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Background: Increasing evidence points toward the need to extend the neurobiological
conceptualization of posttraumatic stress disorder (PTSD) to include evolutionarily
conserved neurocircuitries centered on the brainstem and the midbrain. The reticular
activating system (RAS) helps to shape the arousal state of the brain, acting as a
bridge between brain and body. To modulate arousal, the RAS is closely tied to the
autonomic nervous system (ANS). Individuals with PTSD often reveal altered arousal
patterns, ranging from hyper- to blunted arousal states, as well as altered functional
connectivity profiles of key arousal-related brain structures that receive direct projections
from the RAS. Accordingly, the present study aims to explore resting state functional
connectivity of the RAS and its interaction with the ANS in participants with PTSD and
its dissociative subtype.

Methods: Individuals with PTSD (n = 57), its dissociative subtype (PTSD + DS, n = 32)
and healthy controls (n = 40) underwent a 6-min resting functional magnetic resonance
imaging and pulse data recording. Resting state functional connectivity (rsFC) of a
central node of the RAS – the pedunculopontine nuclei (PPN) – was investigated along
with its relation to ANS functioning as indexed by heart rate variability (HRV). HRV
is a prominent marker indexing the flexibility of an organism to react adaptively to
environmental needs, with higher HRV representing greater effective adaptation.
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Results: Both PTSD and PTSD + DS demonstrated reduced HRV as compared
to controls. HRV measures were then correlated with rsFC of the PPN. Critically,
participants with PTSD and participants with PTSD + DS displayed inverse correlations
between HRV and rsFC between the PPN and key limbic structures, including the
amygdala. Whereas participants with PTSD displayed a positive relationship between
HRV and PPN rsFC with the amygdala, participants with PTSD + DS demonstrated a
negative relationship between HRV and PPN rsFC with the amygdala.

Conclusion: The present exploratory investigation reveals contrasting patterns of
arousal-related circuitry among participants with PTSD and PTSD + DS, providing a
neurobiological lens to interpret hyper- and more blunted arousal states in PTSD and
PTSD + DS, respectively.

Keywords: posttraumatic stress disorder, resting state functional magnetic resonance imaging, heart rate
variability, brainstem, reticular activating system

INTRODUCTION

Arousal is critical to the conceptualization of posttraumatic stress
disorder (PTSD) since it is a dynamic disorder that includes
arousal states ranging from hyperarousal (e.g., hypervigilance,
altered startle threshold) to more blunted arousal patterns
associated with emotional detachment, depersonalization, and
derealization. These latter states are more frequently associated
with the dissociative subtype of PTSD (PTSD + DS) (Wolf et al.,
2012a,b; APA, 2013; Seligowski et al., 2019; for review see Hansen
et al., 2017; Fenster et al., 2018; Lanius et al., 2018; van Huijstee
and Vermetten, 2018).

On a neural level, hyperarousal states have been found
to be associated with reduced activation of brain regions
underlying cognitive control (e.g., ventromedial prefrontal
cortex) and enhanced activation of brain regions underlying
emotion generation (e.g., amygdala, periaqueductal gray), while
the reverse pattern has been implicated in more blunted arousal
states (e.g., Fenster et al., 2018; Lanius et al., 2018; see also Lebois
et al., 2021). Critically, the aforementioned interaction profile
between subcortical and cortical brain regions has recently been
extended to include deep-layer brain regions involved in arousal
and innate reflexive function (Harricharan et al., 2016; see also
Holmes et al., 2018; Olive et al., 2018; Rabellino et al., 2018a,
2019; Brandão and Lovick, 2019; Terpou et al., 2019b, 2020, 2022;
Thome et al., 2019; Haubrich et al., 2020; Lanius et al., 2020;
Webb et al., 2020). Specifically, as compared to healthy controls
and PTSD, individuals with PTSD + DS show increased resting
state functional connectivity of the pedunculopontine nuclei
(PPN) – a key node of the RAS – with the ventromedial prefrontal
and anterior cingulate cortices, as well as with limbic regions,
including the amygdala and parahippocampal gyrus (Thome
et al., 2019). These findings highlight alterations in deeper-layer
neuronal circuitries critical to promoting and modulating arousal
in individuals with PTSD and its dissociative subtype.

