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Abstract

Allosteric modulators are ligands for proteins that exert their effects via a different binding site than the natural (orthosteric)
ligand site and hence form a conceptually distinct class of ligands for a target of interest. Here, the physicochemical and
structural features of a large set of allosteric and non-allosteric ligands from the ChEMBL database of bioactive molecules
are analyzed. In general allosteric modulators are relatively smaller, more lipophilic and more rigid compounds, though
large differences exist between different targets and target classes. Furthermore, there are differences in the distribution of
targets that bind these allosteric modulators. Allosteric modulators are over-represented in membrane receptors, ligand-
gated ion channels and nuclear receptor targets, but are underrepresented in enzymes (primarily proteases and kinases).
Moreover, allosteric modulators tend to bind to their targets with a slightly lower potency (5.96 log units versus 6.66 log
units, p,0.01). However, this lower absolute affinity is compensated by their lower molecular weight and more lipophilic
nature, leading to similar binding efficiency and surface efficiency indices. Subsequently a series of classifier models are
trained, initially target class independent models followed by finer-grained target (architecture/functional class) based
models using the target hierarchy of the ChEMBL database. Applications of these insights include the selection of likely
allosteric modulators from existing compound collections, the design of novel chemical libraries biased towards allosteric
regulators and the selection of targets potentially likely to yield allosteric modulators on screening. All data sets used in the
paper are available for download.
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Introduction

Allosteric modulators
The generation of drug-like lead and candidate molecules

against a specific molecular target remains a major challenge in

drug discovery. We are now in a position to partially understand

the factors behind this, and they fall into two basic themes – 1) the

diversity and size of the set of compounds used in the initial screen,

and 2) the physicochemical properties of the binding site of the

target, which may contain obligate features that are incompatible

to binding molecules with drug-like properties [1–7]. There are

now a large number of ‘tantalizing targets’, those that have strong

biological rationale (for example genetic validation), but are

currently outside the reach of the development of novel small

molecule therapies. One strategy to avoid the issues of factor 2)

above is to consider the development of allosteric regulators, which

may have better, or at least differentiated physicochemical

properties or advantages in selectivity and so forth [8–11].

The concept of allosterism has received ample attention in

literature, yet the term is used relatively loosely, the current work

starts by defining the definition of allosterism [8,12–17]. Allosteric

modulators are ligands for a biological target that exert their effect

on this target via a mechanism that is not located at the molecular

site of action of those ligands that are the natural ligands or

substrates for this protein. Hence the term ‘allosteric modulator’

covers a very broad spectrum of compounds and it depends on the

context and function of the protein in question what effect

allosteric modulators truly have. Thus, while some papers have

previously been published classifying allosteric modulators as a

separate class of ligands in general, here it is argued that the

physicochemical properties of the molecules depend equally on the

target in question [11,18].

For example if the target is a signaling protein (e.g. a G protein-

coupled receptor (GPCR)) which naturally signals in response to

ligand binding, an allosteric modulator can induce, inhibit,

increase, or decrease this signal while still allowing the natural

ligand to bind to the receptor (albeit with modified thermody-

namic and kinetic parameters). In some cases the allosteric

modulator can even prevent the natural ligand from binding

through a conformational shift. Similarly, in the case of an

enzyme, an allosteric modulator can increase, decrease, or block

enzyme catalytic activity.

In the case of proteins with multiple functions and active sites,

categorizing ligands as allosteric versus orthosteric can be pro-

blematic. For example, Figure 1 shows cyclin-dependant kinase 2

(CDK2) involved in cell cycle control and known to have multiple

binding sites for which multiple inhibitor types exist [19]. Firstly,

several inhibitors are known to inhibit the protein via the ATP

binding site (which is commonly referred to as orthosteric inhi-

bition, type I inhibition). Hence both ligands in competition with
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the ATP-binding site and proteins in competition with the substrate

to be phosphorylated could be deemed orthosteric but differ

significantly in their physicochemical properties. However, in

literature the latter group is also classified as allosteric inhibitors.

Moreover, one naturally occurring inhibitor of CDK2, cyclin-

dependent kinase inhibitor 1B or cyclin-dependent kinase inhibitor

p27, binds to the complex of CDK2 – cyclin A and protrudes into

the ATP binding site [20].

Conversely, several small molecule classes have been identified

that inhibit protein kinases in an allosteric manner. Type II

inhibitors occupy the nucleotide-binding pocket and extend into

the allosteric pocket, stabilizing the enzymatic inactive conforma-

tion (DFG out), whereas type III inhibitors bind and occupy an

allosteric pocket. Additionally, there are type IV inhibitors that are

covalent inhibitors targeting reactive proximal cysteine residues

[19]. Finally, a fifth class (Type V) of inhibitors have also been

discovered for CDK2. These are non-ATP competitive, but the

binding pocket has been shown to differ from that of known type II

and III inhibitors [21]. The inhibitors have been shown to bind

near the C-helix, which is involved in the interaction of CDK2

with cyclins A and E [22,23]. Binding of these ligands also disrupts

the protein – protein interaction (PPI) between CDK2 and cyclin,

confirming the potential of allosteric modulators to disrupt PPIs.

Hence CDK2 is home to multiple binding sites to which

multiple sets of ligands/substrates can bind in different ways.

These ligands can be orthosteric (ATP-competitive), substrate

competitive peptidomimetic molecules (non-competitive with

regard to ATP, allosteric) or non ATP-competitive small molecules

(allosteric), and can be further subdivided based on the mechanism

of action. For these reasons, and because the approach here relies

on retrieving allosteric papers, the term non-allosteric (rather than

orthosteric) is used to describe other ligands binding to the same

protein than those retrieved in the here described allosteric

dataset. The definition of allosteric follows herein the target in

question and general agreement in the literature; hence any

observations are relative to this agreement in literature. There are

a number of targets for which one can make similar distinctions

with different forms of classification (e.g. in the kinase case one can

define the ATP-competitive ligands as allosteric and only define

the peptidomimetic ligands to be orthosteric). However, as the

current results are derived from and based on medicinal chemistry

literature it is chosen to follow this literature. Please see Case study

4 for further details on applying the here described methods to

Kinase targets.

Allosteric modulators as drugs
As discussed above, the differences in binding site properties

relative to the substrate/agonist/antagonist site are potentially

attractive for operational drug discovery reasons. Allosteric

modulators can hit targets with natural ligands that are outside

classic oral drug-like space (e.g. class B GPCRs), or are difficult to

hit with specificity with regard to paralogs (e.g. class C GPRCs), or

Figure 1. The concept of multiple binding sites on a single protein visualized schematically (A) and in protein data bank structure
1JSU (B). The ATP binding site was shown in green on cyclin dependent kinase 2 (CDK2) (grey), commonly referred to as the orthosteric binding site.
One allosteric binding site (type V inhibitors) was shown in red, closely located to the orthosteric binding site. Also shown was a non-allosteric
inhibitor (green, projected from PDB 1HCK) and an allosteric inhibitor (red, projected from PDB 3PY1). Finally cyclin-A was visualized pairing (light
grey) with CDK2 and the natural inhibitor CDKN1B (dark green) to show the potential of allosteric inhibitors to disrupt the CDK2- cyclin-A protein-
protein interaction.
doi:10.1371/journal.pcbi.1003559.g001

Author Summary

The physicochemistry and topography of ligand binding
sites is generally conserved amongst related proteins,
however, comparisons of the pharmacology of related
targets (and even the same target) are often confounded
by the existence of multiple, distinct, binding sites within
the same protein. Importantly, these multiple binding sites
can have ‘druggability’ or selectivity properties, and can
therefore offer attractive novel approaches to develop new
therapeutic agents. In this paper, sets of known ligands
binding to the same target are classified as being either
allosteric (binding at a site that is non-competitive for a
natural ligand/substrate) or non-allosteric (binding at the
same site as a natural substrate), it is demonstrated that
there are differences in the profiles of ligands discovered
empirically against these sites. Finally predictive models
are developed with several useful applications in drug
discovery.

Allosteric Modulators in ChEMBL
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can even be used to distort protein-protein interactions [24–26]. In

all of these cases allosteric modulators can allow modulation of

these targets by small molecules using well-established medicinal

chemistry and drug delivery strategies.

Furthermore, allosteric modulators are interesting from a phy-

siological viewpoint, as they provide a way to modulate natural

regulation (amplify a naturally regulated response) rather than

completely inhibit or continuously activate proteins. Orthosteric

drugs activate or inhibit a protein in a dose dependent manner.

