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Summary

Here we show that suppression of VH-DJH rearrangement in mice bearing a . heavy (H)
chain transgene (w-tg mice) is associated with an extended period of DH-JH rearrangement,
the first step of Immunoglobulin H chain gene rearrangement. Whereas DH-JH rearrangement is
normally initiated and completed at the pro-B cell stage, in w-tg mice it continues beyond this
stage and occurs most frequently at the small (late) pre-B stage. Despite ongoing DH-JH rear-
rangement in late pre-B cells of w-tg mice, VH-DJH rearrangement is not detectable in these
cells. We infer that the lack of VH-DJH rearrangement primarily reflects tg-induced acceleration
of B cell differentiation past the stage at which rearrangement of VH elements is permissible. In
support of this inference, we find that the normal representation of early B lineage subsets is
markedly altered in p-tg mice. We suggest that the effect of a productive VH-DJH rearrange-
ment at an endogenous H chain allele may be similar to that of a w.-tg; i.e., cells that make a
productive VH-DJH rearrangement on the first attempt rapidly progress to a developmental

stage that precludes VH-DJH rearrangement at the other allele (allelic exclusion).
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In antibody-producing cells, only one of two immu-
noglobulin (Ig)* heavy (H) chain alleles is normally ex-
pressed; the other allele is excluded (1, 2). Several models
have been proposed to explain allelic exclusion in Ig-pro-
ducing cells (3—-6). The two models of particular interest
here are the stochastic and regulatory models. According to
the stochastic model (3), allelic exclusion reflects the im-
precision of V(D)J rearrangement, the process responsible
for rearranging V, D, and J elements to form contiguous
VDJ or VJ coding segments for Ig variable regions (reviewed
in 7). As this process is error prone, the chance is low that a
cell will make in-frame (productive) rearrangements at both
alleles of a given locus. Thus, in this model, each allele re-
arranges independently and has an equal but low chance of
being rearranged productively. The regulatory model (4, 5)
adds a regulatory rider to the stochastic model and states
that rearrangement at one allele may affect rearrangement

1Abbreviations used in this paper: BCR, B cell receptor; DSB, double strand
break; HSA, heat stable antigen; LM-PCR, ligation-mediated PCR;
RAG, recombinase activation gene; tg, transgene.
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at the other allele. An example of apparent nonindependent
rearrangement of allelic elements is seen at the H chain lo-
cus. B cell plasmacytomas with an incomplete (DJH) rear-
rangement at one allele generally show a productive, in-
frame VDJH (VDJH™) rearrangement at the other allele (8).
This implies that the product of a VDJH™ allele is able to
prevent further VH-DJH rearrangement (8). In support of
this idea, VH-DJH rearrangement is suppressed in . H chain
transgenic mice (9-11 and reviewed in 12).

It is still uncertain how the w chain product of a VDJH*
allele serves to prevent further VH-DJH rearrangement.
What is clear is that expression of a . chain, in the form of a
pre-B cell receptor (pre-BCR), results in progression of
pro-B cells to the pre-B stage and the cessation of VH-DJH
rearrangement (reviewed in 13, 14). It is not clear, how-
ever, to what extent cessation of VH-DJH rearrangement
may reflect (a) rapid differentiation of pro-B cells to a stage
(pre-B) at which such rearrangement can no longer occur,
or (b) an ability of the pre-BCR to signal direct inhibition
of VH-DJH rearrangement in addition to the progression of
pro-B to pre-B cells. Similarly, it is not clear to what extent
cessation of H and L chain rearrangement after possible
premature expression of a BCR may reflect rapid differen-
tiation to the recombinase-inactive B cell stage or direct
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feedback inhibition. To gain further insight into these is-
sues, we looked at initiation of VDJH rearrangement in scid
and scid/+ mice bearing a . transgene (tg) or both a . and
k tg (w/k-tg mice). Scid mice are homozygous for a muta-
tion (scid) that severely impairs rearrangement of V, D, and
J elements (15). Thus, B cell differentiation in scid mice is ar-
rested at the pro-B cell stage (16), the stage at which H chain
gene rearrangement is initiated (17, 18). In u-tg scid mice,
however, B cell differentiation proceeds to the late pre-B cell
stage before being arrested (19), and in w/k-tg scid mice,
differentiation can proceed to the B cell stage (20).

Here we report that tg-induced suppression of VH-DJH
rearrangement may primarily reflect accelerated B cell dif-
ferentiation rather than direct feedback inhibition. In p-tg
scid mice, initiation of DH-JH rearrangement was observed
to occur predominantly at the late pre-B stage rather than
at the pro-B stage, and in w/k-tg scid mice, initiation of
DH-JH rearrangement was significantly reduced compared
with non-tg scid mice. Similar results were obtained with
w-tg and w/k-tg scid/+ mice (heterozygous for the scid
mutation). We interpret these findings to reflect accelerated
development of tg-expressing B lineage cells such that
there is insufficient time to initiate or complete DH-JH re-
arrangement at both alleles in developing pro-B cells. The
idea that a . tg might accelerate B cell development has
been proposed previously (21). In support of this notion,
and consistent with our earlier studies (22), we show that
developing pro-B cells in p-tg scid mice appear to bypass
the late pro-B stage and progress directly into large (early)
pre-B cells, which are known to be deficient in recombi-
nase activation gene (RAG) expression (23). Similarly, in
w/k-tg scid mice, we present evidence that developing B
lineage cells may transit the pro- and pre-B stages very rap-
idly during their progression to the RAG-inactive B cell
stage. We suggest that the effect of endogenously coded Ig
chains may be analogous; i.e., when a cell expresses a
chain, it rapidly progresses to a developmental stage that
precludes further rearrangement of VH elements.