The autonomic nervous system (ANS) plays an important role
in coordinating and generating arousal, which is often measured
via peripheral changes, such as heart rate, blood pressure, and
skin conductance (Berntson et al., 1991; Cacioppo et al., 2007;

Mendes, 2009). This is achieved by a flexible recruitment of
the two branches of the ANS: the sympathetic (SNS) and the
parasympathetic nervous system (PNS). The activity of the heart
can be used as an indicator of the interaction between the SNS
and the PNS, reflecting sympathoexcitation (i.e., tachycardia)
and sympathoinhibition states (i.e., bradycardia), respectively
(Koepchen, 1984; Sinski et al., 2006; Coote and Chauhan, 2016;
Laborde et al., 2017). This variable interaction generates changes
in the inter-beat intervals of the heart rate over time (i.e.,
heart rate variability, HRV), where higher HRV has been related
to effective adaptation to the environment (see e.g., Thayer
et al., 2012). To estimate the influence of sympathetic and
parasympathetic contributions on HRV, different information
can be extracted from the cardiac signal. Whereas fast frequencies
of the cardiac signal are more likely to reflect parasympathetic
activation (e.g., high frequency HRV, HF-HRV), slow frequencies
are more likely to be associated with sympathetic activation
(e.g., low frequency HRV, LF-HRV) (Malik et al., 1996). It is
important to note, however, that this distinction is not so clear-
cut (Billman, 2013; Shaffer and Ginsberg, 2017). In particular, the
LF component seems to be influenced by a mixture of SNS and
PNS activation (Randall et al., 1991; Ahmed et al., 1994; Billman,
2009, 2011), a potential limitation to be considered moving
forward. The ANS is tightly linked to the central autonomic
network (CAN), where a bidirectional communication between
these two systems is critical to the connection between brain
and body (e.g., Thayer et al., 2012; Beissner et al., 2013;
Chang et al., 2013; Mather and Thayer, 2018; Riganello et al.,
2019). The CAN comprises brainstem (e.g., nucleus tractus
solitarius, locus coeruleus), midbrain (e.g., periaqueductal gray,
superior colliculi), as well as subcortical (e.g., thalamus, insula,
amygdala) and higher cortical brain regions (e.g., anterior and
midcingulate cortex, ventromedial prefrontal cortex, posterior
cingulate cortex), where brainstem structures are thought to
generate the output to the heart (e.g., Beissner et al., 2013; Valenza
et al., 2018). The complex interplay between the ANS and the
CAN enables autonomic flexibility, prefrontal-directed control,
and the capacity to re-establish homeostasis after a stressful event
(Beissner et al., 2013; Mather and Thayer, 2018).
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Critically, PTSD has been associated with alterations in ANS-
modulated responses (see also Shalev et al., 1998; Videlock
et al., 2008; APA, 2013; Depierro et al., 2013; Lang et al.,
2016, 2018; Rabellino et al., 2017; Niles et al., 2018; Herzog
et al., 2019; Lis et al., 2019). In particular, individuals with
PTSD are generally characterized by a reduced parasympathetic-
related HRV at rest (Hauschildt et al., 2011; Kamkwalala
et al., 2012; Dennis et al., 2016b; Rissling et al., 2016; for
a meta-analyses see Campbell et al., 2019; Spiller et al.,
2019; Schneider and Schwerdtfeger, 2020). Studies examining
sympathetic-related HRV in PTSD are mixed, with most
studies reporting reduced HRV (Chang H.-A. et al., 2013;
Shah et al., 2013; Wahbeh and Oken, 2013; Dennis et al.,
2014, 2016a; Rissling et al., 2016), while others have reported
enhanced HRV (Cohen et al., 1998, 2000; Lakusic et al., 2007;
for meta-analyses see Nagpal et al., 2013; Chalmers et al.,
2014; Schneider and Schwerdtfeger, 2020; see also Siciliano
et al., 2022). Importantly, these contrasting findings may be
driven partially by dissociative symptomatology. Several studies
examining the relationship between dissociation and HRV
in different populations have reported enhanced recruitment
of the PNS in response to threatful or trauma-related cues,
thus pointing toward a relationship between dissociation and
sympathoinhibitory responses (Farina et al., 2015; see also Owens
et al., 2015; Chou et al., 2018; Schäflein et al., 2018; Herzog et al.,
2019; Krause-Utz et al., 2019).

Despite the significant amount of evidence pointing to
HRV and arousal-related neural alterations in PTSD, research
investigating the relationship between HRV and functional
brain responses is still in its nascent stages. Previous findings by
Rabellino et al. (2017) have reported altered recruitment of CAN-
related brain regions in association with parasympathetic-related
HRV in participants with PTSD. In particular, whereas brain
regions related to the processing of bodily signals (i.e., anterior
and posterior insula) showed reduced recruitment during
trauma-related stimulus processing, brain regions underlying
emotion processing (i.e., amygdala) displayed enhanced
recruitment in participants with PTSD as compared to healthy
controls (Rabellino et al., 2017). Similar findings have also
been reported at rest (Thome et al., 2017). Furthermore, Grupe
et al. (2020) investigated neural responses of the anticipation
of predictable and unpredictable conditioned threat and safety
cues in individuals with high and low PTSD symptoms related to
combat. A relationship between HRV and higher-order cognitive
control systems was observed during unpredictable threat vs.
safety trials. Moreover, reduced activation of the ventromedial
prefrontal cortex was related to lower parasympathetic-related
HRV in individuals with higher PTSD symptoms during the
anticipation of safety trials.

