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This paper reports the progress toward a fast and reliable microwave imaging setup for tissue imaging exploiting near-field
holographic reconstruction. The setup consists of two wideband TEM horn antennas aligned along each other’s boresight and
performing a rectangular aperture raster scan. The tissue sensing is performed without coupling liquids. At each scanning position,
wideband data is acquired. Then, novel holographic imaging algorithms are implemented to provide three-dimensional images
of the inspected domain. In these new algorithms, the required incident field and Green’s function are obtained from numerical
simulations. They replace the plane (or spherical) wave assumption in the previous holographic methods and enable accurate near-
field imaging results. Here, we prove that both the incident field and Green’s function can be obtained from a single numerical
simulation. This eliminates the need for optimization-based deblurring which was previously employed to remove the effect of
realistic non-point-wise antennas.

1. Introduction

Microwaves have been used for imaging and detection ever
since the technology to generate and receive them became
available. Microwaves penetrate many objects and materials
which are optically opaque such as living tissues, wood, ce-
ramics, plastics, clothing, concrete, and soil. Various im-
aging methods have been developed in applications such as
remote sensing, underground surveillance, concealed weap-
on detection, through-the-wall imaging, and nondestructive
testing and evaluation. For a more complete coverage, the
reader is referred to [1]. Many of the data-processing algo-
rithms currently developed for near-field tissue sensing are
rooted in these prior methods.

Microwave imaging of tissues dates back to the 1970s,
when Larsen and Jacobi carried out extensive experiments
with imaging canine kidneys [2]. They were successful in
producing two-dimensional (2D) images where various tis-
sues were clearly discernible. They measured the transmitted
signal between two antennas facing each other along bore-
sight (similar to the illustration in Figure 1). The imaged

organ was scanned in a plane perpendicular to the line con-
necting the two antennas. Thus, the recorded signal was
obtained as a function of two position coordinates, x and y,
relative to a reference point on the imaged organ. Such data
acquisition approach is often referred to as raster scanning.
Raster scanning is also suitable for holographic reconstruc-
tion and is adopted in our work.

The major challenges in microwave tissue imaging in-
clude difficulties in coupling the microwave power into the
tissue, significant tissue loss, relatively coarse resolution, sig-
nificant tissue heterogeneity, and relatively low contrast be-
tween malignant and healthy tissues.

The active microwave systems currently considered for
tissue imaging can be classified in four large groups [5]:
optimization-based microwave imaging, confocal radar-
based imaging, microwave tomography, and microwave
holography.

The work here employs the latter approach. In modern
microwave holography (e.g., see [6–9]), coherent (magni-
tude and phase) back-scattered signals are acquired on a
surface, similarly to the conventional optical holography.
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Figure 1: Microwave holography setup.

However, the reconstruction of the object is based on a
sequence of direct and inverse Fourier transforms (FTs).
The data acquired on the surface is used simultaneously in
a single reconstruction process to obtain the 3D reflectivity
distribution of the object. It can be shown [10] that this
reconstruction is based on the linear Born approximation.
Microwave holography provides a framework where, with
wideband frequency information, a 3D image of the object is
obtained in quasi-real time. In the case of a single-frequency
measurement, it provides a 2D image of the object’s cross-
section in a plane parallel to the acquisition plane (e.g., see
[7]). Microwave holographic imaging based on rectangular
and cylindrical aperture scanning has proven reliable and
is employed in concealed weapon detection, for example,
[6–9].

In [11], we extended the single-frequency 2D hologra-
phic image reconstruction to near-field microwave imaging.
This method employs not only the back-scattered (as in
[7]) but also the forward-scattered signals. The additional
information from the forward-scattered signals improves the
image quality and enables localization of the object in the
range direction. In contrast to previous work, this method
does not make any assumptions about the incident field such
as plane, spherical, or cylindrical wave representations. The
incident field is derived in a numeric form either through
simulation or measurement. This is important in near-field
imaging where the object is close to the antenna and the
planar or spherical approximations of the illuminating wave
are not valid. Green’s function was still assumed to be a
spherical wave.