Materials and Methods

Mice. Ig transgenic lines of C.B-17 scid mice hemizygous for
the H chain tgs, M54 (24), 3H9 (25), or the kappa L chain tg,
Vk8 (26), have been described previously (20). M54/V«k8 and
3H9/V«k8 scid mice were obtained by crossing individual tg lines
and typing offspring for the presence of the respective tgs. Ig
transgenic control mice, heterozygous for the scid mutation (de-
noted as scid/+ or s/+ mice), were obtained by crossing the
above transgenic scid lines with C.B-17 wild-type mice. Mice
used in this study were between 8 and 12 wk of age.

Cells. Bone marrow cells were flushed from femurs with
staining medium using a syringe and 22 gauge needle. The cells
were then dispersed by gentle pipetting, treated with 0.165 M
NH,CL, washed, and resuspended in staining medium and passed
through a sterile nylon screen. B cell hybridomas were obtained
by fusing unstimulated splenic cells from adult M54/V k8 (or
3H9/V«k8) scid and scid/+ mice in a manner previously de-
scribed (27) using Ag8.563 (28) as the cell fusion partner.

Flow Cytometric Analysis. Bone marrow cell suspensions were
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analyzed for the presence of B lineage cells representing different
stages of development (17). In brief, cell suspensions were stained
with Cy5 (Biological Detection Systems, Inc.) or allophycocya-
nin (APC; PharMingen) conjugated anti-CD45(B220), FITC-
conjugated anti—-CD43, or biotinylated anti-lgM. Binding of
biotinylated antibodies was revealed by Texas red conjugated
Streptavidin (Southern Biotechnology). B220+*CD43*IgM ™,
B220*CD43~IgM~, and B220*CD43~ IgM™ cells were enumer-
ated or sorted by multiparameter flow cytometry using a dual la-
ser FACStar Plus® (Becton Dickinson & Co.). Forward and light-
angle scatter gates were set to include lymphoid cells only. Dead
cells were identified by propidium iodide staining and excluded
from analysis. To distinguish early B lineage subsets, B220*
CD43*-gated cells were stained with phycoerythrin-conjugated
anti-BP1 (29) and biotinylated anti-heat stable antigen (HSA)
(17) (both reagents were provided by R. Hardy, Fox Chase Can-
cer Center, Philadelphia, PA).

Analysis of Genomic DNA. Genomic DNA was prepared
from sorted cell subsets (0.5-1.0 X 106 cells) as described previ-
ously (30) and dissolved in water at a concentration correspond-
ing to 10° cell genome equivalents/ .

Ligation-mediated PCR (LM-PCR) (31-33) was used to assay
DNA samples for double strand breaks (DSBs) resulting from the
initiation of H chain gene rearrangement. Initiation of V/(D)J re-
arrangement results in site-specific DSBs at the recombination
signal/coding borders of V, D, and J elements: two kinds of bro-
ken DNA molecules are generated; covalently closed (hairpin)
coding ends and blunt signal ends (34, 35). We assayed for bro-
ken molecules with signal ends; specifically, those with JH signal
ends and those with 5" or 3" DHfI16.1 (DHfl) signal ends. We also
assayed for signal joints (by inverse PCR), completed DH-to-JH
rearrangements and unrearranged JH loci as scored by the reten-
tion of germline sequence immediately upstream of JH1.

Assays were performed as follows. A double strand linker was
ligated to DNA (equivalent to ~4 X 10° cell genomes). The
linker was constructed according to Roth et al. (32) by annealing
two oligonucleotides, DR19 (5'-CACGATTCCC-3') and DR20
(5'-GCTATGTACTACCCGGGAATTCGTG-3'). After liga-
tion, different dilutions of the ligation reaction (input DNA) were
used to perform PCR amplifications of one or more of the fol-
lowing: (a) linkered JH signal ends using DR20 and an oligonu-
cleotide (MB221) complementary to a sequence immediately 5’
of JH1 (5’-TCTCTTGTCACAGGTCTCACTATGC-3"); (b)
linkered 5’ DHfl signal ends using DR20 and an oligonucleotide
(MB222) complementary to a sequence 5’ of DHfl (5'-GCCTTC-
CACAAGAGGAGAAG-3'); (c) linkered 3" DHifl signal ends using
DR20 and an oligonucleotide (MB241) complementary to a se-
quence 3’ of DHfl (5'-TGGGTCAGTGGTCAAGACTCG-3);
(d) signal joints resulting from the joining of JH1, JH2, or JH3
signals to the 3’ DHfl signal using MB221 and MB241; (e) DIH
coding joints using a DHflI/DHsp primer MB109 (5'-CCGAAT-
TCGTCCTCCAGAAACAGACC-3’) and a primer (MB 92)
complementary to a JH4 sequence (5'-GCCGGATCCCTTGA-
CCCCAGTAGTCC-3'); (f) retained sequence immediately up-
stream of JH1 using MB221 and MB92; and (g) « actin sequence
using actin-specific primers (17). The level of amplified « actin
product served as a control for the amount of input DNA.