To date, however, there are no studies examining the
relationship between deep-layer neurocircuitries and autonomic
responses in PTSD and its dissociative subtype. This is of
particular importance given that rodent studies have revealed
that the RAS, specifically the PPN, projects to the amygdala,
presenting a direct pathway for arousal (Pahapill and Lozano,
2000; Alam et al., 2011). Accordingly, the present investigation
aims to examine the exploratory relationship between resting

state functional connectivity of the pedunculopontine nuclei
(PPN) with resting sympathetic- and parasympathetic-related
HRV in individuals with PTSD, its dissociative subtype
(PTSD + DS), and controls.

We hypothesized reduced parasympathetic- and reduced
sympathetic-related HRV in PTSD and its dissociative subtype,
respectively, as compared to controls. Individuals with PTSD
were hypothesized to show a altered relationship between
parasympathetic-related HRV and RAS functional connectivity
to emotion processing brain regions of the CAN (i.e., limbic
structures, midbrain) as compared to controls and PTSD + DS.
Individuals with PTSD + DS were hypothesized to exhibit a
altered relationship between sympathetic-related HRV and RAS
functional connectivity to regulatory brain regions of the CAN
(i.e., ventromedial prefrontal and anterior cingulate cortices) as
compared to controls and PTSD.

MATERIALS AND METHODS

Sample Description
The present investigation included 130 participants, of whom 89
participants met the criteria for PTSD, while 40 participants were
free of any mental disorder throughout their life (control group).
Of the 89 individuals who met criteria for PTSD, 57 individuals
met criteria for PTSD, and 32 met criteria for the dissociative
subtype of PTSD (PTSD + DS). Here, we included a sub-
sample of a previously published larger sample, as we excluded
participants with non-exploitable pulse data (Harricharan et al.,
2016, 2017; Nicholson et al., 2016, 2018; Thome et al., 2017, 2019;
Rabellino et al., 2018b,c; Terpou et al., 2018). Scanning took place
either at the Robarts Research Institute’s Centre for Functional
and Metabolic Mapping or the Lawson Health Research Institute
for Imaging in London, ON, Canada. This retrospective study was
approved by the Research Ethics Board at Western University.

Posttraumatic stress disorder diagnoses and symptom severity
were assessed using the Clinician-Administered PTSD Scale
(CAPS IV, CAPS 5; Blake et al., 1995), while comorbid Axis I
disorders were diagnosed with the Structured Clinical Interview
for DSM-IV Axis I Disorders (SKID-I; First, 1997) by a
trained clinical psychologist. For information on additional
psychometric measurements, statistical analyses and exclusion
criteria please see Table 1 and Supplementary Material 1.

Cardiac Signal Processing
Pulse data were recorded using a finger-tip pulse oximeter
(Powerlab 8/35, LabChart 7 Pro) during the 6-min resting
functional MRI scanning procedure and sampled at 200 Hz
(Robarts Research Institute) or 40 Hz (Lawson Health Science
Institute). Pulse data acquired at 40 Hz were re-sampled at 200 Hz
by linear interpolation. Peak detection and visual inspection
(artifact detection) of the pulse signal was ensured via self-written
Matlab scripts (Matlab R2019b; MathWorks). The inspected
inter-beat interval (IBI) time series were imported to the KUBIOS
Heart Rate Variability Software Package (Kubios Standard;
Kuopio, Finland; version 3.2.0) (Tarvainen et al., 2014). IBI data
were re-sampled at 4 Hz and HRV measurements were computed,
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TABLE 1 | Demographic and clinical characteristics of the study sample.

Post hoc comparison

controls PTSD PTSD + DS Controls vs. PTSD Controls vs. PTSD + DS PTSD vs. PTSD + DS

N = 40 N = 57 N = 32 Test-statistic p-value Test-statistic df p-value Test-statistic df p-value Test-statistic df p-value

Demographics

Gender (n) 4.72 0.095

Female 26 31 6 – – – – – – – – –

Male 14 24 24 – – – – – – – – –

age mean (SD) 35.28 (11.53) 39.21 (11.94) 39.26 (14.19) 1.39 0.251 – – – – – – – – –

Clinical characteristics

CAPS total mean (SD) 0.80 (3.06) 56.04 (20.18) 69.35 (20.36) 171.25 <0.001** 17.14 95 <0.001** 20.99 58 <0.001 ** 2.53 75 0.013**

BDI mean (SD) 1.18 (2.14) 23.12 (8.71) 35.60 (11.75) 154.20 <0.001** 15.16 86 <0.001** 17.71 66 <0.001 ** 5.43 78 <0.001**