Yet allosteric drugs can differ, while their concentration in the body

is dose dependent, their effect can be dictated only by concen-

tration but can also be dictated by concentration in combination

with physiological signaling and feedback loops [15].

Finally, in GPCR signaling allosteric modulators have been

shown to possess other advantages over orthosteric ligands due to

functional selectivity displayed by these allosteric ligands. Func-

tional selectivity is expected to lead to greater selectivity and safety

of drugs targeting GPCRs [27].

However, there are also less favorable characteristics of allo-

steric modulators making them less suitable as drugs. By definition

allosteric modulators inhibit non-competitively and often via a

secondary binding pocket. Hence the shape and pharmacophoric

properties of such a pocket are not necessarily as highly conserved

across paralogs and orthologs, as a catalytic/substrate site would

be. The former site will usually not be under the same selective

evolutionary pressure for protein function as the latter [28]. In the

case of viral inhibitors or any other systems where rapid genetic

mutation and selection is possible (e.g. anti-fungals, anti-bacterials

and anti-cancer therapeutic areas), the use of allosteric modulators

might lead to easier onset of resistance by point mutations. This is

empirically the case of the non-nucleoside reverse transcriptase

inhibitors (NNRTI) used in the treatment of infections with the

Human Immunodeficiency Virus (HIV). NNRTIs are well known

for a quick onset of (cross) resistance [29]. Moreover, they are only

effective on the HIV-1 subtype and not on the closely related HIV-

2 subtype (61% identical when comparing HIV-1 strain M with

HIV-2 strain A). In HIV-2 the allosteric pocket cannot be formed

due to the presence of substitutions native to HIV-2, which lead to

NNRTI resistance in HIV-1. Conversely, non-allosteric inhibitors

are effective on both strains due to their similarity to the natural

ligands [29,30].

Improvement of bioactivity models
Public resources like ChEMBL [31], Pubchem [32], BindingDB

[33], and Drugbank [34] have transformed many parts of drug

discovery. The availability of the data enables new research into

signaling processes and the ligand – target bioactivity space [35–

37]. For example, computational models can be developed using

existing compound structure and activity data, and used to predict

potential activities for other compounds. Hence this data opens the

door for new applications like in silico side effect prediction,

personalized medicine and rational design of polypharmacological

drugs [38–40]. However the presence of multiple binding sites and

binding modes potentially confuses and frustrates model develop-

ment and validation in cases where multiple binding sites exist.

Consequently the ability to distinguish between mode of action

and systematic characterization of these compounds could

potentially prove invaluable in drug discovery.

Aim of the work
In this work a top down analysis of allosteric modulators in the

ChEMBL database was applied. Sets of ligands from papers in

ChEMBL-14 were classified as being either allosteric, or non-

allosteric (or presumed orthosteric) based on keywords, which were

identified in both title and/or abstract. From the resulting papers

the primary target was identified and then the compounds

associated with this target were retrieved.

The resulting sets of ligands (allosteric and non-allosteric) are

information dense (containing annotated target information, bio-

activity, and the source documents). This information is subse-

quently exploited to study the allosteric concept over all bioactivities

in ChEMBL, but also on a per target basis. Finally trends describing

the chemistry, targets and bioactivity of compounds annotated to be

allosteric are extracted

Results/Discussion

Composition of data sets
Allosterism has been reported in the ChEMBL database since

the first indexed papers in 1980 (although the concept has been

around in literature since the 1960’s) [12,13]. In total 987 unique

documents were retrieved that together form the allosteric set

(after manual curation for the case studies this number rises to

1,002). Likewise a non-allosteric set was retrieved, this set consisted

of the documents that were not pulled in the first set and included

the same restraints as applied to the allosteric set (see Methods).

Finally a balanced non-allosteric set was derived from the full

non-allosteric set to better perform unbiased classification. This

balanced set was more similar in raw size and target distribution to

the allosteric set (Table 1).

The allosteric records made up only a small fraction of the total

records (around 3–4% of the total, Figure 2). However a trend was

seen that the number of allosteric records have been increasing

since the early 90’s with a peak in 2009–2010. Possibly this

increase was caused by the recent focus on allosteric modulation of

GPCRs [14,15,17,41,42]. While the total number of allosteric

records in 2012 was lower, this was likely caused by the fact that

ChEMBL-14 does not contain an entire years’ worth of 2012

publications. The full datasets are available for download on www.

gjpvanwesten.nl/allosterism or ftp.ebi.ac.uk/pub/databases/chembl/

Allosterism as are lists of all identified allosteric and non-allosteric

activity_ids in ChEMBL-14.

Target distribution
The next obvious question was: what targets are amenable to

allosteric modulation? This information could be useful in

assessing the likelihood of finding an allosteric modulator for

related targets, and can also be input to screening or assay

strategies. Ideally this information leads to insights how theses

targets differ from the targets preferentially interacting with non-

allosteric modulators. Since allosteric modulators are sometimes a

secondary approach when non-allosteric modulation is infeasible

or impossible, the expectation would be that the target distribution

is different. Recently, Li et al. published work where they studied

targets that can be allosterically modulated [43]. Yet, their work

was limited to targets with known crystal structures, and hence

would suffer from a systematic bias to simpler globular proteins.

Here this was taken a step further investigating all allosterically

modulated literature targets that are retrieved from ChEMBL.

The targets in ChEMBL are classified within a hierarchy, in which

level 1 (L1) denotes the protein type (e.g. ‘Membrane Receptor’ or

‘Enzyme’), L2 further narrows the protein family (e.g. Class A

GPCR known as ‘7TM1’) and so forth down to individual proteins

(supporting Figure S1) [31].

Distinct differences were identified in the distribution of target

classes when the total number of bioactivity measurements

retrieved per target class was considered (L2 target distribution

for both data sets, Figure 3). While the major target classes known

Allosteric Modulators in ChEMBL
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from medicinal chemistry literature were represented in both sets

(e.g. class A GPCRs and Proteases) their distribution differed

between sets, moreover there were major differences [4]. For

instance class C GPCRs were enriched among the allosteric set, as

were the Nuclear Receptors and the Ligand-Gated Ion Channels.

For class C GPCRs it has traditionally been difficult to obtain

selectivity using non-allosteric ligands as these ligands tend to be

very small [41]. The tight structure-activity relationships observed,

Table 1. Data set composition.

Allosteric Non-Allosteric (Balanced) Non-Allosteric (Full)

Years 1980–2012 1980–2012 1980–2012

Documents 1,002 8,315 21,494

Data points 18,281 18,035 409,869

Assays 2,111 9,938 41,416

Binding assay derived 82% 81% 86%

Functional assay derived 17% 19% 13%

Other 1% 0% 1%

Targets 417 1,869 2,935

L1 target classes 10 13 13

L2 target classes 17 17 22

Compounds 17,829 17,709 384,288

Small Molecules 97% 96% 92%

Biologicals 3% 4% 8%

Organic (Small Molecule) 100% 99% 100%

Inorganic (Small Molecule) 0% 1% 0%

Peptide (Biological) 62% 46% 42%

Composition of the data sets generated. The allosteric set was obtained via text mining of abstracts; the non-allosteric (Full) set was the remainder of ChEMBL obtained
using the same constraints as the allosteric set (e.g. limit bioactivity to primary assay). The non-allosteric (balanced) set was derived from the non-allosteric (full) set by
taking a random percentage of each L2 target class present in the allosteric set. The classes ‘Organic’ and ‘Inorganic’ were subsets of the ‘Small molecules’ class.
‘Peptide’ was a subset of the ‘Biologicals’ class. Abbreviations: L1 – Level 1 target classification, L2 – Level 2 target classification.
doi:10.1371/journal.pcbi.1003559.t001

Figure 2. Distribution of retrieved allosteric and non-allosteric publications sorted per year. Overall the allosteric records made up a
small fraction of the total records in ChEMBL-14. However a slight upward trend was seen. Note that the y-axis is logarithmic.
doi:10.1371/journal.pcbi.1003559.g002

Allosteric Modulators in ChEMBL
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centered around very ligand efficient recognition of the natural

effector ligand do not allow much opportunity for variation in the

receptor sequence and consequently in synthetic ligands biding

this site (e.g. Metabotropic glutamate receptors, GABAB receptors,

etc.). However it has previously been shown that selectivity can be

obtained using allosteric modulation and this course of action has

been pursued in the literature and was hence represented in the

data set [17,41,44]. The overrepresentation of GPCRs was

expected as it has previously been shown that GPCRs are targets

typically readily accessible to allosteric modulation [16,42,45]. A

similar plot has been created for the L1 target class, which can be

found in the supporting information (supporting Figure S2).

