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Improving speed and image quality of Magnetic Resonance Imaging (MRI) using deep learning 
reconstruction is an active area of research. the fastMRI dataset contains large volumes of raw MRI 
data, which has enabled significant advances in this field. While the impact of the fastMRI dataset is 
unquestioned, the dataset currently lacks clinical expert pathology annotations, critical to addressing 
clinically relevant reconstruction frameworks and exploring important questions regarding rendering of 
specific pathology using such novel approaches. This work introduces fastMRI+, which consists of 16154 
subspecialist expert bounding box annotations and 13 study-level labels for 22 different pathology 
categories on the fastMRI knee dataset, and 7570 subspecialist expert bounding box annotations 
and 643 study-level labels for 30 different pathology categories for the fastMRI brain dataset. The 
fastMRI+ dataset is open access and aims to support further research and advancement of medical 
imaging in MRI reconstruction and beyond.

Background & Summary
Magnetic resonance imaging (MRI) is a widely utilized medical imaging modality critically important for a 
broad range of clinical diagnostic tasks including stroke, cancer, surgical planning, acute injuries, and more. 
Machine learning (ML) techniques have demonstrated opportunities to improve the MRI diagnostic work-
flow particularly in the image reconstruction task by saving time, reducing contrast, and leading in cases to 
FDA-cleared solutions1–4. Among the myriad applications of machine learning in medical imaging being 
explored, deep learning-based MRI reconstruction is showing considerable promise and is moving towards 
clinical impact.

ML-based MRI reconstruction approaches often require data from “raw” fully sampled k-space datasets in 
order to generate ground truth images. Public MRI datasets like Calgary-Campinas Public Dataset5, MRNet6, 
OAI7, SKM-TEA8, and mridata.org are available to empower ML-related research. Also, various datasets can be 
found in multiple medical image research challenges, including MC-MRREC and RealNoiseMRI. Most of these 
datasets only provided reconstructed MRI images (Note SKM-TEA dataset also provides knee tissue label and 
pathology detection information) or limited amount of raw data. Thus, large datasets of raw MRI measurements 
are generally not widely available. To address this need and facilitate cross-disciplinary research in accelerated 
MRI reconstruction using artificial intelligence, the fastMRI initiative was developed. fastMRI is a collaborative 
project between Facebook AI Research (FAIR), New York University (NYU) Grossman School of Medicine, 
and NYU Langone Health which includes the wide release of raw MRI data and image datasets9. While the 
fastMRI data has enabled exploration of ML-driven accelerated MRI reconstruction10,11, there is a lack of clin-
ical pathology information to accompany the imaging data which has limited the reconstruction assessment 
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Label
Annotation 
Count

Subject 
Count

Meniscus

Meniscus Tear 5658 663

Displaced Meniscal Tissue 232 56

Bones and Cartilage

Bone-Subchondral Edema 986 196

Bone Lesion 183 29

Bone-Fracture/Contusion/Dislocation 1060 119

Cartilage Full Thickness Loss/Defect 615 122

Cartilage Partial Thickness Loss/Defect 2985 588

Ligaments

ACL High Grade Sprain 678 101

ACL Low-Mod Grade Sprain 765 153

MCL High Grade Sprain 11 4

MCL Low-Mod Grade Sprain 285 121

PCL High Grade Sprain 18 3

PCL Low-Mod Grade Sprain 142 40

LCL Complex High Grade Sprain 14 3

LCL Complex Low-Mod Grade Sprain 130 48

Other

Joint Effusion 1311 142

Joint Bodies 38 11

Periarticular Cysts 864 161

Muscle Strain 65 11

Soft Tissue Lesion 90 10

Patellar Retinaculum High Grade Sprain 24 4

Artifact / 13

Table 1. Knee label summary. *Artifact is study-level label.

Image Level Label
Annotation 
Count

Subject 
Count

Absent Septum Pellucidum 3 1

Craniectomy 32 4

Craniotomy 1025 99

Craniotomy with Cranioplasty 43 3

Dural Thickening 351 30

Edema 369 44

Encephalomalacia 161 18

Enlarged Ventricles 300 38

Extra-Axial Mass 104 11

Intraventricular Substance 8 1

Likely Cysts 17 5

Lacunar Infarct 113 32

Mass 380 46

Nonspecific Lesion 757 124

Nonspecific White Matter Lesion 1826 173

Normal Variant 73 21

Paranasal Sinus Opacification 40 8

Pineal Cyst 2 1

Possible Artifact 505 52

Posttreatment Change 1262 99

Resection Cavity 199 27

Table 2. Brain image-level label summary. *Likely Cysts is applied to small lesions (approximately 1 cm or 
less in diameter) which are difficult to distinguish from parenchymal, simple parenchymal neuronal cyst, and 
prominent perivascular space.
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approaches to validate quantitative metrics such as peak signal-to-noise ratio (pSNR)/structural similarity index 
measure (SSIM), leaving important questions regarding how various pathologies are represented in ML-based 
reconstruction unanswered12. For instance, low sensitivity and stability to clinically relevant features stall their 
clinical-aware applications12–14.