In [10], we extend the 2D near-field holographic imaging
technique in [11] to 3D imaging when wideband informa-
tion is available. The proposed method has a number of
distinct features and advantages compared to the previously
proposed 3D holographic techniques. First, the method al-
lows for incorporating forward-scattered signals in addition
to the back-scattered signals. This additional information
leads to more accurate reconstruction results and also allows
for the significant suppression of image artifacts in the range
direction. Second, the method allows for an incident-field
distribution represented in numeric form. This distribution

can be obtained either through simulation or through mea-
surement with the particular antenna setup and medium.
Third, it also allows for numeric input of Green’s function,
that is, the set of signals due to point scatterers in the given
medium and received by the given antennas. These can be
efficiently obtained through simulation as proposed here.
The accurate representations of the incident field and Green’s
function for the particular problem are crucial in near-field
imaging where analytical approximations such as plane or
spherical waves are not adequate. Fourth, the numerical form
of the incident field and Green’s function necessitates a new
inversion procedure. Previous 3D holography methods [7]
relied on the analytical (exponential) form of the incident
field and Green’s function in order to cast the inversion
expression in the form of a 3D inverse FT. This limits the
technique to homogeneous background problems with far-
zone measurements. Re-sampling of the data in kz space is
also necessary, which may lead to errors. This procedure is
inapplicable with numeric representations of the incident
field and Green’s function. Instead, in [10] we solve a system
of equations in each spatial frequency pair (kx, ky) and apply
2D inverse FT to the least-square solution at planes (slices) at
all desired range locations. Note that the systems of equations
have much smaller dimensions compared to the systems of
equations in regular optimization-based microwave imaging
techniques. This reduces the ill-posedness of the problem
significantly. Thus, the 3D object is reconstructed as a set
of 2D slice images in parallel planes along the range. The
algorithm proves to be robust to high levels of noise.

In [10, 11], we employed copolarized dipole antennas
to acquire the data. These antennas are small. Thus, the
acquired data was assumed to be obtained from point
sources/receivers. This allowed us to apply the holographic
algorithms without any additional processing. However, this
is not the case when in real practice we deal with non-
point-wise antennas. In [12], we discussed that when we em-
ploy a real antenna structure to collect the data, additional
processing is required prior to applying holographic image
reconstruction. We employed blind de-convolution (deblur-
ring) to eliminate the integration (blurring) effect of the
non-point-wise antenna aperture. The major drawback of
the deblurring processing is that it is based on nonlinear
optimization procedures, which may fail to converge to the
true solution.

Here, first we present a general vectorial formulation of
3D near-field microwave holography. Then, we show how
the previously proposed scalar holographic algorithms can
be derived from this more general formulation. Further,
by using the reciprocity principle, we show that both the
incident field and Green’s function can be obtained in a single
numerical simulation. This relatively simple theoretical
development results in major progress in microwave near-
field holography since not only we eliminate the required
simulations to obtain Green’s function, but also we do not
need to apply “deblurring” signal processing. This is due to
the fact that in this approach of obtaining Green’s function,
the antenna structure is part of the medium.

We examine the performance of the 2D and 3D image
reconstruction techniques when employing TEM horn
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antennas [13] by a number of simulation and experimental
examples.

2. Vectorial Holographic Microwave Imaging

The microwave holography setup considered here employs
planar raster scanning. It consists of two antennas and an
object in between as shown in Figure 1. When using the
linear Born approximation [14], the scattered field is given
by

Esc(rP) ≈
∫∫∫

VQ

G
(

rP , rQ
) · Einc(rQ

)[
k2
s

(
rQ
)− k2

b

]
drQ, (1)

where Esc is the scattered field, G(rP , rQ) is Green’s dyadic
function, Einc is the incident field, ks and kb are the wave-
numbers of the scatterer and the background media, respec-
tively, and VQ is the inspected volume. We assume that
kb is constant in VQ. The position vectors rP and rQ
give the locations of the observation and scattering points,
respectively.

2.1. The Forward Model. As shown in Figure 1, the antennas
perform a 2D scan while moving together on two separate
parallel planes positioned at z = 0 and z = D. Assume that at
any measurement frequency fl (l = 1, 2, . . . ,Nf ) we know the
incident field Einc(0, 0, 0; x, y, z; fl) at any point rP = (x, y, z)
in the inspected volume when the transmitting antenna is at
(0, 0, 0). In addition, assume that all components of Green’s

tensor G
j
i (x, y, z; 0, 0,D; fl), i, j = x, y, z, are known for

an i-polarized point source, at (x, y, z) and the j-polarized
response at (0, 0,D). For brevity, we introduce the notations:

Einc(x, y, z, fl
) ≡ Einc(0, 0, 0; x, y, z; fl

)
,

G
(
x, y, z, fl

) ≡ G
(
x, y, z; 0, 0,D; fl

)
.