Chemical structure properties
Similar to the target-based overview of allosteric versus non-

allosteric compounds, the chemical properties of both classes of

compounds were investigated to highlight differences (Figure 4A).

The two most important observations were that historically

identified allosteric modulators tend to fall within a much more

narrower range of molecular weight (but are a subset of non-

allosteric compounds rather than distinctly separated from non-

allosteric compounds) and secondly that allosteric modulators

adhered slightly better to Lipinski’s rule of 5 (75% versus 66%).

Yet the important observation here was that the literature does not

contain much information about allosteric modulators that are far

from drug-like space. However, the relative scarcity of non drug-

like allosteric modulators does not mean that these are not possible

(e.g. the peptidomimetic kinase inhibitors). A similar observation

has been made by Wang et al. yet some examples of allosteric

modulators outside drug-like space were retrieved here, contrary

to their work [11]. One possible explanation for this lack of non-

drug-like allosteric modulators could be based on the bioactivity

statistics of allosteric modulators (see below).

The differences between allosteric modulators and non-alloste-

ric modulators were further explored in Figure 4B where

normalized activity was also included (based on a negative log

value of IC50, EC50, Ki and Kd values). Overlap was observed in

the high affinity locations shared by allosteric and non-allosteric

ligands in a scatter plot showing compound fractional polar sur-

face area and molecular solubility. Yet non-allosteric compounds

also showed high affinity at fractional polar surface and molecular

solubility values outside the values preferred by the allosteric

compounds. From these observations it was concluded that the

allosteric modulators in literature form a more restricted range

subset (in the sense of physicochemical properties) from the overall

set of compounds.

Combined, these results demonstrate that allosteric compounds

are not distinct from non-allosteric compounds, however, given

historical data, they appear to form a subset of the broad non-

allosteric compounds (or medicinal chemistry derived compounds).

The results also showed that allosteric compounds on average had

a larger similarity between allosteric sets binding different target

classes than between non-allosteric compounds binding different

target classes (when considering physicochemical properties). The

differences were further demonstrated using a case study where the

chemical differences are relatively large between the two sets.

Case Study 1: Class B GPCRs
As touched upon in the introduction, the desirability of allosteric

modulators for a certain target is not only governed by phys-

iological or pharmaceutical demands. There are cases where

orthosteric modulation is not feasible for the development of orally

active small molecule drugs. Example cases are the class B GPCRs

for which the natural effectors are polypeptide ligands of typical

length ranging 30 to 40 residues [25,46]. There are many func-

tionally and genetically validated links to pathology for this target

Figure 3. L2 target class distribution of both the allosteric (A) and non-allosteric data (B) sets. The distribution of the target classes
differed between the two sets; which confirmed that targets that are easy to hit via non-allosteric inhibitors are not necessarily easy to hit via an
allosteric modulator and vice versa. Abbreviations: 7TM1 - Class A GPCRs, 7TM2 - Class B GPCRs, 7TM3 - Class C GPCRs, IP3 - Inositol triphosphate
receptors, KIR - Killer-cell Immunoglobulin-like Receptors, LGIC - Ligand Gated Ion Channels, RYR - Ryanodine Receptors, SUR - Sulfonylurea
Receptors, TRP - Transient receptor potential channels, VGC - Voltage Gated Ion Channels.
doi:10.1371/journal.pcbi.1003559.g003
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class, and a number of drugs are available (some examples are iv/

sc dosed - Calcitonin (Miacalcin), Exendin-4 (Exenatide), and

PTH (Forteo)) [25,47–49]. This target class was represented

approximately equal in both the allosteric and non-allosteric data

set (0.3% of the allosteric and 0.6% of the non-allosteric papers).

While no large differences were apparent in the target distribution,

the physicochemical properties of compounds annotated as

allosteric modulators differed from those annotated as non-

allosteric modulators. Figure 5 summarizes some of the findings

for the class B GPCRs as retrieved from the data set. A figure with

all 68 descriptors used (supporting Table S1) is also available

(supporting Figure S3). In addition all data is available in tab

delimited text format on www.gjpvanwesten.nl/allosterism or ftp.

ebi.ac.uk/pub/databases/chembl/Allosterism. Here a limited

figure is displayed for reasons of clarity.

Differences in physicochemical properties were found for

allosteric and non-allosteric class B ligands (Figure 5). The non-

allosteric (peptide like) ligands were very large (Mwt range 334 Da

to 3591 Da for 95% of the data) whereas those ligands annotated

to be allosteric modulators were ‘classical’ small molecules (Mwt

between 305 Da and 569 Da for 95% of the data). Hence, dif-

ferences were observed in properties related to size like: the number

of chains or the number of hydrogen bond acceptors. However,

when corrected for the size of the ligands, the differences were less

distinct (e.g. carbon fraction of the total atoms). Interestingly the

allosteric ligands were more rigid as indicated by a higher sp2

hybridized carbon fraction, lower sp3 hybridized carbon fraction,

higher aromatic bonds fraction, and higher rigidity index (see

methods for a further explanation of the rigidity index). Allosteric

ligands tended to pass the Lipinski rule of five (60%) and were more

drug-like, whereas non-allosteric ligands were less prone to pass

Lipinski’s rule (30%) and were not drug-like (Figure 5). Finally, the

average formal charge for allosteric ligands was slightly negative and

slightly positive for non-allosteric ligands. Similar charts have been

created for all other significantly populated target classes (L2) and

can be found on www.gjpvanwesten.nl/allosterism or ftp.ebi.ac.uk/

pub/databases/chembl/Allosterism.

Secondary to physicochemical properties, substructures that are

overrepresented in either the allosteric ligands or the non-allosteric

ligands for a target class are of interest. Hence for each target class

all present substructures (using circular fingerprints FCFP_6) were

retrieved and their frequency in the allosteric and non-allosteric

sets were compared against the background of the combined (full)

set. Substructures were then sorted based on the enrichment score

(supporting Table S2, Table S3, and Table S4). The results were

in correspondence with what would be expected considering the

natural ligands for these receptors and the observations from

Figures 4 and 5. Substructures ranking high based on their

allosteric score were quite specific, and tended to be aromatic.

Conversely, substructures ranking very low based on their

allosteric preference were small, frequently occurring and mainly

introducing polarity. Interestingly, substructures scoring high

based on their non-allosteric score included protein backbone like

structures. The full set for all L2 target classes is available as a

download from www.gjpvanwesten.nl/allosterism or ftp.ebi.ac.uk/

pub/databases/chembl/Allosterism.

Bioactivity of allosteric modulators
Protein targets and chemical properties of ligands in the allo-

steric set and the non-allosteric set were the point of focus in the

above text. Now the differences between the bioactivity of allo-

steric compounds and the bioactivity of non-allosteric compounds

are summarized. Considered were: potency (affinity), the number

of targets that compounds from both groups have been tested on,

the number of targets compounds from both groups were active

on, the Ligand Efficiency (LE) [50], and a number of other

Figure 4. (A) Scatter plots showing the molecular weight (x), LogD (y) and adherence to the rule of 5 (color) of allosteric and non-
allosteric compounds. The allosteric compounds represented a subset of the non-allosteric ligands; this image was conserved among most
different target classes. (B) Scatter plots showing the molecular polar surface area fraction (x), solubility (y) and activity (color; pKi, pKd, pIC50, pEC50,).
The area of high activity was observed to be narrower in the allosteric set versus than non-allosteric set. The non-allosteric compounds could display
high affinity along a broader range of both properties.
doi:10.1371/journal.pcbi.1003559.g004
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efficiency indices (Binding Efficiency Index (BEI), Surface Effi-

ciency Index (SEI), Normalized Surface Efficiency Index (NSEI),

etc. [51,52](Table 2)

The median potency was lower for allosteric modulators than

for non-allosteric modulators (5.96 log units versus 6.66 log units,

p,0.01). Moreover, a lower fraction of the compounds was

considered ‘active’ (33% versus 47%), with activity being defined

operationally as potency better than micromolar (6 log units) or

annotated ‘active’ in the source data. Likewise a higher fraction

was inactive (39% versus 29%, less than 6 log units or annotated

‘inactive’ in the source data). Allosteric modulation is a process

that cannot be explained by only ligand affinity (the dynamics are

much more complicated and the reader is referred to a number of

reviews) [53,54], yet the current findings with regard to affinity are

discussed here given the importance of this measurement in drug

discovery.