MDI 236.000 <0.001**

MDI total mean (SD) 34.26 (4.29) 53.81 (13.49) 76.69 (19.82) 8.72 90 <0.001** 12.99 66 <0.001 ** 6.19 80 <0.001**

MDI derealization mean (SD) 5.28 (0.69) 8.49 (2.89) 12.24 (3.87) 6.76 90 <0.001** 11.03 66 <0.001 ** 4.96 80 <0.001**

MDI depersonalization mean (SD) 5.21 (0.69) 6.77 (2.66) 11.62 (4.99) 3.59 90 <0.001** 7.95 66 <0.001 ** 5.75 80 <0.001**

Trauma history

CTQ

CTQ total mean (SD) 32.37 (9.67) 56.92 (22.89) 65.00 (19.85) 6.21 88 <0.001* 8.86 65 <0.001 ** 1.59 79 0.115

Emotional abuse mean (SD)

Physical abuse mean (SD)

Sexual abuse mean (SD)

Emotional neglect mean (SD)

Physical neglect mean (SD)

Combat exposure

Yes (N)

No (N)

State characteristics

RSDI dissociation mean (SD) 2.66 (0.38) 3.82 (1.48) 4.92 (1.88) 19.24 <0.001** 4.55 81 <0.001** 6.92 52 <0.001 ** 2.53 65 0.014**

STAI-S mean (SD) 3.26 (0.56) 6.00 (2.37) 5.94 (2.22) 23.29 <0.001** 6.70 81 <0.001** 6.82 52 <0.001 ** 0.08 65 0.93

Cardiac response

HF-HRV mean (SD) 6.35 (1.08) 5.69 (1.22) 5.85 (1.17) 3.82 0.024** 2.72 95 0.008** 1.87 70 0.065 0.59 87 0.554

LF-HRV mean (SD) 1.86 (0.13) 1.72 (0.23) 1.70 (0.22) 6.72 0.002** 3.25 95 0.002** 3.51 70 0.001 ** 0.40 87 0.688

RMSSD mean (SD) 3.72 (0.49) 3.43 (0.54) 3.49 (0.56) 3.67 0.028** 2.66 95 0.009** 1.99 70 0.050 * 0.31 87 0.768

**p < 0.05 (post hoc tests: Bonferroni-adjustment), *p < 0.05 (post hoc tests: without Bonferroni-adjustment), ◦F-Test, ∧Kruskal-Wallis Test, T T-Test. CAPS, Clinician Administered PTSD Scale; CTQ, Childhood Trauma
Questionnaire; HF-HRV, high frequency heart rate variability; LF-HRV, low frequency heart rate variability; MDI, Multiscale Dissociation Inventory; RMSSD, root-mean square of successive differences; RSDI, Response
to Script Driven Imagery Scale; STAI-S, State-Trait Anxiety Inventory-State part; PTSD, posttraumatic stress disorder; PTSD + DS, PTSD with dissociative subtype.
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namely a time domain estimate (i.e., root-mean square of
successive differences, RMSSD, parasympathetic-related HRV),
two frequency domain estimates, high-frequency HRV (HF-HRV,
parasympathetic-related HRV) and low frequency HRV (LF-
HRV, sympathetic-related HRV) following the task force of the
european society of cardiology and the north american society
of pacing and electrophysiology guidelines (1996). To calculate
HF-HRV (bandpass: 0.15–0.4 Hz) and LF-HRV (bandpass: 0.04–
0.15 Hz), spectral analysis using a Fast Fourier transformation
based on the Welch’s periodogram method was computed,
with the latter employing a window width of 300 s and a
window overlap of 50% (Tarvainen et al., 2014). To obtain better
approximations of normal distributions of RMSSD, HF-HRV and
LF-HRV, metrics were transformed by natural logarithm.

Group differences in HRV were assessed with multivariate
analyses of variance. Analyses were performed using SPSS
(version 25; SPSS Inc., United States).

Resting State fMRI Data Acquisition
Functional magnetic resonance imaging (fMRI) was conducted
using a 3.0 T whole-body MRI scanner (Magnetom Tim
Trio, Siemens Medical Solutions, Erlangen, Germany) with
a manufacturer’s 32-channel phased array head coil. T1-
weighted anatomical images were collected with 1 mm isotropic
resolution (MP-RAGE, TR/TE/TI = 2,300 ms/2.98 ms/900 ms,
FA 9◦, FOV = 256 mm × 240 mm × 192 mm, acceleration
factor = 4, total acquisition time = 192 s). Blood-oxygenation-
level dependent (BOLD) fMRI images were obtained with
the standard gradient echo planar imaging (EPI) pulse
sequence. EPI volumes were acquired with 2 mm isotropic
resolution (FOV = 192 mm × 192 mm × 128 mm
(94 × 94 matrix, 64 slices), TR/TE = 3,000 ms/20 ms, flip
angle = 90◦, 120 volumes).