(2)

Let Esc
j (x′, y′,D, fl), j = x, y, z, be the jth component

of the forward scattered E-field received at rQ = (x′, y′,D).
This implies that the transmitting antenna is at (x′, y′, 0)
since it moves together with the receiving antenna. The back-
scattered field is analyzed similarly with rQ = (x′, y′,D = 0).

In a homogeneous or layered medium (where the layers
are in x-y planes), the incident field and Green’s tensor for
the case where the antenna pair is at (x′, y′) can be obtained
from those in (2) by a simple translation:

Einc(x′, y′, 0; x, y, z; fl
) = Einc(x − x′, y − y′, z, fl

)
,

G
(
x′, y′, 0; x, y, z; fl

) = G
(
x − x′, y − y′, z, fl

)
.

(3)

Then, as per (1), each j-component ( j = x, y, z) of the
scattered field is written as

Esc
j

(
x′, y′,D, fl

) ≈
∫
z

∫
y

∫
x
f
(
x, y, z, fl

)· ∑
m=x,y,z

g
j
m
(
x′ − x, y′ − y, z, fl

)
dx dy dz,

(4)

where

f
(
x, y, z, fl

) = k2
s

(
x, y, z, fl

)− k2
b

(
fl
)
,

g
j
m
(
x, y, z, fl

) = Einc
m

(−x,−y, z, fl
)

×G
j
m
(−x,−y, z, fl

)
m = x, y, z.

(5)

We refer to f (x, y, z, fl) as the contrast function. For
simplicity, we assume that the contrast function is frequency-
independent, that is, f (x, y, z) ≡ f (x, y, z, fl). The modifica-
tion of the algorithm when dealing with dispersive media has
been presented in [10]. Notice that (4) also implies that the
scatterer is isotropic, that is, contrast function is independent
of the polarization of the incident field.

In (4), the integral over x and y can be interpreted as a 2D
convolution integral. Thus, the 2D FT of Esc

j (x′, y′,D, fl)( j =
x, y, z) is written as

Esc
j

(
kx, ky ,D, fl

)
≈
∫

z
F
(
kx, ky , z

)
·
∑

m=x,y,z

G
j
m

(
kx, ky , z, fl

)
dz,

(6)

where F(kx, ky , z) and G
j
m(kx, ky , z, fl) are the 2D FTs of

f (x, y, z) and g
j
m(x, y, z, fl), m = x, y, z, respectively; kx

and ky are the Fourier variables with respect to x and y,
respectively.

To reconstruct the contrast function, we first approxi-
mate the integral in (6) by a discrete sum in z for the Nz

reconstruction planes:

Esc
j

(
kx, ky ,D, fl

)
≈

Nz∑
n=1

F
(
kx, ky , zn

)

·
∑

m=x,y,z

G
j
m

(
kx, ky , zn, fl

)
Δz j = x, y, z,

(7)

where Δz is the distance between two neighboring recon-
struction planes.

2.2. Inversion Procedure. For the setup shown in Figure 1,
there could be four antenna configurations when performing
the raster scan: (1) antenna 1 and antenna 2 are both x-
polarized (X–X case); (2) antenna 1 is x-polarized while
antenna 2 is y-polarized (X–Y case); (3) antenna 1 is y-
polarized while antenna 2 is x-polarized (Y–X case); (4)
antenna 1 and antenna 2 are both y-polarized (Y–Y case).

Four complex S-parameters are acquired at the two
antenna terminals at each frequency for each of the four
polarization cases listed above. These four S-parameters
constitute four separate scattered signals expressed in (1)
(two reflection and two transmission coefficients). Thus,
by performing wide-band measurements at Nf frequencies,
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from (7) Nf equations at each spatial-frequency pair (kx, ky)
is obtained as

Esc
j

(
kx, ky ,D, f1

)

≈
∑

m=x,y,z

G
j
m

(
kx, ky , z1, f1

)
F
(
kx, ky , z1

)
Δz + · · ·

+
∑

m=x,y,z

G
j
m

(
kx, ky , zNz , f1

)
F
(
kx, ky , zNz

)
Δz

...

Esc
j

(
kx, ky ,D, fN f

)

≈
∑

m=x,y,z

G
j
m

(
kx, ky , z1, fN f

)
F
(
kx, ky , z1

)
Δz + · · ·

+
∑

m=x,y,z

G
j
m

(
kx, ky , zNz , fN f

)
F
(
kx, ky , zNz

)
Δz.

