures, especially when thermal limits 436 

are tightly constrained by the data. Conversely, when using the Briere1 function to describe a 437 

TPC where most data are near the optimum, the estimated thermal minimum and maximum 438 

might be inaccurate due to the constraints imposed by the functional form. 439 

 440 

Second, organisms may function below freezing temperatures, and while the Briere1 and the 441 

Briere2 models cannot describe positive performance below freezing, flexTPC can describe 442 
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TPCs at any temperature range (Figures 2, S2). Although it is possible to use the Briere models 443 

in these cases by shifting the model in the temperature axis, this requires choosing an arbitrary 444 

temperature shift, and the shape of the resulting TPC depends on the chosen shift (Figure S5).  445 

 446 

Another advantage of flexTPC over the Briere models is its ability to describe TPCs of many 447 

different shapes. This will be especially useful in studies comparing multiple TPCs from 448 

different traits and/or from different organisms. Currently, different functional forms are 449 

commonly used in these studies when the TPC shape changes across species or traits. This can 450 

potentially introduce issues when comparing inferred parameters, as parameters might vary 451 

between conditions partially due to the use of a different model rather than because of 452 

meaningful differences in the data. This issue can be avoided by using a flexible model that 453 

allows fitting all conditions with the same functional form.  454 

 455 

As flexTPC is a more complex model that the Briere models, with five free parameters, it is 456 

natural to consider whether it can be used in data-limited situations where measurements are only 457 

available at a few temperatures, as frequently occurs in lab and field data. In this work we show 458 

that, despite this additional complexity, flexTPC has better predictive performance than the 459 

Briere1 and Briere2 models in many real-world scenarios. Moreover, as illustrated in the data for 460 

mosquito lifespan (Figure 3), flexTPC can be used in situations with limited data at some 461 

temperature ranges when using Bayesian methods. Even in cases with severe data limitations, the 462 

use of a flexible model with Bayesian methods with strongly informative priors based on 463 

biological knowledge of the species being modeled and its habitat may be preferable to the use of 464 

a more parsimonious model that assumes a strong relationship between the optimal, minimum, 465 
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and maximum temperatures without biological justification, especially when the main purpose of 466 

the analysis is to estimate an optimal temperature. However, more parsimonious models can be 467 

obtained from the flexTPC equation for researchers under severe data constraints that do not 468 

wish to take a Bayesian approach to parameter inference (see Supplemental Information).  469 

 470 

Our work shows that flexTPC is a general-purpose model for unimodal TPCs that is well-suited 471 

for comparing populations or experimental conditions where the curves may vary in thermal 472 

breadth and skewness. To our knowledge, flexTPC is the first descriptive TPC model to 473 

simultaneously have an explicit parameter corresponding to all of the main TPC features of 474 

interest for ecologists—the temperature minimum, maximum, and optimum, along with the 475 

maximum trait performance value and thermal breadth. This inclusion of parameters of interest 476 

results in a model that is both flexible and interpretable, which we believe will be useful for both 477 

fitting empirical data and for theoretical work that models how TPCs change under evolution or 478 

in the presence of external factors like other stressors.  FlexTPC can also be used as a flexible 479 

functional form to describe the response of biological traits to other environmental factors (e.g., 480 

precipitation or humidity) when these responses are unimodal.  481 
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Figures, Tables and Boxes 629 
 630 

631 

Figure 1. The flexTPC model can describe unimodal thermal performance curves of 632 

various shapes. A. The flexTPC model (Equation 3) has two parameters that determine the 633 

shape of the curve: 𝛼 (varying from left to right) corresponds to the position of the temperature 634 

optimum relative to the minimum and maximum temperatures while 𝛽 (varying from top to 635 

bottom) determines the thermal breadth near the top of the curve. B. Three additional parameters 636 

determine how the curve is scaled in the temperature and trait performance axes: the minimum 637 

and maximum temperatures (𝑇!"# and 𝑇!$%, respectively), and the maximum value of the 638 

response 𝑟!$%. The optimum temperature 𝑇'() can be at any point between 𝑇!"# and 𝑇!$%: its 639 

position is determined by parameter 𝛼 ∈ [0,1]. The upper thermal breadth (UTB), defined as the 640 

temperature range where 𝑟(𝑇) > 𝑒,
"
#𝑟!$% ≈ 0.88𝑟!$%, is approximately the product of 𝛽 and the 641 

lower thermal breadth 𝑇!$% − 𝑇!"# where 𝑟(𝑇) > 0 (for details on the accuracy of this 642 

approximation, see Methods and Figure S4). 643 
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 644 
Figure 2. FlexTPC outperforms the Briere1 and Briere2 models in various real-world 645 

datasets.  Data (shown as blue triangles) and fitted TPC models (Briere1: red lines, Briere2: 646 

yellow lines, flexTPC: green lines) for selected examples from various real-world datasets 647 