Several possible explanations for the observed differences can be

considered. Firstly, it is known that metabolites can be allosteric

regulators and these metabolites can be present locally at very high

concentrations and can hence exert their effect with a relatively

low potency. Table 2 could implicate that the data set reflects the

presence of metabolites in our dataset, annotated as allosteric

ligands. High concentration metabolites would not need micro-

molar affinity when they are present at a millimolar concentration

locally [8,55,56]. Secondly, another explanation can be that the

optimization of high affinity allosteric binders is more challenging

given the more constrained chemical characteristics that allosteric

modulators display compared to non-allosteric modulators. How-

ever, there are two more likely but also more complex potential

explanations for the observed lower affinity as will be described below.

Rationalizing the observed lower affinity of allosteric
modulators

A third explanation for the observed lower affinity could be

derived from observations in the field of GPCRs. The current work

is not the first to observe a lower affinity for allosteric modulators

compared to non-allosteric interactions, in particular in the field of

GPCRs this has been observed before [54]. While GPCRs are a

complex modeling system given the baseline presence of both an

orthosteric (natural ligand) and allosteric (G protein) binding site in

all GPCRs, there are some observations that can perhaps be

translated to a more general view of allosterism. It has been shown

that allosteric interactions have a direct effect on the affinity of non-

allosteric ligands (orthosteric in GPCRs) [54]. Given that affinity is

defined as the ratio of ligand association to ligand disassociation

rates, allosteric modulators directly affect the non-allosteric

(dis)association rate. However, the allosteric interaction between

two sites has been shown to be reciprocal [54], hence the affinity of

allosteric modulators is influenced by the affinity of non-allosteric

modulators. As such the observation of the lower affinity of allosteric

modulators might be a product of the dominant usage of radio-

ligand binding assays (as follows). Typically radio-ligand binding

assays are set up using a well-known ligand, a radioactive molecule is

synthesized based on this ligand and the binding of uncharacterized

Figure 5. Mean value (and standard deviation) of several physicochemical properties calculated for both allosteric and non-
allosteric ligands of Class B GPCRs. To plot all properties within one order of magnitude, a number of properties were scaled, dividing the mean
value by 10 (e.g. logP) or by 1000 (e.g. molecular weight). Differences occurred for properties related to size (e.g. molecular weight, number of chains,
number of hydrogen bond acceptors). However properties that were not correlated to size showed smaller differences (e.g. fraction of carbon). Note
that the allosteric compounds were more rigid (higher sp2 hybridized carbon fraction, higher aromatic bonds fraction, higher rigidity index). For the
full figure see supporting Figure S3.
doi:10.1371/journal.pcbi.1003559.g005
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molecules is explored through their effect on the radio-ligand. Given

that the radio-ligand is usually a well-known ligand, it is often a

ligand with a reasonably high affinity. Hence this high affinity effect

might influence the observed affinity of allosteric ligands due to the

reciprocal nature between the binding site of an allosteric ligand and

a non-allosteric ligand. When comparing competitive inhibition

between two non-allosteric ligands (radio ligand and unknown

molecule) this effect will likely not be present. While this explanation

is funded on observations from the field of GPCRs, it should be

noted that in this field allosteric modulation has arguable been the

most intensely explored.

Another observation from the field of GPCRs is that ligand

efficacy does not necessarily correlate to ligand affinity. There is

documented evidence in literature wherein the ligand with the best

affinity does not display the best efficacy [57,58]. It has been

hypothesized that this discrepancy can partially be explained

through the concept of binding kinetics. For a number of GPCRs

it has been found that efficacy is better explained when receptor

residence time or disassociation rate is considered (the most effi-

cacious ligands are shown to be the ligands with longer residence

time) than when only affinity is considered [57–59]. In the case of

allosteric modulators a similar principle might apply. Indeed, cases

in which allosteric modulators modify binding kinetics of non-

allosteric ligands have been described in literature [60,61]. Given

that we observe here that allosteric modulators tend to be rela-

tively small and lipophilic molecules one can expect de-solvation to

play a major role in binding kinetics. Hence these molecules might

display a baseline longer residence time than non-allosteric mole-

cules due to their physicochemical properties. However, further

research and experimental evidence is required to confirm or

reject this hypothesis.

Implications for assays focused on allosteric modulation
While any classification into ‘active’ or ‘inactive’ is based on a

cut-off, the observations here regarding affinity illustrate a larger

issue. In screening efforts cut-offs are important to retrieve

interesting ligands. If the median potency of allosteric modulators

is lower than that of non-allosteric modulators (corroborated by

the tendency of allosteric ligands to be smaller, to be more

lipophilic, and to possess less hydrogen bonding potential) this

could very well lead to possible allosteric modulators being missed

in screening efforts. The general threshold for activity in primary

screening is 10 mM to find compounds that are shown to have a

median activity of 6.66 log units in ChEMBL. Hence, the

implication would be that any screening effort for allosteric

modulators (median activity of 5.96 log units) would need to be

more sensitive or at least have the definition of ‘active’ adapted to

conform to our observations. Moreover, given the reciprocal

nature of the effects that allosteric and non-allosteric sites have on

each other, it would be recommended to not use a single radio-

ligand if one is aiming to find new allosteric modulators. A better

choice is to use a spectrum of assays with different radio labeled

ligands as has also been suggested by May et al. [54].

That said, allosteric compounds were found to have similar but

slightly higher median binding efficiency indices (LE, BEI, SEI,

NSEI), this difference was likely caused by the fact that allosteric

modulators tend to be smaller than non-allosteric modulators.

This potentially indicates on average smaller, less polar binding

sites for allosteric versus non-allosteric classes [43]. Moreover, we

observed that allosteric modulators tend to have been annotated to

a lower number of targets (2 versus 3) but this difference is

marginal. Additionally, the median number of targets a compound

is active on is shown to be 1 (average 1.43) for the non-allosteric

set, in line with the findings of Hu and Bajorath [62], but the

values are median 0 (average 1.40) for the allosteric set.

In conclusion, allosteric modulators were found to be able to

modulate targets with low affinity but high efficiency. In addition,

the data did not show allosteric modulators to be inherently

promiscuous binders – at least as inferable from the distribution

of assays reported in ChEMBL –, rather there was a trend for

Table 2. Bioactivity measurements for allosteric and non-allosteric compounds.

Allosteric Median (MAD) Non-Allosteric Median (MAD)

Activity 5.96 (61.02) 6.66 (61.17)

LE 0.319 (60.0723) 0.310 (60.0689)

BEI 16.3 (63.69) 15.9 (63.55)

SEI 11.1 (64.12) 10.3 (63.82)

NBEI 0.233 (60.0528) 0.226 (60.0503)

NSEI 1.16 (60.370) 1.08 (60.348)

nBEI 7.34 (61.06) 8.12 (61.19)

mBEI 8.49 (61.06) 9.27 (61.19)

Targets Annotated 2 (61) 3 (62)

Targets Active 0 (60) 1 (61)

Targets Inactive 1 (61) 1 (61)

Targets Other 1 (61) 1 (61)

Actives (%) 33 47

Inactives (%) 39 29

Other (%) 28 24

A threshold of 6 log units was used to classify compounds as ‘active’. Abbreviations: MAD – Median Average Deviation, LE – Ligand Efficiency (kcal/mol per non-
hydrogen atom), NBEI – Normalized Binding Efficiency Index (non-hydrogen atoms), BEI – Binding Efficiency Index (molecular weight), SEI – Surface Efficiency Index
(polar surface area/100), NSEI – Normalized Surface Efficiency Index (polar atoms), nBEI – Normalized Binding Efficiency Index taking the log after calculation of the ratio
(non-hydrogen atoms), mBEI – Normalized Binding Efficiency Index taking the log after calculation of the ratio (molecular weight). See Abad-Zapatero et al. [52].
doi:10.1371/journal.pcbi.1003559.t002
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allosteric compounds to be less promiscuous than non-allosteric

modulators, which is also seen in previous work [43]. While the

potential of the current data set is demonstrated by comparing the

allosteric and non-allosteric set, this analysis is by no means

exhaustive. Similar analyses can be performed comparing different

allosteric sets or for instance comparing class C GPCR ligands from

the allosteric set with the class A GPCRs of the non-allosteric set

(comparing two different sets of trans-membrane domain binding

ligands). Moreover, it should be noted that further research is

required to determine if the lower binding affinity observed results

from database bias or if this is an intrinsic property of allosteric

modulators (and if so, what the cause is of this observation).