DNA was amplified in a 50-pl reaction volume containing
each primer at a concentration of 0.5 wM, 200 .M MgCl,, 10 mM
Tris-HCL, pH 8.3 at 25°C, 50 mM KCL, 0.001% gelatin, 200 .M
(each) dTTP, dGTP, dATP, and dCTP (Pharmacia LKB Biotech-
nology), and 1 U Taq polymerase (Perkin-Elmer Cetus Corp.).
The PCR reaction was carried out for 26 cycles of 94°C for 1 min,
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60°C for 45 s (or 70°C for 45 s for amplification of JH signal
ends), and 72°C for 90 s, followed by a 5-min extension at 72°C.
Ligation and PCR amplification with different primers were per-
formed at the same time to minimize experimental variation.
Each assay included positive controls and was done several times
with independent preparations of DNA. Amplification of PCR
products was approximately proportional to the input DNA at
several different dilutions. PCR products were separated by elec-
trophoresis and analyzed by Southern blot analysis.

Probes.  Blots were hybridized with: (a) pJH6.3 (36) to reveal H
chain gene rearrangements, DJH coding and signal joints, and unre-
arranged JH alleles; (b) a genomic fragment corresponding to DHfl
and its surrounding region (amplified by PCR using MB222 and
MB 241) to reveal LM-PCR-amplified 3’ and 5’ DHfl signal ends;
and (c) pActin (17) to reveal PCR-amplified « actin. Probes were la-
beled with «-[*?P]dCTP using a Prime-It I1 kit (Stratagene Inc.).

Results

Model for B Cell Development in Ig tg scid Mice.  Fig. 1 is a
schematic representation of the effects of . and w/x tgs on
scid B cell development. The different stages of B cell de-
velopment are designated with the letter code of Hardy et al.
(17); the alternative nomenclature of Rolink and Melchers
(37) is shown for comparison. As indicated, B cell develop-
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Figure 1. Model for B cell differentiation in Ig tg scid mice. Early pro-B,
late pro-B (pre-Bl), pre-BlIl (large), pre-Bll (small), and immature B cells
(37) are designated with the letter code of Hardy et al. (17). Members of
subsets B, C, and C’ are B220"CD43™* and are distinguished on the basis
of their staining for the markers, BP1 and HSA (see Fig. 2); subsets D and
E are B220*CD43~ and B220*IgM™, respectively. The periods at which
RAG is normally upregulated and DJH, VH-DJH, and VIL rearrange-
ment are ongoing are indicated. In scid (s/s) and p-tg s/s bone marrow,
differentiation is arrested at the C and D stages, respectively. In p/k-tg
scid bone marrow, differentiation is not arrested and cells reach the im-
mature B cell stage (E). B cell subsets denoted with a small circle are un-
der represented or missing. The horizontal arrow signifies direct or very
rapid differentiation between the stages indicated.
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ment in scid bone marrow is blocked at stage C, shortly
after B lineage cells initiate H chain gene rearrangement.
Relief from this block can be achieved by introduction of a
w tg into the scid genome. In p.-tg scid mice (22), develop-
ing pro-B cells appear to bypass stage C and develop di-
rectly into early pre-B cells, denoted as C’. Most cells in
subset C’ are in cycle (17) and show downregulated RAG
expression (23). Cells of subset C’ give rise to the D subset.
At this late stage of pre-B cell differentiation, RAG expres-
sion is again upregulated (23) and L chain gene rearrange-
ment is initiated (17, 18, 38). Differentiation does not pro-
ceed beyond stage D in w.-tg scid mice, presumably because
scid pre-B cells are unable to repair DNA DSBs resulting
from the initiation of k gene rearrangement (22, 30). Com-
plete relief from the scid block can be achieved in double tg
scid mice, bearing both a w and « tg (20). In w/k-tg scid

B220*tCD43t* Gated Cells

3H9 s/s

Figure 2. In p-tg scid mice, B cell differentiation from the B to the C’
stage appears to bypass the C stage. Flow cytometry was used to analyze
bone marrow of scid (s/s), scid heterozygotes (s/+), M54 s/s, and 3H9 s/s
mice for the presence of early B lineage subsets. Contour plots show in-
tensity of BP1 versus HSA staining for B220"CD43"-gated cells. Cells
belonging to subset B (BP1-HSA*), B’ (BP1~HSA?*), C (BP1*HSA™),
and C’ (BP1*HSA?*) are designated in the boxed areas in accordance
with the original description of these cell types (17) (B’ is an additional
designation as explained in the text).



bone marrow, B cell development proceeds to stage E and
appears to do so very rapidly, as evidenced by the near-nor-
mal percentage of B cells and virtual absence of pro- and
pre-B cells.

Data supporting the above model are illustrated in Figs.
2 and 3. Fig. 2 shows the effect of two different w tgs, M54
(24) and 3H9 (25), on scid B cell development before
the late pre-B cell stage (stage D). Members of subsets C
(BP1tHSAN) and C' (BP1+*HSAMd) both positive for the
early B lineage marker BP1 (29), are distinguished by their
level of staining for heat stable antigen (17). Note that sub-
set C, which is present in scid mice, appears to be replaced by
subset C’ in M54 and 3H9 scid mice. Note also that the
BP1-HSA™ cell fraction, which consists exclusively of HSAdu!
cells in scid mice, includes both HSAd! and HSAPrisht cells
in M54 and 3H9 scid mice. We designate HSA%! and
HSAPright cells in the BP1~HSA™ fraction as B and B’, respec-
tively. The upregulation of HSA when p.-tg expressing cells
transit from stage B to B’ to C’ presumably reflects . chain—
dependent signaling. The effect of both p. and k chain tgs
on scid B cell development is shown in Fig. 3. As indicated,
scid mice bearing M54 (or 3H9) and the L chain tg, V«8
(26), have near-normal percentages of B (B220*IgM*) cells
in their bone marrow, but are severely deficient in early B
lineage (B220+*CD43* and B220+*CD43™) cells comprising
subsets B-D.