Participants were instructed to close their eyes and let their
minds wander during the 6-min resting scan in accordance with
standard methods (Bluhm et al., 2011; Harricharan et al., 2016).

fMRI Data Preprocessing
Image preprocessing and statistical analyses of the fMRI
data were conducted using Statistical Parametric Mapping
(SPM 12, Wellcome Trust Center of Neuroimaging, London,
United Kingdom1) and the spatially unbiased infratentorial
template (SUIT) toolbox (Version, 3.1; Diedrichsen,
2006; Diedrichsen et al., 2011) implemented in Matlab
R2019b (MathWorks).

Functional images were realigned to the first image and
then re-sliced to the mean functional image. Six realignment
parameters for changes in motion across the different planes were
derived. Motion correction was ensured by computing regressors
accounting for motion outliers with the Artifact Detection Tool
(ART) software package (2 mm motion threshold; ART software;
Gabrieli Lab; McGovern Institute for Brain Research, Cambridge,
MA, United States2; see also Power et al., 2012, 2014), which were

1http://www.fil.ion.ucl.ac.uk/spm
2www.nitrc.org/projects/artifact_detect

incorporated in the analyses in addition to the six movement
regressors computed during standard realignment.

fMRI Data Preprocessing: Brainstem and Cerebellum
Functional data were normalized to the spatially unbiased
infratentorial template (SUIT, version 3.1.; Diedrichsen, 2006;
Diedrichsen et al., 2011) toolbox to improve the resolution of the
brainstem and the cerebellum across participants, which, in turn,
enhanced the signal extracted from the PPN subject-specifically.
For details see Supplementary Material 1 (Terpou et al., 2018,
2019a; Thome et al., 2019).

fMRI Data Preprocessing: Whole Brain
The realigned and resliced functional images (see section “fMRI
Data Preprocessing”) were co-registered to the anatomical
image for each subject. Co-registration was followed by the
segmentation of the images into each tissue type (gray and white
matter as well as cerebrospinal fluid), spatial normalization to
the MNI standard template, smoothing with a 6 mm FWHM
Gaussian kernel, and band-pass filtering with a high-pass filter
of 0.01 Hz and low-pass filter of 0.08 Hz (Bär et al., 2016; Wagner
et al., 2018).

Resting State Functional Connectivity
Analyses (rsFC)
Seed Region Definition
Seed masks for the right and the left PPN were generated using
the WFU PickAtlas (Functional MRI Laboratory, Wake Forest
University School of Medicine; Maldjian et al., 2003) by defining
4 mm spheres around the following coordinates: x =± 7, y =−32,
z = −22 (Fling et al., 2013; see also Thome et al., 2019), and
confirmed visually using the Duvernoy’s Atlas (Naidlich, 2009).
The mean signal BOLD time course of each seed (i.e., the right
and the left PPN) was extracted from the data normalized to the
SUIT template, ensuring enhanced spatial accuracy of the defined
seed regions (self-written MATLAB scripts).

First Level
For each seed, separate voxel-wise first-level multiple regression
models were generated with the seed time course included as
a regressor of interest, while ART-computed regressors (i.e.,
motion outliers) and realignment parameters were included as
regressors of no interest.

Second Level: Within-Group Analyses
To explore the interaction of HRV with the rsFC patterns of
the PPN within groups, separate multiple regression models (i.e.,
right PPN, left PPN) were conducted, where each HRV estimate
was included as a regressor (i.e., RMSSD, HF-HRV, LF-HRV).
Positive as well as negative relationships between PPN rsFC
and HRV were investigated. These findings are reported in the
Supplementary Material 2 (see Supplementary Tables 1–6).

Second Level: Between-Group Analyses
To compare the relationship between the rsFC patterns of the
PPN and HRV between groups, we utilized a flexible factorial
design with the factor group (controls vs. PTSD vs. PTSD + DS),
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the factor hemisphere (left PPN vs. right PPN), and interaction
terms of “group × hemisphere”, and “group × HRV” covariate
for each HRV estimate included (i.e., RMSSD, HF-HRV, LF-
HRV). If necessary, Post hoc T-contrasts with respect to the
interaction term “group × HRV” covariates were conducted to
compare each group to one another (i.e., controls vs. PTSD,
controls vs. PTSD + DS, PTSD vs. PTSD + DS).

Second Level: Direction Relationship of rsFC and
HRV
To investigate identified group differences in PPN rsFC patterns
and its relation to HRV, contrast estimates of the identified peak
coordinates were extracted and correlated with HRV estimates.