Allosteric classification models
Above it was shown that there are chemical differences between

allosteric ligands for a certain target class and non-allosteric ligands

for that same target class. In some cases these differences were large

(as in the case of class B GPCRs) whereas in other cases the

differences appeared to be smaller (as in the case of class A GPCRs).

These chemical distinctions were used to train a classification model

that would be able to predict if a compound would likely be an

allosteric modulator or a non-allosteric modulator for a given target

based on the physicochemical properties. These models were

created on the balanced set to avoid a large bias in classifier

predictions (Table 1). Non-balanced models have also been trained

and data is available in the supplementary information.

The use of (circular) fingerprints in the full (non-target specific)

models was sidestepped for several reasons; firstly these models

should have a large applicability domain and should hence not be

limited to certain chemical motifs. Secondly, (chemical) sampling

bias of specific historical target classes was to be avoided. Thirdly,

the large chemical diversity would probably make those features

that are predictive very generic (as shown in the class B GPCR

case study for substructures negatively associated with allosteric

modulators, supporting Table S2, S3, S4). Finally the improve-

ment of circular fingerprints to the models was marginal (on

average 5% as calculated by the average of the used parameters,

supporting Table S5). Hence circular fingerprints were only used

in more congeneric chemical sets (e.g. target specific) [63]. Models

were judged by recall of allosteric modulators (Sensitivity (sens));

recall of non-allosteric modulators (Specificity (spec)); precision for

allosteric modulators (Positive predictive value (PPV)); precision

for non-allosteric modulators (Negative predictive value (NPV));

and Matthews correlation coefficient (MCC). These were all 0 for

a non-predictive/random model and 1 for an ideal model with the

MCC also potentially being -1 for an ideal inverse model (see

Methods for further details).

Table 3 shows a selection of the results for allosteric classi-

fication models (each trained on 70% of the data and externally

validated on the remaining 30%). For the full table see supporting

Table S6, here we limited ourselves to a single page for reasons of

clarity. Different models on data sets grouped by class L0 (protein

binding compounds), L1 (first level classification), and L2 (second

level classification) have been trained. Figure 6 shows the out-of-

bag ROC curve and external validation for the L0 model. For all

groups models were able to classify a compound as allosteric

modulator or non-allosteric modulator of a given target class with

good accuracy, yet model performance improved when sets

became more specific (limited to a target class). These models

provide a useful tool for the elucidation of the mechanism of action

for compounds identified in primary HTS screening efforts.

Second to being able to predict if a compound will or will not be

an allosteric modulator, it is also of interest to find out what

properties are important to make this distinction. Given in Table 3

are the three most important properties that were correlated with

the ‘allosteric’ class and the three most important properties that

were correlated with the ‘non-allosteric’ class for each classification

model. These properties allow the further investigation into what

differentiates allosteric from non-allosteric compounds. While in

most cases allosteric modulators were more lipophilic and non-

allosteric compounds were associated with a higher polar surface

area this was not always the case. Examples were the Transient

Receptor Potential Channels (TRP) and Voltage Gated Ion

Channels (VGC) target classes (L2 target class, ion channels), part

of the Ion Channel (L1 target class). Here allosteric ligands had a

larger polar surface area (TRP) or larger polar solvent accessible

surface area (SASA) (VGC). Conversely non-allosteric ligands

were more rigid (TRP). No explanation for this observation is

currently available but possibly, in the case of these two ion

channels, the uncompetitive binders could bind near the ion

channel itself and hence resemble these ions that are transported

by these proteins rather than resembling the natural regulators

(which is Voltage in the case of VGC and can be diverse in the

case of TRP). Note that this observation was absent for the Ligand

Gated Ion Channels (LGIC) where the allosteric modulators seem

to correspond more to what we observe in other protein classes

(double bonds are favorable and solubility/positive atom fraction

are not favorable). For the full table containing the results of all

classification models trained on all targets in levels 0–2 (including

class ‘undefined’ models) see supporting Table S6. In the final

section the potential of the data set is demonstrated using three

further different case studies.

Case Study 2: HIV reverse transcriptase
To illustrate possible applications of the data set, the classifi-

cation models were applied to a number of previously studied

targets for which a range of allosteric inhibitors has been

published. The first of these targets is the viral enzyme HIV-1

reverse transcriptase (HIV-RT), for which substantial SAR data

and several approved drugs are well established [64,65]. A

relevant drug target in the treatment of HIV, this target will fall

into ‘Enzyme’ L1 target class and is not further defined on lower

target class levels due to the sparseness of other related proteins in

version 14 of ChEMBL. Importantly, both allosteric and non-

allosteric drugs have been successfully developed as therapeutics,

and many co-crystal structures reported clarifying the binding sites

of various compound classes, making this an ideal target case.

Furthermore rational design and random screening have been

used to extensively study the protein.

Before training models the molecules were clustered based on

FCFP_6 fingerprints. As can be expected there were some mis-

classifications in the dataset. Known allosteric compounds were in

the non-allosteric training set (sharing scaffolds with known

allosteric inhibitors). Moreover, a number of compounds in the

allosteric training set were noted to be non-allosteric compounds

(nucleotide like structures) and vice versa. Capturing this unan-

notated, or tacit knowledge within a field is challenging, and

highlights some issues with data-mining the literature where ad

hoc vocabularies and conventions are used; however, it also

highlights the opportunity and added value for further curation.

The clusters containing these compounds were reclassified based

on the information in the original publications and subsequently a

model was trained (Table 4). The model performed well with a

sensitivity of 0.89, specificity of 0.88, PPV of 0.92, NPV of 0.84

and MCC of 0.76 and was hence interpreted (Figure 7).

The HIV-RT allosterism model showed the three most

important descriptors for non-allosteric compounds to be fraction

of Oxygen atoms as a part of all atoms (for instance the presence of
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a ribose moiety or a number of phospho groups contributes to this

descriptor), a larger polar surface area and a larger fraction of

atoms that are H-bond acceptors. Conversely, the following

parameters were found to be predictive for allosteric ligands: a

larger fraction of the bonds should be aromatic, the fraction of

bonds that are ring-bonds should be higher and the distribution

coefficient (LogD) should be higher (for a top 20 list see supporting

Table S7). These results demonstrate that the here-published data

set is a suitable starting point to create a model that can

differentiate between likely non-allosteric and likely allosteric

ligands for a specific target. However, after further data set cura-

tion this approach can lead to a well performing model that can

reliably differentiate between these classes. This approach to

developing a predictive method for allosterism is however not

limited to enzymes as is shown in the following examples.

Case Study 3: Adenosine receptors
Like HIV-RT, the class A GPCR adenosine receptors form a

highly validated and important drug target, where both agonists

and antagonists have a therapeutic potential. Moreover, there is

now structural data for this GPCR target. Adenosine receptors are

relevant targets in the treatment of diabetes and Parkinson’s

disease [66]. Allosteric modulation of the adenosine receptors has

anticipated advantages over orthosteric modulation as it is

expected to increase tissue specific selectivity and enable modu-

lation of receptors present in the brain [66]. Moreover, class A

GPCRs make up a large fraction of the targets present in

ChEMBL. This is due to their high relative tractability, the

historical research effort on this class, the large size (ca. 300 family

members in the human genome), and linkage to many important

diseases [4]. However, unlike HIV-RT no allosteric modulators of

adenosine receptors have yet been launched as drugs. One

compound, T-62, was under evaluation for the treatment of

chronic pain but crashed out in phase 2 trials [67]. Moreover,

there is a preclinical body of work that demonstrates allosteric

modulation for these drug targets and hence they were chosen to

be included here as a case study. Different from the HIV-RT case

study is that here a group of closely related proteins is used rather

than a single target. Hence it is shown that the current data set can

also be used to capture properties that distinguish allosteric

modulators for a family of targets.

Again some manual curation was needed before moving to

model training. The main finding was the paper by Narlawar et al.

[68]. This paper describes bitopic ligands that possess both

allosteric and non-allosteric domains. The compounds were

marked as allosteric due to the keywords noted in the abstract,

yet the large non-allosteric part of the ligands (including a ribose

moiety) deteriorates model performance. Similarly a number of

ligands described by Jacobson et al. were included in the allosteric

set as the abstract mentions that only some compounds appeared

to bind at an allosteric site, yet the majority of the 78 compounds

were non-allosteric, hence these were also cleaned [69].