(8)

Note that in (8), the subscript j denotes the polarization
of the receiving antenna. For each configuration mentioned
above, 4 × Nf equations are obtained. Then, the systems of
equations for all four antenna configurations are combined
to form a larger system of equations. In general, this results
in a system of 12 × Nf decoupled equations, which must be
solved for F(kx, ky , zn), n = 1, 2, . . . ,Nz. Note that typically
Nz < Nf .

At each spatial frequency pair (kx, ky), a system of
equations as in (8) is solved in least-square sense to find
F(kx, ky , zn), n = 1, 2, . . . ,Nz. We emphasize that the system
of equations obtained at each (kx, ky) is much smaller than
the system of equations normally produced in optimization-
based microwave imaging techniques. This significantly
reduces the ill-posedness of our approach. Inverse 2D FT
is applied to F(kx, ky , zn), to reconstruct a 2D slice of
the function f (x, y, zn) at each z = zn plane. Then, the
normalized modulus of f (x, y, zn), | f (x, y, zn)|/M, where M
is the maximum of | f (x, y, zn)| for all zn, is plotted versus
x and y to obtain a 2D slice image of the object at each
z = zn plane, n = 1, 2, . . . ,Nz. By putting together all Nz slice
images, a 3D image of the object is obtained.

3. Obtaining Green’s Dyadic Function

Here, we assume that the antennas are fed by a coaxial cable.
We also assume that the coaxial port is at an x-y plane, as
illustrated in Figure 2, and the scattered field due to a point-
scatterer at point S is sampled on the x-axis of the coaxial
port at point P. Since the coaxial cable only supports TEM
wave propagation along the cable (only the radial component
of the E-field exists inside the cable), the sampled field at

S

x

Jsx

Jsy
Jsz

x

y
y

z

P

Coaxial port

Observation
point

Figure 2: Illustration of the coaxial port for the receiving antenna
with a point P on the port, on the x-axis and a point-scatterer at S.

point P has an x-component only. Thus, the dyadic Green’s
function with the general expression of

G(rP , rS) =

⎡
⎢⎢⎢⎣
Gx
x(rP , rS) Gx

y(rP , rS) Gx
z(rP , rS)

G
y
x(rP , rS) G

y
y(rP , rS) G

y
z (rP , rS)

Gz
x(rP , rS) Gz

y(rP , rS) Gz
z(rP , rS)

⎤
⎥⎥⎥⎦ (9)

is simplified as

G(rP , rS) =

⎡
⎢⎢⎢⎣
Gx
x(rP , rS) Gx

y(rP , rS) Gx
z(rP , rS)

0 0 0

0 0 0

⎤
⎥⎥⎥⎦. (10)

By convention, in the paired argument of Green’s tensor, the
1st position vector denotes the observation point while the
2nd position vector denotes the excitation point.

To obtain this dyadic Green’s function, one approach is
to excite sequentially all x-, y-, and z-polarized sources at
the positions S(x, y, z) of all the points (pixels) at all recon-
struction planes and to obtain the E-field response resulting
at point P. This approach is prohibitively inefficient. Instead,
we employ the reciprocity principle. If a medium is reciprocal
[14], the dyadic Green’s function fulfills

G(rP , rS) = GT(rS, rP), (11)

where G(rS, rP) implies that the source is at point P while
the observation point is at point S. The superscript T in (11)
denotes transposition. According to (11), we have

⎡
⎢⎢⎢⎣
Gx
x(rP , rS) Gx

y(rP , rS) Gx
z(rP , rS)

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
Gx
x(rS, rP) G

y
x(rS, rP) Gz

x(rS, rP)

Gx
y(rS, rP) G

y
y(rS, rP) Gz

y(rS, rP)

Gx
z(rS, rP) G

y
z (rS, rP) Gz

z(rS, rP)

⎤
⎥⎥⎥⎦.

(12)
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From (12), it follows that

Gx
x(rP , rS) = Gx

x(rS, rP),

Gx
y(rP , rS) = G

y
x(rS, rP),

Gx
z(rP , rS) = Gz

x(rS, rP),

Gx
y(rS, rP) = G

y
y(rS, rP) = Gz

y(rS, rP) = 0,

Gx
z(rS, rP) = G

y
z (rS, rP) = Gz

z(rS, rP) = 0.

(13)

This indicates that we can excite the x-component at point
P (coaxial port excitation) and observe the x-, y-, and z-
components of the field at each point (pixel) at each recon-
struction plane.