Initiation of DH-JH Rearrangement Occurs Predominantly at the
Late Pre-B Stage in u-tg scid Mice.  Since pro-B cells (subsets
B and B’) in p.-tg scid mice appear to differentiate directly
or very rapidly into early pre-B cells deficient in RAG ex-
pression (subset C’), we suspected that many developing B
lineage cells in these mice might not initiate DH-JH rear-
rangement until the late pre-B cell stage (D) when RAG
expression is again upregulated. To assay for the initiation
of DH-JH rearrangement, we tested for DSBs at JH re-
combination signal/coding borders in FACS®-sorted B220*
CD43+ (CD43") and B220"CD43~ (CD43~) bone marrow
cells (CD43* cells would include stages B-C’ and CD43~
cells would correspond to stage D). Broken DNA mole-
cules with JH signal ends were detected by LM-PCR (31,

M54/Vk§ s/s

3H9/VK8 s/s

33). We also tested for completed DH-to-JH rearrangements
and for retention of JH germline alleles (see Materials and
Methods for details).

As shown in Fig. 4 and Table I, JH signal ends resulting
from the initiation of DH-JH rearrangement in M54 scid
mice were much more abundant in the late pre-B (CD43")
cell fraction than in the CD43" fraction containing pro-B
and early pre-B cells. In M54 scid/+ mice as well, JH sig-
nal ends were more abundant in the CD43~ than CD43*
cell fraction (Fig. 4 and Table I). We conclude that initia-
tion of DH-JH rearrangement in M54 mice occurs predom-
inantly at the late pre—B cell stage. Despite the relatively
low abundance of JH signal ends in the CD43* cell fraction
of M54 scid/+ mice, alleles with (completed) DH-JH rear-
rangements were readily detectable in this cell fraction (Fig.
4). This is not surprising as DH-JH rearrangements would be
expected to result in DJH complexes that have a much longer
half-life than JH signal ends, especially in p.-tg—expressing
pro-B cells that fail to rearrange their VH elements (20).

Non-tg scid and scid/+ control mice showed widely
different levels of JH signal ends; i.e., JH signal ends were
more abundant in the CD43* cell fraction of scid than
scid/+ bone marrow (Fig. 4 and Table I). As discussed
later, a possible explanation for this difference is that initia-
tion of DH-JH rearrangement continues unabated in scid
mice, whereas in scid/+ mice, DH-JH rearrangement is
limited by the onset of VH-DJH rearrangement. JH signal
ends were in low abundance in the CD43~ cell fraction of
scid/+ mice, consistent with a low retention of germline
JH alleles (Fig. 4) and the completion of H chain gene rear-
rangement. The high retention of germline JH alleles in the
CDA43* cell fraction of scid/+ (and scid) mice is presumed
to reflect in part the presence of early B lineage cells not yet
expressing RAG protein and the known contamination of
this fraction with non-B lineage cells (39).

Initiation of VH-DJH Rearrangement Is Not Detectable in Late
Pre-B Cells of u-tg Mice, Despite Ongoing DH—JH Rearrangement.
To test for ongoing DH-JH and VH-DJH rearrangement
in the CD43* and CD43~ cell fractions of scid, scid/+,
and M54 scid/+ mice, we assayed for DSBs at both the 3

Figure 3. In p/k-tg scid mice, B
cell development occurs in the absence
of significant pre-B cell development.
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Flow cytometry was used to analyze
bone marrow of scid (s/s), scid het-
erozygotes (s/+), M54/Vk8 s/s, and
3H9/Vk8 s/s mice for the presence of
late pre-B cells (subset D) and imma-
ture B cells (subset E) in bone marrow
of scid (s/5), scid heterozygotes (s/+),
M54/Vk8 s/s, and 3H9/Vk8 s/s mice.
Top row of contour plots shows in-
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tensity of B220 versus CDA43 staining
for IgM~-gated cells. The percentage
of cells in subset D (B220TCD43") is
indicated within the boxes. Bottom
row of contour plots shows intensity
of B220 versus IgM staining for
CD43~-gated cells. The percentage of
cells in subset E (B220*1gM™) is indi-
cated outside the boxes.
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Figure 4. Initiation of DH-JH rearrangement in p.-tg mice occurs pre-
dominantly at stage D, the late pre-B (B220"CD43~) cell stage. Genomic
DNA from sorted B220*CD43~ (CD43~) and B220*CD43* (CD43")
cells of M54 scid (s/s) and M54 scid heterozygote (s/+) bone marrow
was analyzed by LM-PCR for JH signal ends (JH1, JH2, JH3, and JH4)
and by PCR for DJH coding joints (DJH1, DJH2, and DJH3) and the re-
tention of JH germline [JH (G)] alleles. Non-tg controls included DNA
from sorted CD43" cells of s/s bone marrow and DNA from CD43*-
and CD43~-sorted cells of s/+ bone marrow. PCR amplification of the
« actin gene served as an internal control for input DNA. In this and sub-
sequent figures, the first and second lane of PCR products under each
bracket proceeding from left to right correspond to undiluted and three-
fold-diluted input DNA, respectively. The primers and probes used for
amplification and hybridization of PCR products are described in Materi-
als and Methods.