The adenosine receptor allosteric modulator model performed

well (sens 0.94; spec 0.97, PPV 0.66; NPV 1.00; and MCC 0.77;

Figure 7), although the lower PPV lead us to believe further

curation might improve model performance. The model was then

interpreted. Allosteric ligands had a higher fraction of aromatic

bonds, a higher LogD, and a higher average bond length

compared to non-allosteric ligands. Whereas non-allosteric ligands

had a higher heteroatom fraction and a larger polar surface area

compared to allosteric ligands. Yet there was an interesting

distinction with the HIV-RT models. The structures of known

adenosine ligands (both allosteric and non-allosteric) are much

more conserved than those of HIV-RT ligands. Hence structural

features (in this case FCFP_6 substructures) were much more

important in model creation compared to generic physicochemical

properties (for example a xanthine scaffold was found to be

correlated with non-allosteric modulators, supporting Table S8).

Three substructures were shown to have high importance values in

model creation (meaning that model quality significantly de-

creased by leaving them out of the descriptor set).

Case Study 4: Kinase modulators, protein Kinase-B
A fourth and final case study presented in this paper is protein

Kinase-B (PKB)/Akt 1. This enzyme target is relevant in oncology

as it plays an important role in cellular survival pathways by

Figure 6. (A) Receiver Operator Characteristics (ROC) curve for out-of-bag validation of the allosteric classifier trained on 70% of
the allosteric and balanced orthosteric set demonstrated good performance. (B) External validation on the remaining 30% of the data set
confirmed good predictive performance.
doi:10.1371/journal.pcbi.1003559.g006
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inhibiting apoptotic processes [70,71]. PKB differs from the

previous targets as two different classes of allosteric modulators

have appeared in the literature. As touched upon in the

introduction, allosteric modulators of kinases can be small

molecules that act for instance by shifting the balance of protein

dynamics (e.g. locking a protein in an inactive conformation).

However in the case of kinases where orthosteric modulators are

defined as ATP-competitive, allosteric modulators can also be

compounds that resemble the substrate of the kinase and hence be

peptides (protein like compounds). In the current case study the

allosteric modulators hence make up two major classes, one of

which are large peptide like compounds. As such Protein Kinase B

is an interesting target that forms the inverse of the class B GPCRs

mentioned above. The non-allosteric modulators in this case were

all ATP-competitive and it was hypothesized that this class forms a

group that is more similar chemically than the allosteric

modulators. Given the clear distinction between allosteric modu-

lators that are peptidomimetic and small molecule allosteric

modulators, the chosen course of action was to train the model

using a three-class model rather than a binary classification model.

The model had good predictivity (sens 0.96; spec 0.94; PPV 0.71;

NPV 0.99; and MCC 0.86; Figure 7); the added third class,

‘allosteric biological’, was predicted very well with recall 1.00 and

predictive value 1.00.

As expected, properties mostly related to size (Molecular polar

surface area, volume) were correlated with the biological allosteric

modulators as is the ChEMBL calculated molecular class

‘biological’. The physicochemical properties mostly correlated

with small molecule allosteric modulators were number of chain

assemblies, ringbond fraction, carbon fraction, and number of sp2

hybridized carbons. Additionally the ChEMBL calculated molec-

ular class ‘small molecule’ was correlated to small molecule allo-

steric modulators. Interestingly, properties Lipinski pass, aromatic

bonds frac, ringbonds frac, and LogD were also correlating with

non-allosteric modulators (contrary to the trends observed in other

targets). This is likely due to the fact that ‘small molecule allosteric

modulators’ and ‘small molecule ATP competitive modulators’

more closely resemble each other than they do the ‘biological

allosteric modulators’ in terms of physicochemical properties.

Moreover the non-allosteric/ATP-competitive set contained a

number of drugs, which are highly optimized structures. Yet,

LogD, and ringbonds fraction correlated to both the allosteric and

non-allosteric small molecule classes. Conversely, negative atom

fraction and number of hydrogen bond acceptors were correlated

with only non-allosteric compounds (likely due to the need for

ATP-competitive compounds to also resemble parts of ATP), but

this effect was less pronounced. Also in this case study (similar to

HIV RT) sub-structural features were observed to be very

important. Moreover, in the biological allosteric modulators class

protein/peptide backbone fragments were appearing as important

in combination with charged arginine side chains. Inversely, in the

case of small molecule allosteric modulators the important

substructures mostly contain aromatic rings. For a longer list see

supporting Table S9.

Prospective use of allosteric classifiers
In the case studies the potential of the data set identified and

provided in this paper is demonstrated. The dataset is shown to be

a solid starting point for allosteric focused drug discovery towards

existing targets or towards new targets. With modest further

curation highly predictive models could be obtained. While it is

outside the scope of this paper to provide a case study on all

potentially interesting protein targets, possible other examples

included in the set are (but not limited to): Kinesin EG5 [72–74],

T
a

b
le

4
.

O
ve

rv
ie

w
o

f
al

lo
st

e
ri

c
m

o
d

e
ls

u
se

d
in

th
e

ca
se

st
u

d
ie

s.

T
a

rg
e

t
T

y
p

e
M

C
C

A
ll

o
st

e
ri

c
R

e
ca

ll
(S

e
n

si
ti

v
it

y
)

N
o

n
-A

ll
o

st
e

ri
c

R
e

ca
ll

(S
p

e
ci

fi
ci

ty
)

A
ll

o
st

e
ri

c
P

re
ci

si
o

n
(P

P
V

)
N

o
n

-A
ll

o
st

e
ri

c
P

re
ci

si
o

n
(N

P
V

)
A

ll
o

st
e

ri
c

B
io

lo
g

ic
a

ls
R

e
ca

ll
A

ll
o

st
e

ri
c

B
io

lo
g

ic
a

ls
P

re
ci

si
o

n

H
IV

R
e

ve
rs

e
T

ra
n

sc
ri

p
ta

se
Si

n
g

le
ta

rg
e

t
0

.7
6

0
.8

9
0

.8
8

0
.9

2
0

.8
4

n
/a

n
/a

A
d

e
n

o
si

n
e

re
ce

p
to

rs
T

ar
g

e
t

g
ro

u
p

0
.7

7
0

.9
4

0
.9

7
0

.6
6

1
.0

0
n

/a
n

/a

P
ro

te
in

K
in

as
e

B
M

u
lt

ip
le

al
lo

st
e

ri
c

cl
as

se
s

0
.8

6
0

.9
6

0
.9

4
0

.7
1

0
.9

9
1

.0
0

1
.0

0

In
th

e
ca

se
o

f
P

ro
te

in
K

in
as

e
B

a
th

re
e

-c
la

ss
m

o
d

e
l

w
as

cr
e

at
e

d
(n

at
u

ra
l

lig
an

d
m

im
ic

ki
n

g
p

e
p

ti
d

e
s

fo
rm

e
d

th
e

th
ir

d
cl

as
s)

.
Fo

r
cl

as
s

e
rr

o
rs

,
se

n
si

ti
vi

ty
is

re
ca

ll
o

f
al

lo
st

e
ri

c
sm

al
l

m
o

le
cu

le
s,

sp
e

ci
fi

ci
ty

is
re

ca
ll

o
f

n
o

n
-a

llo
st

e
ri

c
m

o
le

cu
le

s,
an

d
in

th
e

ca
se

o
f

p
ro

te
in

ki
n

as
e

B
a

th
ir

d
cl

as
s

e
rr

o
r

(a
llo

st
e

ri
c

b
io

lo
g

ic
al

re
ca

ll)
is

ad
d

e
d

.
Li

ke
w

is
e

p
o

si
ti

ve
p

re
d

ic
ti

ve
va

lu
e

(P
P

V
)