In this paper, we present wide availability of a complementary dataset of annotations, fastMRI+, consisting 
of human subspecialist expert clinical bounding box labelled pathology annotations for knee and brain MRI 
scans from the fastMRI multi-coil dataset: specifically encompassing 16154 bounding box annotations and 13 
study-level labels for 22 different pathology categories on knee MRIs, as well as 7570 bounding box annotations 
and 643 study-level labels for 30 different pathology categories on brain MRIs. This new dataset is open and 
accessible to all for educational and research purposes with the intent to catalyse new avenues of clinically rele-
vant, ML-based reconstruction approaches and evaluation.

Methods
MRI image dataset. The fastMRI dataset is an open-source dataset, which contains raw and DICOM data 
from MRI acquisitions of knees and brains, described in detail elsewhere9. The images used in this study were 
directly obtained from the fastMRI dataset, reconstructed from fully sampled, multi-coil k-space data (both knee 
and brain). The fastMRI dataset was managed and anonymized as part of a study approved by the NYU School of 
Medicine Institutional Review Board. Image reconstruction was performed by inverse Fast Fourier Transform of 
each individual coil and coil combination with root sum square (RSS) for the purpose of creating pre-annotation 
images in fastMRI+. The reconstructed images were subsequently converted to DICOM format for human expert 
reader (radiologist) annotation.

annotations. Annotation was performed using a commercial browser-based annotation platform (MD.ai, 
New York, NY) which allowed adjustment of brightness, contrast, and magnification of the images. Readers used 
personal computers to view and annotate the images using the mentioned annotation platform.

A subspecialist board certified musculoskeletal radiologist with 6 years in practice experience performed 
annotation for the knee dataset and a subspecialist board certified neuroradiologist with 2 years in practice expe-
rience performed annotation for the brain dataset. Annotation was performed with bounding box annotation 
to include the relevant label for a given pathology on a slice-by-slice level. When more than one pathology was 
identified in a single image slice, multiple bounding boxes were used.

All 1172 fastMRI knee MRI raw dataset studies were reconstructed and clinically annotated for fastMRI+. 
Each knee examination consisted of a single series (either proton density (PD) or T2-weighted) of coronal 
images where bounding box labels were placed on each slice where representative pathology was identified15,16. 
Effort was made to try to include all the pathology within the bounding box while limiting the normal sur-
rounding anatomy. If the examination contained significant clinically limiting artifacts, then the annotation for 
“Artifact” was added as a study-level label. In these instances, an interpolation tool was used in which the first 
and last slice were each labelled and the user interface interpolated the labels on intervening slices. If no relevant 
pathology was identified on an examination, no labels were provided.

A sub selection of 1001 out of 5847 fastMRI brain MRI raw dataset studies were selected randomly for anno-
tation. Each brain examination included a single axial series (either T2-weighted FLAIR, T1-weighted without 
contrast, or T1-weighted with contrast) where bounding box labels were placed on each image in which repre-
sentative pathology or normal anatomical variant was identified17,18. As in knee examinations, effort was made 
to try to include all the pathology within the bounding box while limiting the normal surrounding anatomy. In 
some cases, the pathology or normal anatomic variant displayed within a given examination was so extensive 
or diffuse that a study-level label was used to characterize the relevant images or the entire exam inclusive of the 
finding (i.e., diffuse white matter disease). The study-level label, in these instances, replaced the use of a bound-
ing box. If no relevant pathology was identified on a given examination, no labels were provided.