Analyses Approach and Statistical Thresholding
Resting state functional connectivity was analyzed using
a region-of-interest (ROI) approach, with a priori
brain regions, including the amygdala, the insula,
and the ventromedial prefrontal cortex, which were
selected due to their relation to the central autonomic
network (CAN) (Thayer et al., 2012; Beissner et al.,
2013). Bilateral amygdalae, insulae, and ventromedial
prefrontal masks were adopted from the automated
anatomical labeling atlas (Tzourio-Mazoyer et al.,
2002), which was implemented in the WFU PickAtlas
(Maldjian et al., 2003).

All ROI results were reported at a local significance
threshold of p < 0.05 (voxel-level), with an alpha-
adjustment for multiple comparisons (family-wise error
(FWE) correction). In addition, a Bonferroni adjustment
was applied according to the number of tested ROIs
(N = 3), leading to a local significance threshold of
p < 0.017, FWE corrected.

RESULTS

Sample Characteristics
Groups did not differ in age or gender (see Table 1).
Significant group differences emerged for all clinical
and subjective experience measurements. Please see
Table 1 for details.

HRV Characteristics
HF-HRV
Groups differed in HF-HRV (F = 3.82, p = 0.024). Control
subjects exhibited higher HF-HRV as compared to individuals
with PTSD (T95 = 2.72, p = 0.008). No differences were
observed between controls and individuals with PTSD + DS
(T70 = 1.87, p = 0.065), nor between individuals with
PTSD and individuals with PTSD + DS (T87 = 0.59,
p = 0.554) (Table 1).

LF-HRV
Groups differed in LF-HRV (F = 6.72, p = 0.002). Control subjects
exhibited higher LF-HRV as compared to individuals with PTSD
(T95 = 3.25, p = 0.002) and PTSD + DS (T70 = 3.51, p = 0.001). No TA
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differences were observed between PTSD and PTSD + DS groups
(T87 = 0.40, p = 0.688) (Table 1).

RMSSD
Groups differed in RMSSD (F = 3.82, p = 0.028). Control subjects
exhibited increased RMSSD as compared to individuals with
PTSD (T95 = 2.66, p = 0.009) and trended toward increased
RMSSD when compared to individuals with PTSD + DS
(T70 = 1.99, p = 0.050). No differences were observed between
PTSD and PTSD + DS groups (T87 = 0.31, p = 0.768) (Table 1).

Group Differences in PPN Resting State
Functional Connectivity Associated With
HRV
PPN rsFC and HF-HRV
PPN rsFC and HF-HRV: Flexible Factorial
The flexible-factorial ANOVA showed a main effect of group
(pFWE = 0.025; please note alpha-level adjustment with FWE
correction, without additional Bonferroni correction). Groups
differed in rsFC of the PPN with a cluster encompassing the
left anterior cingulate cortex and the ventromedial prefrontal
cortex (pFWE = 0.025). Moreover, a significant interaction of
“group × HF-HRV” emerged (pFWE = 0.007). Groups differed
in rsFC of the PPN associated with RMSSD with a cluster
encompassing the amygdala and the parahippocampal gyrus
(pFWE = 0.007). See Table 2.

PPN rsFC and HF-HRV: Controls vs. PTSD
We did not observe significant differences in rsFC of the
PPN associated with HF-HRV with any predefined ROI
when comparing controls to individuals with PTSD (i.e.,
controls > PTSD or PTSD > controls).

PPN rsFC and HF-HRV: Controls vs. PTSD + DS
As compared to individuals with PTSD + DS, controls showed
significantly stronger rsFC of the PPN associated with HF-
HRV with a cluster encompassing the amygdala and the
parahippocampal gyrus (pFWE = 0.012). See Table 2 and
Figure 1A.

As compared to controls, PTSD + DS did not show any
significant differences in rsFC of the PPN associated with HF-
HRV with any predefined ROI.

PPN rsFC and HF-HRV: PTSD vs. PTSD + DS
As compared to individuals with PTSD + DS, individuals with
PTSD showed significantly stronger rsFC of the PPN associated
with HF-HRV with a cluster encompassing the amygdala and
the parahippocampal gyrus (pFWE = 0.001). See Table 2 and
Figure 1A.

As compared to PTSD, PTSD + DS did not show any
significant differences in rsFC of the PPN associated with HF-
HRV with any predefined ROI.

PPN rsFC and LF-HRV
PPN rsFC and LF-HRV: Flexible Factorial
The flexible-factorial ANOVA did not reveal a main effect
of group, a “group × hemisphere,” nor a “group × LF-
HRV” interaction. Moreover, exploratory post hoc

contrasts did not reveal differences between the rsFC
of the PPN and any other brain region associated with
LF-HRV between groups.

PPN rsFC and RMSSD
PPN rsFC and RMSSD: Flexible Factorial
The flexible-factorial ANOVA showed a main effect of group
(pFWE = 0.036; please note alpha-level adjustment with FWE
correction, without additional Bonferroni correction). Groups
differed in rsFC of the PPN with a cluster encompassing the left
anterior cingulate cortex and the ventromedial prefrontal cortex
(pFWE = 0.036).

