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ABSTRACT Bacterial cells need to coordinate the cell cycle with biomass growth to
maintain cell size homeostasis. For fast-growing bacterial species like Escherichia coli
and Bacillus subtilis, it is well-known that cell size exhibits a strong dependence on
the growth rate under different nutrient conditions (known as the nutrient growth
law). However, cell size changes little with slow growth (doubling time of �90 min)
for E. coli, posing the interesting question of whether slow-growing bacteria species
also observe the nutrient growth law. Here, we quantitatively characterize the cell
size and cell cycle parameter of a slow-growing bacterium, Sinorhizobium meliloti, at
different nutrient conditions. We find that S. meliloti exhibits a threefold change in
its cell size when its doubling time varies from 2 h to 6 h. Moreover, the progression
rate of its cell cycle is much longer than that of E. coli, suggesting a delicate coordi-
nation between the cell cycle progression rate and the biomass growth rate. Our
study shows that the nutrient growth law holds robustly regardless of the growth
capacity of the bacterial species, generalizing its applicability among the bacterial
kingdom.

IMPORTANCE The dependence of cell size on growth rate is a fundamental princi-
ple in the field of bacterial cell size regulation. Previous studies of cell size regula-
tion mainly focus on fast-growing bacterial species such as Escherichia coli and Bacil-
lus subtilis. We find here that Sinorhizobium meliloti, a slow-growing bacterium,
exhibits a remarkable growth rate-dependent cell size pattern under nutrient limita-
tion, generalizing the applicability of the empirical nutrient growth law of cell size.
Moreover, S. meliloti exhibits a much slower speed of cell cycle progression than E.
coli does, suggesting a delicate coordination between the cell cycle progression rate
and the biomass growth rate.
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Understanding how cells maintain size homeostasis remains a grand challenge in
biology (1–3). Bacterial cells manage to coordinate biomass growth with cell cycle

progression, including chromosome replication and cell division to maintain size
homeostasis (3–5). The growth of biomass can exert a profound effect on the cell size
of bacteria, as indicated by the well-known positive dependence of cell size on growth
rate for Escherichia coli and Bacillus subtilis under different nutrient conditions (known
as the nutrient growth law) (1, 3, 6–9). The growth rate of E. coli and B. subtilis can be
easily altered from 20 min per doubling to several hours per doubling by supplying
different nutrient sources (1, 6, 7, 10). However, there also exist many slow-growing
species with their shortest generation times being several hours in the bacterial
kingdom (11). It remains unclear whether nutrient limitation could also lead to a similar
growth-dependent cell size pattern in slow-growing bacterial species. Moreover, little
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is known about the effect of growth rate on cell cycle and DNA content in slow-growing
bacterial species.

Sinorhizobium meliloti is a slow-growing bacterium that is capable of conducting
symbiotic nitrogen fixation upon interacting with its legume host, the Medicago plant
(12, 13). During the process of symbiotic nitrogen fixation, the host plant generates a
family of small host peptides called nodule-specific cysteine-rich (NCR) peptides to
modulate the cell cycle progression of S. meliloti, further stimulating the conversion of
bacterial cells into bacteroids, which are much larger than free-living cells (12, 14, 15).
The above process is a key step for the success of symbiotic nitrogen fixation. Therefore,
it is naturally interesting to investigate the cell size and cell cycle of S. meliloti due to
its crucial role in nitrogen fixation. In this study, we quantitatively investigate the cell
size and cell cycle progression of free-living S. meliloti cells growing under different
nutrient conditions. We found that the positive growth dependence of cell size under
nutrient limitation holds well for S. meliloti, generalizing the applicability of the nutrient
growth law among the bacterial kingdom.

We focus on S. meliloti 1021 strain growing exponentially under different nutrient
conditions at 30°C. By varying the carbon sources in the minimal medium, the growth
rate could be altered from 150 min (succinate-containing medium) per doubling to
360 min (lactose-containing medium) per doubling (Fig. 1A and B). For cells growing in
rich Luria-Bertani (LB) medium, the growth rate (140 min per doubling) is only a bit
faster than that of cells growing in succinate-containing medium (150 min per dou-
bling). Therefore, the growth capacity of S. meliloti is much lower than that of E. coli and
B. subtilis. Images of the cells in exponentially growing cultures under each condition
were taken by phase-contrast microscopy to analyze the cell size. Remarkably, the cell
size of S. meliloti decreases dramatically by 70% for bacteria grown on LB medium to
lactose-containing medium (Fig. 1C). Therefore, S. meliloti displays a strong growth-
dependent cell size pattern under nutrient limitation. For comparison, we also charac-
terized the cell size of E. coli K-12 cells growing under different nutrient conditions at

FIG 1 Dependence of cell size of Sinorhizobium meliloti 1021 on growth rate under nutrient limitation.
(A) The doubling time (DT) of S. meliloti growing in different nutrient conditions at 30°C. (B) Exponential
growth curves of S. meliloti growing in different nutrient conditions. (C) Images of S. meliloti cells in LB
medium and minimal medium containing lactose. (D) Quantitative correlation between the cell size and
growth rate for both S. meliloti and E. coli at 30°C. Nutrient conditions used for E. coli include LB medium
(DT of 34 min), medium containing Casamino acid and glucose (48 min), medium containing glucose
(63 min), medium containing glycerol (90 min), medium containing acetate (135 min), medium contain-
ing mannose (150 min), and medium containing aspartate (210 min). Data are averages for triplicates
with standard deviations being within 10%.
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30°C (9, 16). As shown in Fig. 1D, the cell size of E. coli also decreases strongly at lower
growth rate, which had been well-known (6, 9). However, at a slow growth rate (� �

0.4 h�1), the cell size of E. coli changes little, while the cell size of S. meliloti varies
threefold (Fig. 1D). Overall, the above finding demonstrates that the slow-growing S.
meliloti exhibits an even stronger growth-dependent cell size pattern than E. coli does
under nutrient limitation.