Note there are several limitations to this dataset that bear acknowledgement. First, while the annotators 
are subspecialist radiologists in practice at leading academic medical centers, the lack of multiple annotators/
repeated annotations to determine inter-rater/intra-rater reliability metrics or ensure consensus agreement is a 
limitation and should be considered in the use of these labels. Further work may include multiple annotations 

Study Level Label Subject Count

Global Ischemia 1

Small Vessel Chronic White Matter Ischemic 
Change 221

Motion Artifact 33

Possible Demyelinating Disease 2

Colpocephaly 2

White Matter Disease 2

Innumerable Bilateral Focal Brain Lesions 2

Extra-Axial Collection 9

Normal for Age 371

Table 3. Brain study-level label summary.
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by multiple readers to further refine the clinical labels applied in fastMRI+. Additionally, the fastMRI knee 
MRI raw dataset contained only coronally acquired series while the brain MRI dataset contained only axially 
acquired series, each in a variety of pulse sequences and coils. Most knee/brain pathologies that are visible in 
the non-coronal/non-axial planes are also visible in coronal/axial planes, though not as well seen or as well 
characterized. For instance, patellofemoral cartilage in the knee and optic neuritis in the brain. While sufficient 
for annotation, it is important to note that true diagnostic interpretation in MRI for the included pathologies 
typically demands multi-sequence and multi-planar images for clinically accurate interpretation. What is more, 
only binding boxes indicating knee and brain diseases were exported and reported in this work which may limit 
the research applications of this dataset. Full segmentation of structures would be more laborious and would be 
a potential subject of future work. Thus, the annotations provided by fastMRI+ may be incomplete. In the future, 
raw MRI datasets containing fully sampled multi-planar and multi-sequence data would enable optimal clinical 
annotation.

Statistical analysis. Label distribution analysis was conducted for both knee and brain datasets showing 
detailed label descriptions at the same time. Table 1 shows annotation count and subject count for corresponding 
image-level knee labels. Note ‘Artifact’ is a study-level label for the entire study rather than a label of individual 
images. Table 2 shows annotation count and subject count for corresponding image-level brain labels. Table 3 
shows subject count for corresponding subject-level brain labels. Note subject count was provided to show the 
prevalence of given pathology.

Data Records
We created separate annotation files for the 1172 validation knee datasets and 1001 brain datasets, all based on 
the fastMRI source data9. The annotation files (knee.csv and brain.csv) can be accessed from both fastmri-plus 
Synapse repository19 and fastMRI-plus GitHub repository (https://github.com/microsoft/fastmri-plus) in CSV 
formats. Four CSV files are included in the ‘Annotations’ folder. File names of all radiologist-interpreted dataset 
are stored in knee_file_list.csv and brain_file_list.csv, respectively. Annotations are contained in knee.csv and 
brain.csv. In each annotation CSV file, the file names (i.e., column ‘Filename’) are aligned with the naming in 
the fastMRI dataset. For each annotation, file name, slice number, bounding box information, and disease label 
are provided. The bounding box information includes four parameters, x, y, width (pixel), and height (pixel), 

Fig. 1 Example annotations (labels and bounding boxes) from the fastMRI+ dataset shown superimposed on 
both knee (a) and brain (b) reconstructed images from the fastMRI dataset.
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representing the x and y coordinates of the upper-left corner, the width and height of the bounding box. Unit of 
the bounding box parameters is ‘pixel’. Study-level labels are marked as ‘Yes’ in column ‘Study Level’ for slice 0 of 
the corresponding subjects with no specified bounding box information.

technical Validation
A board-certified radiologist with 10 years of experience reviewed the overall quality of the MRI image data-
set prior to annotation and clinical evaluation was performed by two additional board-certified subspecialist 
radiologists. We cleaned and validated raw annotation files following instructions from MD.ai Documentation 
(https://docs.md.ai/). Creation and publication of fastMRI+ code repository followed standard practices with 
release of open-source software. Specifically, files with annotations and associated tools and scripts were man-
aged source code control, continuous integration tests, and code/data reviews.

Usage Notes
The bounding box information can be used to plot overlaid bounding boxes on images, as shown in Fig. 1. The 
clinical labels, together with the bounding box coordinates, can also be converted to other formats (e.g., YOLO 
format20) in order to configure a classification or object detection problem. The open-source repository also 
contains an example Jupyter Notebook (‘ExampleScripts/example.ipynb’) of how to read the annotations and 
plot images with bounding boxes in Python.

Code availability
Scripts used to generate the DICOM images for radiologists can be accessed from (‘ExampleScripts/fastmri-to-
dicom.py’) in the open-source GitHub repository. The detailed method used has been specified in the Methods 
section. More open-source tools for reconstructing the original fastMRI dataset, including standardized 
evaluation criteria, standardized code, and PyTorch data loaders can be found in the fastMRI GitHub repository 
(https://github.com/facebookresearch/fastMRI).
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