Moreover, a significant interaction of “group × HF-
HRV” emerged (pFWE = 0.024; please note alpha-level
adjustment with FWE correction, without additional
Bonferroni correction). Groups differed in rsFC of the PPN
associated with RMSSD with a cluster encompassing the
amygdala and the parahippocampal gyrus (pFWE = 0.024). See
Table 3.

PPN rsFC and RMSSD: Controls vs. PTSD
We did not observe any significant differences in rsFC of the PPN
associated with RMSSD with any predefined region of interest
when comparing controls to PTSD (i.e., controls > PTSD;
PTSD > controls).

PPN rsFC and RMSSD: Controls vs. PTSD + DS
As compared to individuals with PTSD + DS, controls
showed significantly stronger rsFC of the PPN associated with
RMSSD with a cluster encompassing the amygdala and the
parahippocampal gyrus (pFWE = 0.045; please note alpha-level
adjustment with FWE correction, without additional Bonferroni
correction). See Table 3.

As compared to controls, PTSD + DS did not demonstrate
significant differences in rsFC of the PPN associated with RMSSD
with any predefined region of interest.

PPN rsFC and RMSSD: PTSD vs. PTSD + DS
As compared to individuals with PTSD + DS, PTSD
showed a significantly stronger rsFC of the PPN associated
with RMSSD with a cluster encompassing the amygdala
and the parahippocampal gyrus (pFWE = 0.003). See
Table 3.

As compared to PTSD, PTSD + DS did not show any
significant differences in rsFC of the PPN associated with RMSSD
with any predefined region of interest.

Direction of PPN Resting State
Functional Connectivity and HRV
In controls and individuals with PTSD, lower HRV was related to
a reduced connectivity between the PPN and the right amygdala
(LPPN: HF-HRV controls: r = 0.24, p = 0.025; RPPN: LF-HRV
PTSD: r = 0.22, p = 0.015; RPPN: RMSSD PTSD: r = 0.21,
p = 0.021). By contrast, in PTSD + DS, lower HRV was related
to an enhanced connectivity between the PPN and the right
amygdala (LPPN: HF-HRV r =−0.3, p = 0.013). See Figure 1B.
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FIGURE 1 | Group-differences in PPN rsFC with CAN-related brain regions associated with HRV. (A) Group-differences in PPN (see region highlighted in red) rsFC
with limbic brain regions (i.e., the right amygdala and the parahippocampal gyrus in blue) associated with HF-HRV and RMSSD. (B) Correlation of beta-values
extracted from the peak voxel of the identified group difference in PPN rsFC with limbic brain regions and HF-HRV, LF-HRV, and RMSSD in controls (black), PTSD
(green), and PTSD + DS (red), respectively. Amy, amygdala; HF-HRV, high-frequency heart rate variability; LF-HRV, low-frequency heart rate variability; lPPN, left
peduncolopontine nuclei; RMSSD, root-mean square of successive differences.

DISCUSSION

The present exploratory investigation examined resting state
functional connectivity (rsFC) of the reticular activating system
(RAS), specifically the pedunculopontine nuclei (PPN), and its
association with heart rate variability (HRV) in individuals with
PTSD, its dissociative subtype (PTSD + DS), and healthy controls.
Whereas individuals with PTSD and PTSD + DS revealed
reduced LF-HRV, only individuals with PTSD showed reduced
HF-HRV as compared to controls. No differences in HRV were
observed between PTSD and PTSD + DS. Importantly, however,
individuals with PTSD and PTSD + DS displayed inverse
correlations between HRV and rsFC between the PPN and key
limbic structures, including the amygdala. Whereas participants
with PTSD displayed a positive relationship between HRV and
PPN rsFC with the amygdala, participants with PTSD + DS
displayed a negative relationship between HRV and PPN rsFC
with the amygdala. These contrasting correlations between
HRV and arousal-related connectivity may help explain the
heterogenous arousal-related symptom patterns characteristic of
PTSD and PTSD + DS.

HRV in PTSD and Its Dissociative
Subtype
In the present study, we revealed reduced sympathetic-related
HRV in individuals with PTSD + DS as compared to controls.
Indeed, prior investigations have demonstrated a positive
relationship between parasympathetic nervous system (PNS)
activity and dissociation in response to threatening cues in other
clinical populations, thus pointing to a close relationship between
sympathoinhibition and dissociative symptomatology (Farina
et al., 2015; Fitzpatrick and Kuo, 2015; Chou et al., 2018; Schäflein
et al., 2018; Krause-Utz et al., 2019). Specifically, dissociation has
been associated with parasympathetic overactivation, which has
been thought to be linked to emotional detachment as expressed
by symptoms of emotional numbing, depersonalization, and
derealization (for an overview see Schauer and Elbert, 2015;
Lanius et al., 2018, 2020; Terpou et al., 2019b).