and 5’ signals of the DHfI16.1 (DHfl) element. DHfl is the
most upstream DH element (40) and is used in =50% of
DH-JH rearrangements (41-44). Broken DNA molecules
with 3’ DHfl signal ends signify initiation of DH-JH rear-
rangement, whereas 5" DHfl signal ends can be taken to re-
flect initiation of VH-DJH rearrangement (33).

Scid and scid/+ mice showed striking differences in their
levels of 3" and 5" DHfl signal ends (Fig. 5). In the CD43"
cell fraction of scid mice, 3’ but not 5° DHIfl signal ends
were abundant, whereas, in the corresponding cell fraction
of scid/+ mice, 5" but not 3' DHfl ends were abundant.
Thus, in the CD43* cell fraction of scid mice, initiation of
DH-JH rearrangement predominates over that of VH-DJH
rearrangement, whereas the reverse is true in the CD43* cell
fraction of scid/+ mice. In the late pre-B (CD43") cell frac-
tion of scid/+ mice, neither 3’ nor 5" DHfl signal ends were
detectable, indicating that H chain gene rearrangement is
normally completed before this stage, which is in agreement
with the results of Fig. 4. In contrast, in the CD43~ cell frac-
tion of M54 scid/+ mice, DH-JH rearrangement was ongo-
ing, as indicated by the abundance of 3' DHfl signal ends
(Fig. 5). Note that 5" DHfl signal ends were not detectable in
the CD43~ (or CD43") cell fraction of M54 scid/+ mice.
Therefore, even though DH-JH rearrangement is ongoing in
late pre-B cells of M54 scid/+ mice, initiation of VH-DJH
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Table I. Relative Abundance of JH2 Signal Ends in u-tg and

Non-tg Mice

Mouse Cell subset* JH2 signal ends*
s/+ CD43* 0.06

s/+ CD43~ 0.07

M54 s/ + CD43* 0.21

M54 s/ + CD43~ 1.00

s/s CD43+ 0.83

M54 s/s CD43* 0.12

M54 s/s CD43~ 0.56

*Sorted B220"CD43* (CD43*) and B220tCD43~ (CD43") cells
were from bone marrow of scid (s/s), scid heterozygote (s/ +), M54 s/s,
and M54 s/+ mice.

*The amount of 32P-labeled probe hybridizing to the JH2 signal end
product and the a-actin internal control was quantitated for the first
lane under each bracket in Fig. 4 using a Biolmage Analyzer. The val-
ues shown correspond to the relative amount of probe hydridizing to
each product normalized against the reference control (M54 s/+
CD43- cells). Thus, for example, the value of 0.83 for CD43" s/s cells
equals the ratio of the amount of probe hybridizing to JH signal/« actin
divided by the amount of probe hybridizing to JH signal/« actin in the
reference control.

rearrangement does not evidently occur in these cells. This
apparent inability of the V(D)J recombinase system to target
VH elements in late pre-B cells of w-tg mice is consistent
with the early findings of Yancoupolus and Alt (45). These
investigators found that VH558 transcripts are detectable in
W~ but not w* lines of transformed pre-B cells and con-
cluded that VH elements in p*-transformed pre-B cells are
not accessible to the V(D)J recombinase system.

Initiation of DH-JH Rearrangement Is Less Frequent in w/k-tg
Mice than in non-tg Mice.  To test whether initiation of

s/s s/+ M54 s/+

CD43* CD43* CD43- CD43 * CD43 -

@ 3Duf

S 5’DHfl

EEEEw

Figure 5. Initiation of VH-DJH rearrangement is not detectable in late
pre-B (B2207CD43") cells of p-tg mice despite ongoing initiation of
DH-JH rearrangement. Genomic DNA from sorted B220*CD43~
(CD437) and B2207CD43* (CD43") cells of scid heterozygotes (s/+)
and M54 s/+ bone marrow were analyzed by LM-PCR for 3’ and 5’
DHfl signal ends. CD43" cells from scid (s/s) bone marrow served as a
positive control for initiation of DH-JH rearrangement. The primers and
probes used for amplification and hybridization of PCR products are de-
scribed in Materials and Methods.



DH-JH rearrangement occurs at a normal frequency in p./k-
tg mice, we sorted B220"IgM~ bone marrow cells from
scid, 3H9/V«k8 scid, and 3H9/VkS8 scid/+ mice, and then
assayed for the level of JH signal ends. The B220* IgM~
cell population would include B lineage subsets (B-D) be-
fore the immature B cell stage (E). We also assayed for cir-
cular DNA molecules with signal joints resulting from the
joining of the JH1, JH2, or JH3 signals with the 3" DHIl sig-
nal (see Materials and Methods). Signal joint formation, in
contrast to coding joint formation, is not impaired in scid
mice (46, 47). Also, we would expect circular DNA mole-
cules to have a longer half-life than broken molecules with
JH signal ends, thus making signal joint formation a sensitive
assay for attempted DH-JH rearrangement in scid mice.