q
u

an
ti

fi
e

s
p

re
ci

si
o

n
fo

r
al

lo
st

e
ri

c
sm

al
l

m
o

le
cu

le
s,

n
e

g
at

iv
e

p
re

d
ic

ti
ve

va
lu

e
(N

P
V

)
q

u
an

ti
fi

e
s

p
re

ci
si

o
n

fo
r

n
o

n
-a

llo
st

e
ri

c
m

o
le

cu
le

s,
an

d
a

th
ir

d
va

lu
e

q
u

an
ti

fi
e

s
p

re
ci

si
o

n
fo

r
al

lo
st

e
ri

c
b

io
lo

g
ic

al
in

th
e

ca
se

o
f

P
ro

te
in

K
in

as
e

B
.I

n
ad

d
it

io
n

to
th

e
se

p
ar

am
e

te
rs

,t
h

e
M

C
C

is
ca

lc
u

la
te

d
.N

o
te

th
at

th
e

va
lu

e
s

fo
r

th
e

n
o

n
-

M
C

C
p

ar
am

e
te

rs
in

th
e

th
re

e
-c

la
ss

m
o

d
e

lh
av

e
b

e
e

n
sc

al
e

d
to

th
e

sa
m

e
ra

n
g

e
as

th
e

b
in

ar
y

cl
as

si
fi

ca
ti

o
n

m
o

d
e

ls
to

al
lo

w
d

ir
e

ct
co

m
p

ar
is

o
n

.A
b

b
re

vi
at

io
n

s:
M

C
C

–
M

at
th

e
w

s
C

o
rr

e
la

ti
o

n
C

o
e

ff
ic

ie
n

t,
H

IV
–

H
u

m
an

Im
m

u
n

o
d

e
fi

ci
e

n
cy

V
ir

u
s.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
5

5
9

.t
0

0
4

Allosteric Modulators in ChEMBL

PLOS Computational Biology | www.ploscompbiol.org 12 April 2014 | Volume 10 | Issue 4 | e1003559



Alcohol dehydrogenases (e.g. Isocitrate dehydrogenase 1 and 2

(ICDH)) [75], and class C GPCRs [26].

The models obtained here trained on the full allosteric mod-

ulator set should have a broad domain of applicability due to their

generic nature (physicochemical properties were used as descrip-

tors). Hence it is expected that these models are not limited to

certain known chemical motifs as would be the case when using

circular fingerprints. While also outside the scope of the current

paper, the authors would very much welcome a prospective

validation of the models. It should be noted that these models are

solely classifying between ‘a likely allosteric interaction’ and ‘a

likely non-allosteric interaction’. Hence the models cannot be used

to predict the affinity of ligands on certain targets, but are able to

predict the likely type of interaction for a given interaction. As

such these models should ideally be combined with dedicated

bioactivity models that can predict the affinity of molecules on a

certain target and not replace them. Hence the allosteric classifiers

can be used as a secondary filter when selecting compounds from a

chemical vendor to be tested experimentally.

The authors feel that other potential applications could be the

following: Firstly, creation of allosteric focused libraries based on

known chemical properties of allosteric modulators, these libraries

can be further sub divided on target type (e.g. Class A GPCR or

Protein Kinase). Secondly, determination of interaction type of

hits retrieved from HTS screening (allosteric or non-allosteric).

The authors are very open for potential collaborative projects to

experimentally validate the approach as described here. Hence the

authors would urge readers to contact them when they are

interested in a specific set of allosteric modulators.

Conclusions
As stated in the introduction, the term allosteric modulator is a

very broad definition directly depending on the target (class) in

question. Despite the presence of peptidic ligands and very diverse

chemistry, there are some general conclusions that can be drawn

from the current work.

Allosteric modulators tend to be more rigid and lipophilic

structures compared to the background set. This is in line with

their mode of action via binding in distinct structural locations of

proteins rather than catalytic or agonist sites. Yet the magnitude of

these changes in physicochemical properties depends on the target

in question and the non-allosteric ligands. Moreover, it is observed

that allosteric modulators are constrained to a narrower structure

activity window than are non-allosteric modulators. When the

physicochemical properties of allosteric modulators are compared

to all ligands for a target, the allosteric modulators are often a

subset of the non-allosteric ligands.

Secondly, it is observed that allosteric modulators are interesting

drugs for several reasons. They tend to adhere better to Lipinski’s

rule of 5, making them good candidates for oral formulation. This

could indicate that, if allosteric hits are identified for a target,

allosteric ligands are more developable then non-allosteric ligands.

Moreover, a trend is observed that allosteric modulators are less

promiscuous than non-allosteric modulators.

Thirdly, the absolute potency for allosteric modulators is

observed to be lower, while their binding efficiency and surface

ligand efficiency is similar. Some potential causes are discussed

here, but before a qualitative statement can be made about this

observation further research is required. However this observation

does call for the adaptation of screening assays to pick up the lower

affinity compounds.

In conclusion, the differences between non-allosteric and

allosteric modulators for a given target are usually such that it is

not straightforward to turn a non-allosteric compound into an

allosteric compound or vice versa. Yet it is these chemical

differences that allow the creation of classification models that can

distinguish between allosteric and non-allosteric modulators.

These models are shown to perform better if the target definition

is more concise, yet even without these constraints already

predictive models were constructed. Hence non-allosteric and

allosteric inhibition of a single target can be considered different

target classes overall. The work performed here should lead to

improvement of bioactivity models by providing tools to incorpo-

rate binding mode as a descriptor for compounds and hence

reducing the noise present in a data set.

While the authors have demonstrated in the current paper how

the dataset can be used as a starting point for allosteric drug

design, full manual curation of the dataset is at the moment

infeasible. Hence the authors encourage everybody who encoun-

ters an error or misclassification in this data set to contact them so

that curation can take place via crowdsourcing and the quality of

this data in ChEMBL can increase.

Figure 7. ROC curves for out-of-bag validation of the allosteric classifier models trained in case studies 2–4. (A) ROC curve for the HIV-
RT classifier. (B) ROC curve for the adenosine receptors classifier. (C) ROC curve for the Protein Kinase B classifier (note that here a ternary model was
used as opposed to a binary model).
doi:10.1371/journal.pcbi.1003559.g007
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Methods

Data set
The data set was obtained from ChEMBL version 14 [31]. For

the allosteric set, abstracts and titles of journal articles were

searched for keywords (supporting Table S10). For hits both

PubMed ID and citation information (primary author, year,

journal, volume, and starting page) were kept. From these

retrieved records the primary target (based on bioactivity anno-

tation frequency for targets considered in the document) was

included along with all compounds annotated on this primary

target. As a final step duplicate compounds were removed for each

target ID. Herein a distinction was made in the quality of the

bioactivity measurement, best measurements (e.g. pKi) were

favored over lower quality measurements (e.g. activity comment

‘active’). The background set was retrieved in a similar fashion, but

here all document IDs that were not part of the allosteric set were

kept. Finally, the balanced non-allosteric set was retrieved from the

full non-allosteric set by keeping a random percentage of bio-

activities from each L2 target class which was roughly equal in size

to the number of bioactivities present in the allosteric set. All data

is available on www.gjpvanwesten.nl/allosterism or ftp.ebi.ac.uk/

pub/databases/chembl/Allosterism, see supporting Figure S4 for

details.

Compound pre-treatment
Compounds were standardized, charged at a pH of 7.4, salts

were removed and 2D and 3D coordinates were calculated. All of

this was done in Molsoft ICM version 3.7-2d [76].

Compound descriptors
Volume, Polar Surface Area, Molecular weight, and drugLike-

ness were calculated in Molsoft ICM, carbon hybridization states

were calculated using the Perl molecular toolkit in Pipeline Pilot

[76,77]. For partition coefficient (LogP) calculations it has been

shown that consensus methods perform well [78], hence the used

LogP value was the average of AlogP calculated in Pipeline Pilot,

logP according to Molsoft ICM and ACD LogP [76,77,79].

Similarly LogD was the average of the Pipeline pilot module and

ACD LogD, finally solubility was the average of the pipeline pilot

calculator and Molsoft ICM value. The remaining compound

physicochemical descriptors were calculated in Pipeline Pilot using

the chemistry component collection [77]. The Lipinski Pass/Fail

class was calculated allowing no violations. For the individual case

studies additional FCFP_6 descriptors were used, on these

Bayesian feature selection from Pipeline Pilot was applied to

transfer them into a 512 bits fixed bitstring [77,80].

Finally, the rigidity index was an estimation of compound

rigidity that was calculated as follows: (AromaticBonds fraction)+
(1-RotatableBonds fraction)+Aliphatic Ringbonds fraction+(1-Sin-

gleBonds fraction)+DoubleBonds fraction+TripleBonds fraction+
BridgeBonds fraction)/7;

Target pre-treatment
Target information from ChEMBL (Uniprot ID, target

classification) was kept as it was defined in ChEMBL. However,

when target classification levels were unpopulated the value was

replaced with ‘Undefined’.