By contrast, even though enhanced sympathetic responding
has been related to hypervigilance (e.g., Pole, 2007), the present

investigation revealed reduced SNS- and PNS-related HRV
indices in individuals with PTSD as compared to controls.
Here, it is important to note that arousal during resting state
is influenced by both the SNS and the PNS (Shaffer and
Ginsberg, 2017). Hence, the SNS-related HRV measure is not
solely indicative of SNS activity but might also reflect PNS
activity (Billman, 2011, 2013; Shaffer and Ginsberg, 2017).
This may explain why we observed reduced HRV generally
in individuals with PTSD as compared to controls (for meta-
analyses see Nagpal et al., 2013; Chalmers et al., 2014; Sammito
et al., 2015; Campbell et al., 2019; Schneider and Schwerdtfeger,
2020). Therefore, the present results should be interpreted
with caution. Nevertheless, the present exploratory investigation
emphasizes reduced ANS flexibility in individuals with PTSD and
PTSD + DS, where reduced sympathetic activation was especially
prominent in PTSD + DS.

RsFC of the PPN and HRV in PTSD and
Its Dissociative Subtype
The present investigation extends our previous findings on
differential rsFC between the PPN and limbic and prefrontal
regions in individuals with PTSD and PTSD + DS (Thome
et al., 2019). Specifically, PPN rsFC with the amygdala and
the parahippocampal gyrus were correlated differentially with
HRV in PTSD + DS as compared to PTSD and controls,
which may underlie the hyper- and more blunted arousal states
commonly observed in PTSD and PTSD + DS, respectively
(see also Wolf et al., 2012a,b; Seligowski et al., 2019 for review
see Hansen et al., 2017; Fenster et al., 2018; Lanius et al.,
2018; van Huijstee and Vermetten, 2018). The RAS is critical
to generating arousal and innate reflexive responding, thereby
ensuring adaptive behavior in threatening situations (Paus, 2000;
Sarter et al., 2006; Maldonato, 2014; Venkatraman et al., 2017).

Given that the neural underpinnings of dissociation reside
at least partly among evolutionarily conserved neurocircuitries,
and that the phenomenon itself can be reliably observed across
species during periods of overwhelming stress, it has become
evident that dissociation as a construct may be adaptive, perhaps
offering a way to escape psychologically so to avoid potential
injury when fighting or fleeing are perceived as futile. In PTSD,
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dissociative responses are engaged often during trauma-related
reexperiencing and are related to a reduced responsivity to
environmental stimuli (Schauer and Elbert, 2015; Lanius et al.,
2018; Seligowski et al., 2019; Terpou et al., 2019b). The latter
may therefore restrict the opportunity to update prior learned
stimulus-response contingencies (Ebner-Priemer et al., 2005;
Krause-Utz et al., 2019). The correlational pattern of an enhanced
synchronization of the RAS with the limbic system in individuals
with PTSD + DS that are characterized by reduced autonomic
flexibility could hence be interpreted as a neurophysiological
substrate of restricted ability to adaptively interact with and hence
update information related to the environment.

Limitations
Several limitations of the current investigation are important
to note. Firstly, brainstem structures are small and have gray
and white matter distributions that are harder to delineate
as compared to the cortex. Higher resolution fMRI scanning
can improve the resolution of these structures. Although we
did not use a high-resolution fMRI scanner, we implemented
additional preprocessing measures to improve the resolution of
the signal extracted from the PPN. It is also important to note that
HRV measures were estimated based on pulse recordings, which
sample RR intervals less sensitively than ECG recordings. While
pulse data are a reliable marker of time and frequency features
in healthy individuals, reliability was observed to be somewhat
reduced in subjects with a cardiovascular disorder (Pinheiro et al.,
2016). A re-examination with HRV measures based on ECG data
could corroborate the present results.

CONCLUSION

In the present exploratory study, we found that individuals with
PTSD and PTSD + DS demonstrate reduced HRV as compared
to controls, corroborating previous findings in the literature.
Extending on this literature, we provide first evidence of a
contrasting relationship between HRV and arousal-related brain
connectivity in PTSD and PTSD + DS. Specifically, whereas a
positive relationship between HRV and rsFC between the PPN
and the amygdala was observed in participants with PTSD
and controls, a negative relationship was observed between
these same measures in PTSD + DS. This provides evidence
of a contrasting pattern of arousal-related brain connectivity
among participants with PTSD and PTSD + DS, offering a
neurobiological lens to interpret hyper- and more blunted arousal
states in PTSD and PTSD + DS, respectively. Treatments for
PTSD will need to consider carefully these differential arousal
states and their underlying neurocircuitry in order to manage
arousal and emotion regulation among traumatized populations.
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