As shown in Fig. 6, JH signal ends were more abundant
in the B220*IgM~ cell fraction of non-tg scid mice than in
the corresponding cell fraction of 3H9/V«8 scid and 3H9/
V8 scid/+ mice. Thus, the initiation of DH-JH rear-
rangement is clearly reduced in the presence of these tgs.
This is also apparent from the reduced level of signal joints
in 3H9/V«k8 mice compared with control non-tg scid mice
(Fig. 6). The level of JH2 signal joints in 3H9/Vk8 scid
and 3H9/V«k8 scid/+ mice was estimated to be ~10 and
60%, respectively, the level in non-tg scid mice (see Fig. 6,
legend). We suggest later that the lower level of signal joints
in 3H9/V«k8 scid than 3H9/Vk8 scid/+ mice may be at-
tributable to premature death of developing scid B cells
resulting from persisting DSBs at DH and JH coding ele-
ments.

Cells that Succeed in Reaching the B Cell Stage in w/ x-tg scid
Mice Do Not Initiate DH-JH Rearrangement. ~ Given that most
developing scid B cells fail to rearrange their D and J ele-
ments successfully (15, 48, 49) and die with persisting DSBs
(33, 35), the cells most favored to become B cells in w/k-tg
scid mice would be those in which DH-JH rearrangement
is not attempted. To test this prediction, we generated and
cloned B cell hybridomas from the spleen of M54/V«8 and
3H9/V«8 scid mice, and then examined these hybridomas
for the status of their H chain alleles. Control hybridomas
were obtained from M54/V«k8 and 3H9/Vk8 scid/+ mice.
Representative results are illustrated in Fig. 7 for 9 3H9/
V8 scid/+ hybridomas and 10 3H9/V«k8 scid hybrid-
omas. Note that one or two H chain gene rearrangements
were clearly evident in all but one of the scid/+ hybrid-
omas. In contrast, none of the scid hybridomas showed a
rearranged allele.

44 hybridomas from p./k-tg mice were analyzed and the
results are summarized in Table I1. 10 scid/+ hybridomas
showed one allele to be rearranged with the other allele in
germline configuration; 11 (10 of which came from 3H9/
Vk8 scid/+ mice) showed both alleles to be rearranged
and 5 showed a single rearrangement with the other allele
missing or undetectable. Two scid/+ hybridomas showed
germline H chain alleles only. As normal B cells and their
precursors show H chain rearrangements at both alleles (3,
8, 50), the retention of at least one germline H chain allele
in ~40% of the scid/+ hybridomas demonstrates significant
transgene-mediated reduction of DH-JH rearrangement.
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Figure 6. Reduced frequency of initiation of DH-JH rearrangement in
developing B cells of p/k-tg scid mice. Genomic DNA from sorted
B220*IgM~ bone marrow cells of scid (s/s), 3H9/V«k8 s/s, and 3H9/V«8
s/+ mice was analyzed by LM-PCR for JH signal ends (JH1, JH2, and
JH3) and by inverse PCR for signal joints resulting from the joining of JH
signal ends with the 3'-DHfl signal. The nonrearranging « actin gene
served as an internal control for the amount of DNA (input DNA). The
primers and probes used for amplification and hybridization of PCR
products are described in Materials and Methods. To compare the level of
signal joints in the three groups of mice, we used a Bio-Image Analyzer to
measure the amount of %2P-labeled probe hybridizing to JH2 signal joint
product/a actin in 3H9/Vk8 s/s (or 3H9/V«8 s/+) divided by that hy-
bridizing to JH2 signal joint/« actin in the s/s control. The ratios ob-
tained for 3H9/V«k8 s/s and 3H9/V«8 s/+ mice were 0.11 and 0.62, re-
spectively.

These results are in agreement with the results of Fig. 6 and
with previous reports showing that the frequency of en-
dogenous H chain rearrangement is reduced in B lineage
cells of M54 (10, 51) and 3H9/V«k8 (25) wild-type mice.
In contrast to the scid/+ results, all M54/V«8 and 3H9/
V8 scid hybridomas showed germline H chain alleles only
(Table I1). The absence of detectable H chain gene rear-
rangement in the scid hybridomas indicates that cells that
succeed in becoming B cells in w/x-tg scid mice do not at-
tempt DH-JH rearrangement.

Discussion

The preceding results show a striking alteration in the
representation of B lineage subsets and duration of DH-JH
rearrangement in bone marrow of p-tg and w/k-tg scid
mice compared with non-tg scid and scid/+ control mice.

DH-JH Rearrangement in Immunoglobulin Heavy Chain Transgenic Mice
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Figure 7. Status of H chain loci in splenic B cell hybridomas from (A)

3H9/V«k8 scid/+ and (B) 3H9/V«k8 scid mice. Approximately 10 wg of
genomic DNA from each hybridoma (designated with even or odd num-
bers) was EcoR1 digested, Southern blotted, and hybridized to a JH-spe-
cific probe. DNA from adult liver (L), the Ag8.563 cell fusion partner
(Ag8), and the hybridoma from which the VDJH transgene was derived
(3H9) served as controls for the position of the germline (G) H chain
fragment, the Ag8.563 H chain allele, and the 3H9 transgene, respec-
tively. The absence of hybridizing fragments in lanes 10 and 15 reflects
incomplete DNA digestion.