Since cell size homeostasis is tightly associated with the cell cycle, we next charac-
terized the cellular DNA content and cell cycle parameters of S. meliloti. Total DNA
content per mass (optical density at 600 nm [OD600]) increases only slightly with
decreasing growth rate (Fig. 2A). The number of S. meliloti cells increases by threefold
with decreasing growth rate (Fig. 2B), following the opposite trend of cell size and
confirming that the product of cell size and cell number is a good proxy of total cell
mass (OD600). On the basis of the cell number result, we found that the average DNA
content per cell of S. meliloti was also positively correlated with the growth rate under
nutrient limitation (Fig. 2C), similar to the finding with E. coli (9). Moreover, fast-growing
cells are 2.5 times the DNA content of slow-growing cells, suggesting the existence of
multireplication forks.

The bacterial cell cycle contains two key stages, the C period and D period (3–5, 17).
The C period refers to the time required for chromosome replication. The D period
refers to the time between the completion of chromosome replication and cell division.
Strikingly, the C period of S. meliloti increases from �2 h to �3 h under nutrient
limitation (Fig. 2D). This value is much higher than that of E. coli at 30°C, which is
�50 min, indicating that the movement speed of the DNA replication fork in S. meliloti
is much slower than that in E. coli. Similarly, the D period of S. meliloti is also much
longer than that of E. coli, suggesting a much slower cell division process as well
(Fig. 2E). Overall, the above finding demonstrates that S. meliloti has a much slower cell
cycle progression rate than E. coli does (Fig. 2F).

In conclusion, our findings show that the positive growth rate-dependent cell size
and cellular DNA content under nutrient limitation also hold for the slow-growing S.
meliloti. These findings support the general applicability of the nutrient growth law
regardless of the bacterial growth capacity. Moreover, S. meliloti has a much slower cell
cycle progression rate than E. coli does, suggesting an attractive coordination between
the cell cycle progression rate and biomass growth rate. In the future, it will be
fascinating to investigate the molecular basis of the nutrient growth law of S. meliloti
as well as the intrinsic limiting factors of cell cycle progression among different
bacterial species.

FIG 2 Dependence of chromosome content and cell cycle parameters of Sinorhizobium meliloti 1021 on
growth rate. (A) Total chromosome content per mass; (B) cell count per OD600; (C) DNA content per cell; (D)
C period of S. meliloti and E. coli. The E. coli data were measured at a temperature below 30°C. (E) D period
of S. meliloti and E. coli. The E. coli data were measured at a temperature below 30°C. (F) C period plus D
period of S. meliloti and E. coli. Data are averages for triplicates with standard deviations being within 10%.

S. meliloti Cell Size under Nutrient Limitation

November/December 2018 Volume 3 Issue 6 e00567-18 msphere.asm.org 3

msphere.asm.org


Strains and medium. The strains used in this study are either wild-type E. coli K-12
NCM3722 (16) or Sinorhizobium meliloti 1021 (14). E. coli was grown on MOPS-buffered
minimal medium supplemented with different carbon sources or nitrogen sources (9,
16). S. meliloti was grown on M9 minimal medium supplemented with different carbon
sources (18, 19).

Growth rate measurement. Cell growth is performed in a 30°C water bath shaker
(220 rpm). The cell growth procedure contains three steps: seed culture, preculture, and
experimental culture. For seed culture, cells in a fresh LB agar plate were inoculated into
LB broth and grown for several hours. For preculture, the seed cultures were then
transferred to the medium of the experimental culture (e.g., minimal medium contain-
ing glucose) and grown overnight at 30°C. For experimental culture, on the next day,
the overnight precultures were inoculated into the same medium as the medium used
for preculture at an initial OD600 of �0.03. For each condition, 6 to 8 OD600 data points
(ranging from OD600 values of 0.05 to 0.5) were taken to obtain an exponential growth
curve for calculating the growth rate. The OD600 values were measured by a Thermo Sci
Genesys 30 spectrophotometer.

Cell size measurement. Five to 10 �l of cell culture at an OD600 of �0.3 was added
to a slide glass covered with a thin layer of agar to immobilize the cells. Phase-contrast
cell images were taken using a Nikon Eclipse Ti-80 microscope. For each condition, the
images of 500 to 1,000 individual cells were taken for size analysis. Cell length (L) and
width (W) of each cell were taken using the ImageJ software. The cell volume (V) was

calculated based on V � �W2⁄4�L �
W

3 �.

DNA content and cell cycle measurement. The C period was measured by the
DNA increment method as described by Churchward et al. (20) and Bipatnath et al. (21).
This method is based on measuring the DNA increment after blocking DNA initia-
tion of exponentially growing cells by the addition of chloramphenicol (300 �g/ml)
or rifampin (200 �g/ml) (runoff experiments). For S. meliloti cells, we used 0.3% (vol/vol)
2-phenethanol to block the DNA replication initiation process (22).

The total DNA content per OD600 was measured by the diphenylamine colorimetric
method as detailed by Basan et al. (9). DNA content per cell was obtained by measuring
the total amount of DNA per OD and cell number per OD by plating or by using a
bacterial counting chamber and microscopy. The D period is obtained with the
C-period data and DNA content data as described by Si et al. (4).
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