(botrana, glacierbac and abcoli, see Methods). Left column. Rate of development of 648 

various life stages of the grapevine moth Lobesia botrana. A subset of the life stages (eggs, 649 

instar 3 and pupae) is shown. Middle column. Growth rate of psychrophile bacterial species 650 

(Pseudomonas and Arthrobacter glacialis) isolated from glacial deposits. Right column. Optical 651 

density (OD, a proxy for the number of bacteria) of Escherichia coli cultures after 24-hour 652 

growth under various antibiotic backgrounds (ERY: erythromycin, GEN: gentamycin, no drug: 653 
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growth media without antibiotics). The fitted TPC models for all traits in each dataset are shown 654 

in Figures S1-S3 in the Supplemental Information.   655 
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 656 

 657 
 658 
Figure 3. FlexTPC can be used to fit the thermal performance of multiple traits with 659 

different shapes that typically require the choice of different TPC models. We show 660 

Bayesian fits to egg viability (EV), probability of larval survival to adulthood (pLA), mosquito 661 

development rate (MDR), and female adult lifespan (lf) for Culex pipiens (top row) and Culex 662 

quinquefasciatus mosquitoes (bottom row). These traits have very different shapes and different 663 

TPC models have been used in the past to fit data from these traits. We compare the flexTPC 664 

model (green) with a previously used TPC functional form that varies by trait and species 665 

(purple, see Table 4 for the specific model for each trait). Lines correspond to posterior means 666 

and shaded regions to 95% credible intervals, which represent the uncertainty of the true value of 667 

the TPC at each temperature. 668 
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670 

Figure 4. Single parameter changes in the Briere and flexTPC models. In each panel, we 671 

show the effects on the thermal performance curve when a single parameter of the corresponding 672 

TPC model is changed while keeping all other parameters constant. For parameters other than 𝑚 673 

in the Briere model, a fixed value of 𝑚 = 2	is used (corresponding to the Briere1 model). We 674 

show the parameter values for both parametrizations of flexTPC (Equations 3 and 6), which 675 

differ on whether the optimal temperature and approximate upper thermal breadth are in unitless 676 

(𝛼, 𝛽) or dimensional (𝑇'() , 𝐵) form, but are otherwise identical and describe the same set of 677 

curves. Since flexTPC has biologically interpretable parameters, changing a single parameter 678 

(e.g., 𝑇!"#) will change the thermal performance curve in a predictable way (as the rest of the 679 

parameters that are kept constant correspond to known curve properties). In contrast, in a model 680 

where some parameters are mathematical constants without a direct biological interpretation, 681 

changing a parameter can lead to unintuitive and possibly unintended changes in the thermal 682 

performance curve (e.g., changing 𝑇!"# also leads to changes on the height of the curve for the 683 

Briere model). This has important consequences when modeling changes in TPCs due to 684 
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evolutionary or environmental factors, and when interpreting sensitivity analyses of derived 685 

quantities from TPC models (see Box 1). Note that decreasing parameter 𝑇!"# to negative values 686 

in the Briere model does not lead to models with positive performance below 0°C (see Methods).  687 

  688 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.01.605695doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.605695
http://creativecommons.org/licenses/by-nd/4.0/


 33 

 689 

Dataset     
botrana life stage Briere1 Briere2 flexTPC 

LOOCV-nLL eggs 2.00 -1.79 -2.20 
 instar 1 -1.46 -2.32 -2.64 
 instar 2 -2.24 -2.88 -3.08 
 instar 3 7.16 -1.55 -2.60 
 instar 4 2.14 -2.61 -2.51 
 instar 5 -0.48 -3.04 -3.12 
 pupae 10.80 -2.95 -3.95 

glacierbac species (strain) Briere1 Briere2 flexTPC 
LOOCV-nLL Arthrobacter sp (55) 0.27 -3.35 -3.61 

 Arthrobacter sp (60) 2.53 -3.13 -3.79 
 Pseudomonas (76) inf -2.23 -2.71 
 Arthrobacter glacialis (137) 0.70 -3.49 -4.46 
 Arthrobacter glacialis (158) -2.64 -4.23 -5.68 

abcoli antibiotic Briere1 Briere2 flexTPC 
LOOCV-nLL AMP -0.97 -1.33 -2.08 

 CLI -1.43 -1.47 -1.67 
 CPR -0.78 -1.23 -1.70 
 ERY -0.34 -0.70 -1.21 
 FOX -1.87 -1.88 -2.36 
 GEN -0.80 -1.00 -1.68 
 LVX -1.50 -1.50 -1.74 
 NTR -1.72 -1.89 -2.10 
 STR -0.96 -1.24 -1.78 
 TET -1.65 -1.70 -1.92 
 TMP -1.90 -1.91 -2.59 
 TOB -1.08 -1.39 -2.10 
 no drug -0.96 -1.17 -2.67 

lhculex  Culex pipiens 
DIC trait lit. function lit. model flexTPC 

 EV quadratic 105.7 47.4 
 pLA quadratic -17.3 -14.8 
 MDR Briere1 -313.9 -312.8 
 lf linear 280.7 280.0 
  Culex quinquefasciatus 
 trait lit. function lit. model flexTPC 
 EV Briere1 979.0 370.2 
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 pLA quadratic -42.6 -39.2 
 MDR Briere1 -152.0 -149.5 
 lf linear 110.3 113.5 