Specifically, late pro-B cells (subset C) appear to be missing in
w-tg scid mice and DH-JH rearrangement occurs predomi-
nantly at stage D, the late pre-B cell stage. In w/k-tg scid
mice, early B lineage subsets (B-D) are grossly under repre-
sented and initiation of DH-JH rearrangement is less frequent
than in non-tg control mice. Further, pro-B cells that succeed
in reaching the B cell stage in p./k-tg scid mice do not at-
tempt DH-JH rearrangement. Interestingly, in non-tg con-
trol mice, we found initiation of DH-JH rearrangement to be
greater or more sustained in scid mice than in scid/+ mice.
The implications of these findings are discussed below.
Extended Period of Initiation of DH-JH Rearrangement in u-tg
Mice. In p-tg mice initiation of DH-JH rearrangement
was found to occur most frequently at the late pre-B cell
stage (stage D). As DH-JH rearrangement is normally com-
pleted before this stage (17, 18), initiation of H chain gene
rearrangement appears to be somewhat delayed in p-tg
mice. To explain this result, we suggest the following model:
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Table I1.  Status of the H Chain Alleles in B Cell Hybridomas
from M54/V k8 and 3H9/V«8 Mice

Number of hybridomas
with indicated status

Mouse G R/G R/R R/—-
M54/Vk8 s/ + 1 5 1 1
M54/V«8 s/s 7 0 0 0
3H9/Vk8 s/+ 1 5 10 4
3H9/V«kS8 s/s 9 0 0 0

Germline and rearranged alleles are denoted by G and R, respectively;
missing or undetectable alleles are denoted by (—). Hybridomas in the
G category would include those with a G/G and G/— genotype as
these two categories cannot be distinguished by Southern blot analysis.

w-tg- and RAG-expressing pro-B cells (subsets B and B’)
rapidly differentiate into recombinase-deficient early pre-B
cells (subset C'), such that many cells do not have time to
initiate or complete DH-JH rearrangement at both alleles
until the late pre-B stage (subset D) when RAG expression
is again upregulated.? Rapid progression of pro-B cells to
the C’ stage would presumably result from premature ex-
pression of a pre-BCR containing a tg-encoded . chain,
surrogate light (SL) chain and the signal transducing chains,
lga and 1gB (reviewed in 13, 52-54). Consistent with this
model is the known early expression of w tgs (30) and the
genes for SL chain (55-57), the apparent absence of subset
C in u-tg scid mice (see Fig. 2), the shortened duration of
the pro-B stage in w-tg mice (57a), and the finding that the
majority of cells corresponding to subset C in non-tg mice
contain nonproductive VDJH (VDJH™) rearrangements (58).
The latter finding has been interpreted to suggest that
pro-B cells containing a VDJH™* rearrangement quickly
exit the subset C compartment (58).

Applying the above model to non-tg mice, we suggest
that pro-B cells that make a VDJH™ rearrangement on the
first attempt may exclude VH-DJH rearrangement at the
other allele by rapidly progressing to the RAG-deficient C’
stage, and then to stage D, at which rearrangement of VH
elements is no longer permissible. For allelic exclusion to
occur in this model, a pre-BCR need only signal develop-
mental progression. This notion is consistent with previous
reports showing that exclusion of VH-DJH rearrangement
is tightly linked with progression of pro-B cells to the
pre-B stage (14, 59-61). Such linkage is even observed in p.-tg
mice that express a truncated p. chain, which results in a
pre-BCR complex lacking (specificity) a . variable region
and surrogate light chain (62, 63). However, pro- to pre-B
progression and VH-DJH rearrangement are both blocked

2The extent to which RAG expression is upregulated earlier in subsets B
and B’ of p-tg mice is not known. If RAG expression is not fully upreg-
ulated in these subsets, this could also contribute to the observed lower
level of DH-JH rearrangement in the pro-B (B220"CD43*) versus the
late pre-B (B220*CD43") cell fraction of w-tg mice (see Fig. 4).



in w-tg mice that express a mutated . chain that precludes
assembly of a pre-BCR complex with the signal transducing
Ig o/B chains (64-67). Interestingly, the few B lineage cells
that reportedly escape the above developmental block show
allelic exclusion (67), consistent with our proposed model.

Ongoing initiation of DH-JH (Fig. 4) and Vk-Jk rear-
rangement (30) in late pre-B cells of M54 scid mice could
help explain why these mice uniformly lack B cells (20) and
appear no more leaky than non-tg scid mice (68). If at-
tempted rearrangement of DH and JH elements in develop-
ing M54 scid pre-B cells is initiated before that of Vk and Jk
elements, some cells might be expected to succeed in mak-
ing a DH-JH rearrangement. Indeed, DH-JH rearrange-
ments were recovered from late pre-B cells of M54 scid mice
(see Fig. 4). However, the chance of a scid cell surviving at-
tempted rearrangements at both H and L chain loci would
seem unlikely, consistent with the absence of detectable Vi
coding joints in late pre-B cells of M54 scid mice (22, 30).