Machine learning
Models were trained in Pipeline Pilot using the ‘Random Forest’

component. This component uses R-Statistics (version 2.15.0) and

the ‘forest’ package [81,82]. For variable importance selection

permutation based selection and Gini importance without scaling

were used, as recommended by Strobl et al. [83,84]. Important

variables were selected based on Pareto optimization of both

importance values and class correlation values (e.g. correlation

with ‘Allosteric’ class).

Model validation
Validation was performed using 5 different metrics these were:

sensitivity (allosteric recall, the fraction of true positives of the total

number of allosteric compounds), specificity (non-allosteric recall,

the fraction of true negatives of the total number of non-allosteric

compounds), positive predictive value (allosteric precision, the

fraction of true positives of the total number of compounds pre-

dicted to be allosteric modulators), negative predictive value (non-

allosteric precision, the fraction of true negatives of the total

number of compounds predicted to be non-allosteric modulators),

and the Matthews correlation coefficient [85]. Given a confusion

matrix were A represents an allosteric modulator classification and

B represents non-allosteric modulator classification, Sensitivity is

class A recall, and specificity is class B recall, whereas positive

predictive value is class A precision and negative predictive value is

class B precision (Table 5).

For the MCC equation (1) was used; herein the numerator is the

product of the correctly predicted data points minus the product of

the incorrectly predicted data points. The denominator is formed

by the square root (2-classes) of the total product of all possible

sums of correct and incorrectly predicted data points.

MCC~
(TP 1TN){(FP 1FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP) 1 (TPzFN) 1 (TNzFP) 1 (TNzFN)

p ð1Þ

Note that false negatives are missed class A predictions and

false positives are missed class B predictions. Hence this can be

rewritten as follows:

Numerator:

(AA 1BB){(BA 1AB) ð2Þ

Denominator:

((AAzBA) 1 (AAzAB) 1 (BBzBA) 1 (BBzAB))1=2 ð3Þ

Table 5. Binary classification confusion matrix.

Model Predicts A Model Predicts B

Experiment Measures A AA AB Class A recall (Sensitivity) AA/(AA+AB)

Experiment Measures B BA BB Class B recall (Specificity) BB/(BB+BA)

Class A precision (PPV) AA/(AA+BA) Class B precision (NPV) BB/(BB+AB)

Recall values are calculated over the rows and precision values over the columns.
doi:10.1371/journal.pcbi.1003559.t005
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In the case of the three-class model (ternary classification) these

calculations were modified to represent the three-class confusion

matrix. Assume class A to be allosteric modulators, class B to be

non-allosteric modulators and class C to be biological allosteric

modulators. Sensitivity remains the fraction of true positives of the

total number of allosteric compounds (here class A recall), specificity

remains the fraction of true negatives of the total number of non-

allosteric compounds (here class B recall), positive predictive value

remains the fraction of true positive of the total number of

compounds predicted to be allosteric modulators (here class A

precision), and negative predictive value remains the fraction of true

negatives of the total number of compounds predicted to be non-

allosteric modulators (class B precision). Additionally a class C recall

(the fraction of true allosteric-biological predictions of the total

number of allosteric-biological compounds) and precision (the

fraction of true allosteric-biologicals of the total number of

compounds predicted to be allosteric biologicals) are introduced.

It should also be noted that the baseline values for a random model

in a ternary classification model are expected to be around 0.33

(33% correctly predicted compared to 66% incorrectly predicted).

This is lower than the value of 0.50 (50% correct prediction and

50% incorrect prediction) for a binary model. Hence values were

scaled to be directly comparable between the two model types.

Equation (1) was again used for the MCC but adapted to the

ternary matrix (Table 6); the product of the correctly predicted

data points minus the product of the incorrectly predicted data

points forms the numerator. The denominator is formed by the

cube root (3-classes) of the total product of all possible sums of

correctly and incorrectly predicted data points.

The following types are defined:

AB+AC = AX (Missed class A predictions)

BA+BC = BX (Missed class B predictions)

CA+CB = CX (Missed class C predictions)

Hence the MCC can be written as follows:

Numerator:

(AA 1BB 1CC){(AX 1BX 1CX) ð4Þ
Denominator:

((AAzAX) 1 (AAzBX) 1 (AAzCX) 1 (BBzAX) 1

(BBzBX) 1 (BBzCX) 1 (CCzAX) 1 (CCzBX) 1

(CCzCX))1=3

ð5Þ

The MCC still produces values between 1 (perfect prediction), 0

(random prediction) and 21 (anti correlation) and need not be

scaled, contrary to the recall values and predictive values as the full

confusion matrix is considered in absolute numbers when cal-

culating the MCC.

Substructure frequency analysis
Substructures were obtained using pharmacophore feature class

based circular fingerprints (FCFP_6) [63,80]. For all present

substructures, substructure frequencies were obtained from the full

data set (background frequency), the allosteric set per L2 target

(allosteric frequency), and the non-allosteric set per L2 target (non-

allosteric frequency). These frequencies were normalized per set

(substructure frequency as a fraction of the total substructures per

set) to prevent a biased ranking. Subsequently all substructures

were ranked based on their normalized frequency.

Enrichment was calculated based on the logarithm of the nor-

malized ranks quotient (between allosteric and background or

between non-allosteric and background). These final scores were

ranked to obtain the final scored rank.

Supporting Information available
4 supporting figures (Figure S1, S2, S3, S4) and 10 supporting

tables (Table S1, S2, S3, S4, S5, S6, S7, S8, S9, S10) that further

support the findings are available online. In addition, the datasets,

further chemical analyses (per target level), physicochemical

property histograms (for L0, L1, and L2), all model training and

validation reports, and delimited text files are available online:

www.gjpvanwesten.nl/allosterism or ftp.ebi.ac.uk/pub/databases/

chembl/Allosterism.

Supporting Information

Figure S1 The ChEMBL-14 target hierarchy; shown are the

first three levels where L0 means the full allosteric versus the full

non-allosteric set (protein binding compounds). Descending the

hierarchy leads to a finer grained target classification, which

eventually culminates in individual proteins (L8). The target

distribution overview in the main text is made at target level L2

(red circle).

(TIF)

Table 6. Ternary classification confusion matrix.

Model Predicts A Model Predicts B Model Predicts C

Experiment Measures A AA AB AC Class A recall AA/(AA+AB+AC)

Experiment Measures B BA BB BC Class B recall BB/(BA+BB+BC)

Experiment Measures C CA CB CC Class C recall CC/(CA+CB+CC)

Class A precision
AA/(AA+BA+CA)

Class B precision
BB/(AB+BB+CB)

Class C precision
CC/(AC+BC+CC)

Recall values are calculated over the rows and precision values over the columns.
doi:10.1371/journal.pcbi.1003559.t006

MCC~
(AA 1BB 1CC)� (AX 1BX 1CX)


(AAzAX) 1 (AAzBX) 1 (AAzCX) 1 (BBzAX) 1 (BBzBX) 1 (BBzCX) 1 (CCzAX) 1 (CCzBX) 1 (CCzCX)3

p ð6Þ
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Figure S2 L1 target class distribution of both the allosteric (A)

and non-allosteric data (B) sets. Also here the distribution of the

target classes differed between the two sets.

(TIF)

Figure S3 Bar chart of all the mean values for all descriptors in both

the allosteric and non-allosteric set of the 7TM2 class (Class B GPCRs).

Note that delimited text files are available on www.gjpvanwesten.nl/

allosterism or ftp://ftp.ebi.ac.uk/pub/databases/chembl/Allosterism.

(TIF)

Figure S4 Layout of the online ftp archive with the extra

supporting information.

(TIF)

Table S1 Physicochemical descriptors used.

(DOC)

Table S2 Examples of positively enriched allosteric substruc-

tures class B GPCR ligands.

(TIF)

Table S3 Examples of negatively enriched allosteric substruc-

tures class B GPCR ligands.

(TIF)

Table S4 Examples of positively enriched non-allosteric sub-

structures class B GPCR ligands.

(TIF)

Table S5 Model improvement when including fingerprints in

model construction.

(DOCX)

Table S6 Allosteric models for balanced data sets of L0, L1, and

L2 groups.

(DOCX)

Table S7 Top 20 property importance for the optimized HIV

RT model.

(TIF)

Table S8 Top 20 property importance for the optimized

adenosine model.

(TIF)

Table S9 Top 17 property importance for the optimized protein

kinase B model.

(TIF)

Table S10 Keywords used to retrieve the allosteric set.

(DOCX)
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