 690 
Table 1. Model comparison in real-world datasets. We compare the predictive performance of 691 

flexTPC and Briere models. The best performing model has its values highlighted in bold. The 692 

model comparison criteria are indicated below the corresponding dataset. For datasets that were 693 

fit with a maximum likelihood approach (botrana, glacierbac, lhculex), we use mean 694 

leave one out cross-validated negative log-likelihood (LOOCV-nLL, lower is better) as the 695 

model comparison criterion to compare between the Briere1, Briere2, and flexTPC models. For 696 

the lhculex dataset, which was fit with a Bayesian approach, we use the Deviance Information 697 

Criterion (DIC, lower is better) as a model comparison criterion between a TPC functional form 698 

that was previously used in the literature to describe that trait (lit.function) and flexTPC.  699 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.01.605695doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.605695
http://creativecommons.org/licenses/by-nd/4.0/


 35 

Box 1: Advantages of thermal performance curve models with biologically interpretable 700 

parameters 701 

 702 

For many applications (for example, studying the evolution of TPCs or predicting the effect of 703 

thermal adaptation on infectious disease spread), it is of interest to model how thermal 704 

performance curves change across time, across space, in the presence of a stressor other than 705 

temperature, and/or when exposed to other factors that vary across populations. It is natural to do 706 

this by making assumptions about how parameters of interest (e.g., minimum, optimum, or 707 

maximum temperatures) change as a function of the variable of interest. However, when some 708 

parameters in the chosen TPC functional form are mathematical constants without a clear 709 

biological interpretation, this can lead to unintuitive changes in the predicted values for the TPC, 710 

even when the parameter being modified is interpretable. 711 

 712 

To illustrate this, we show the effects of changing a single parameter while keeping all other 713 

parameters constant for the Briere and flexTPC models (Figure 4). In the Briere model there is a 714 

multiplicative constant 𝑐 that is proportional to the height of the curve when all other model 715 

parameters are fixed. Changing the value of 𝑐 while keeping the other model parameters constant 716 

will change the TPC in a predictable way by modifying its height while keeping the same 717 

minimum and maximum temperatures. However, changing the value of a different model 718 

parameter in the Briere model (e.g., 𝑇!"# or 𝑇!$%, which are interpretable parameters) while 719 

keeping all other parameters constant will not keep the height of the curve constant, as the value 720 

of 𝑐 that is needed to keep the same height changes when the other model parameters change. In 721 

contrast, in the flexTPC model the maximum trait value 𝑟!$% (i.e., the curve height) is explicitly 722 
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a model parameter. Thus, keeping 𝑟!$% constant will keep the same TPC height regardless of the 723 

values of the other parameters. When modeling changes in TPCs, it is advantageous to choose a 724 

functional form where parameters are biologically interpretable, especially if it is of interest to 725 

assume certain aspects of the TPC remain constant or change in a predictable way. This will lead 726 

to a clearer interpretation of changes in model parameters which is not confounded by changes in 727 

other aspects of the TPC that are not of interest.   728 

 729 

Using TPC models where some of the parameters are mathematical constants without a 730 

biological interpretation can lead to potentially misleading conclusions in applications that 731 

require the interpretation of partial derivatives of the model or quantities derived from them. 732 

Importantly, this includes sensitivity analyses of mathematical models that include TPCs as a 733 

submodel (such as infectious disease or predator-prey models) with respect to the underlying 734 

parameters of the TPC functional form. For example, sensitivity analysis based on partial 735 

derivatives might indicate that the transmission of a disease is very sensitive to the parameter 736 

𝑇!$% of a TPC modeled with the Briere1 function. However, as increasing 𝑇!$% (while keeping 737 

all other parameters constant) also increases the height of the TPC, this could be either due to the 738 

increased maximum temperature or the increased curve height. In contrast, using a model where 739 

all parameters have a clear biological interpretation (and where the maximum value of the TPC 740 

is an explicit parameter) enables separating the effect of increasing the maximum temperature 741 

and increasing the curve height. 742 

 743 

In general, parametrizing models in terms of biologically interpretable quantities is useful as it 744 

makes it possible to keep them constant or to change them in specified ways when varying other 745 
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parameters (as needed for modeling change in TPCs). It is also advisable to explore the effects of 746 

changing individual parameters in the TPCs to be aware of what aspects of the curve are being 747 

modified by the parameter in question when interpreting sensitivity analyses. 748 
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