Reduced Frequency of DH-JH Rearrangement in u/x-tg Mice.
In w/k-tg mice, we found initiation of DH-JH rearrange-
ment was less frequent than in non-tg scid mice. Signal joints
resulting from the initiation of DHfl to JH rearrangement in
3H9/Vk8 scid and 3H9/Vk8 scid/+ mice were estimated
to be present at ~10 and 60%, respectively, the level ob-
served in non-tg scid mice. Based on the difference in level
of recovered signal joints in 3H9/V«k8 scid/+ and non-tg
scid mice, we estimate that initiation of DH-JH is ~40% less
frequent in p/k-tg than non-tg mice. This estimate agrees
favorably with the observed frequency of germline H chain
alleles in B cell hybridomas from 3H9/V«8 (6/35 alleles) and
M54/Vk8 (6/14 alleles) scid/+ mice (Table I1). The much
lower level of signal joints in 3H9/Vk8 scid than 3H9/V«8
scid/+ mice is taken to reflect loss (death) of scid cells that
attempt DH-JH rearrangement. This could account for the
absence of rearranged H chain alleles in B cell hybridomas
recovered from w/k-tg scid mice (Table I1).

To explain the reduced level of DH-JH rearrangement
in w/x-tg mice, we suggest that expression of a tg-coded
BCR in early pro-B cells promotes very rapid progression
of these cells to the B cell stage, such that there is little time
to initiate DH-JH rearrangement. Consistent with this no-
tion, (a) p and V8 tgs are known to be expressed early in
B cell development (30), (b) w/k-tg scid/+ mice contain
near-normal percentages of B cells in bone marrow but mark-
edly reduced percentages of pro- and pre-B cells (20), and
(c) p/k-tg scid mice show near-normal percentages of B
cells in bone marrow but sharply reduced percentages of
pro-B cells compared with non-tg scid controls and virtu-
ally no pre-B cells (=1%; Fig. 3).

Basis for the Difference in Level of JH Signal Ends in scid and
scid/ + Mice.  In non-tg control mice, we found that early
B lineage cells in the CD43* cell fraction from scid mice
showed a much higher level of JH signal ends than the cor-
responding cell fraction from scid/+ mice. As scid does not
impair the joining of signal ends (46, 47), one cannot at-
tribute the relatively high level of JH signal ends in scid
mice to a blockage in signal joint formation. What scid does
impair, however, is the processing of coding ends before
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their being joined (33, 35). Thus, developing B lineage cells
in scid mice do not often succeed in joining DH and JH
coding ends (48, 49) and would not be expected to initiate
the second step of H chain gene rearrangement (VH-DJH
rearrangement). Indeed, 5" DHfl signal ends, signifying the
initiation of VH-DJH rearrangement, were not detectable
in CD43" scid cells (Fig. 5). We suggest that in the absence
of VH-DJH rearrangement, initiation of DH-JH rearrange-
ment continues unabated in CD43* cells, resulting in a high
level of JH signal ends. On the other hand, in the CD43*
cell fraction of scid/+ mice, initiation of VH-DJH rear-
rangement was prominent and that of DH-JH rearrange-
ment barely evident (Fig. 5). This implies that initiation of
DH-JH rearrangement in scid/+ mice may be limited to
the earliest stage of pro-B cell development, consistent with
the idea discussed below, that onset of VH-DJH rearrange-
ment may preclude further DH-JH rearrangement.

In wild-type or scid/+ cells, a DH-JH rearrangement may
be followed by rearrangement of a VH element to the result-
ing DJH complex or the complex may be replaced by the
joining of an upstream DH element to a downstream JH ele-
ment (41). The latter event, DJH replacement would seem
counterproductive to efficient assembly of VH, DH, and JH
elements. Thus, it makes sense, as originally postulated by Alt
et al. (69), that after DH-JH rearrangement VVH rather than
DH elements are preferentially rearranged. How might this
happen? Recent evidence suggests that initiation of VH-DJH
rearrangement is associated with a shift in the targeting of the
V(D)J recombinase activity from the 3’ to the 5’ side of DH
elements (70). Targeting of the recombinase to signals on the
5’ side of DH elements would minimize DJH replacement
and limit the duration of DH-JH rearrangement to the earli-
est stage of pro-B cell development. Although DJH com-
plexes can be readily detected in late pro-B cells (subset C)
(17, 18, 38), this does not necessarily reflect ongoing DH-JH
rearrangement at this stage; the observed DJH complexes
could have been formed earlier in cells of subset B.

In sum, DH-JH rearrangement in non-tg mice is normally
initiated and completed at the early pro-B stage. In p-tg
mice, DH-JH rearrangement may begin at the pro-B stage,
but it appears to continue and occur most frequently at the
late pre-B stage. Based on the altered representation of
pro-B subsets in w-tg scid mice, we suggest that the extended
period of DH-JH rearrangement in these mice primarily
reflects rapid progression of p-tg—expressing pro-B cells to
the recombinase-deficient early pre-B cell stage. Thus, many
cells may not have time to initiate DH-JH rearrangement
until the late pre-B stage when RAG expression is again
upregulated. In addition, ongoing DH-JH rearrangement
(including DJH replacement) at the late pre-B stage would
not be limited by initiation of VH-DJH rearrangement, as
the latter does not apparently occur in late pre-B cells of
w-tg mice. Finally, rapid progression of w/k-tg—expressing
pro-B cells to the recombinase-inactive B cell stage could
explain why in w/k-tg mice we find a reduced initiation of
DH-JH rearrangement compared with non-tg mice and a
striking deficiency of pro- and pre-B cells despite near-nor-
mal numbers of B cells.

DH-JH Rearrangement in Immunoglobulin Heavy Chain Transgenic Mice
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