Notice that the incident field Einc(x, y, z) is obtained
in exactly the same way. Thus, only one simulation per
polarization configuration is required to obtain both the
incident field and the elements of Green’s dyadic function.
The final expression for the scattered field in terms of Einc

only is

Esc(x′, y′,D, fl
)

≈
∫

z

∫
y

∫
x
f
(
x, y, z, fl

)
Einc(x′ − x, y′ − y, z, fl

)

· Einc(x′ − x, y′ − y,D − z, fl
)
dx dy dz,

(14)

where Esc is the forward scattered field due to the trans-
mitting antenna at the plane z = 0 and captured by the
receiving antenna at the plane z = D. Since we only consider
the TEM mode inside the coaxial feed of the antenna, Esc

is a scalar describing the radial component of that mode.
In measurements, Esc is represented by the transmission
scattering parameter of the two-port system formed by the
two antennas and the imaged object. Note that (14) applies
also to the case of a backscattered field if we set D = 0.

We emphasize that, in general, for each of the four
possible mutual configurations of the two antennas (X-X, X-
Y, Y-X, or Y-Y) described in Section 2.2, (14) provides a set
of four equations for the four scattering parameters acquired
with this two-port system.

4. Scalar Holographic Imaging [10, 11]

In the scalar holographic imaging, it is assumed that the
antennas are linearly polarized, for example, x-polarized [10,
11]. In this case, the radiation field of the x-polarized anten-
nas can be reasonably approximated by TMx polarization.
Thus, we consider the x-components of the incident and
scattered E-fields only. This leads to a scalar Green’s function
which is the Gx

x element of the full dyadic in (9). Thus, the
expression in (4) (for nondispersive media as discussed in
Section 2) is simplified as

Esc
x

(
x′, y′, fl

)

≈
∫
z

∫
y

∫
x
f
(
x, y, z

) · g0
(
x′ − x, y′ − y, z, fl

)
dx dy dz,

(15)

where

g0
(
x, y, z, fl

) = Einc
x

(−x,−y, z, fl
)
Gx
x

(−x,−y, z, fl
)
. (16)

Subsequently, the discretization, the construction of the
systems of equations at each (kx, ky) pair employing all fre-
quencies, and the reconstruction of the 2D images at all range
locations are implemented in the same manner as explained
above.

In order to perform 2D holographic imaging, it suffices
to collect data at a single frequency [11]. The object is posi-
tioned at z = z and its thickness along the z-axis is assumed
to be negligible. When using data at a single frequency, we
can reconstruct a 2D image at the plane of the object. At a
single frequency, (16) is simplified as

Esc
x

(
x′, y′,D

) ≈
∫
y

∫
x
f
(
x, y, z

) · g0
(
x′ − x, y′ − y, z

)
dx dy.

(17)

Next, Esc
x (x′, y′,D) is interpreted as a 2D convolution

integral. This allows for the expression of the 2D FT
Esc
x (kx, ky ,D) of Esc

x (x′, y′,D) as

Esc
x

(
kx, ky ,D

)
≈ F

(
kx, ky , z

)
G0

(
kx, ky , z

)
, (18)

where F(kx, ky , z) and G0(kx, ky , z) are the 2D FT of f (x, y, z)
and g0(x, y, z), respectively. Finally, the reconstructed reflec-
tivity function of the object is obtained as

f
(
x, y, z

) ≈ F−1
2D

⎧⎨
⎩
Esc
x

(
kx, ky ,D

)

G0

(
kx, ky , z

)
⎫⎬
⎭, (19)

where F−1
2D denotes the inverse 2D FT. The reconstructed

image can then be obtained as the magnitude of the reflect-
ivity function | f (x, y, z)|.

Note that (19) is a formal reconstruction formula and
it can be seen as the “maximum likelihood solution” if the
collected data suffer from incompleteness and/or noise. The
latter factors are often the cause for ill-posedness. However,
the technique is very robust to noise and is not ill-posed. This
is due to two factors. First, we provide sufficient sampling (in
the Nyquist sense) in the scanned apertures. Second, we note
that the incident field due to our antennas has a sharp peak in
the middle of the reconstruction plane z = z while it quickly
decreases toward the edges of this plane. This is mostly due
to the dissipation of the power in the lossy background
medium which causes significant attenuation for signals
traveling along longer paths. Therefore, G0(kx, ky , z) varies
smoothly as a function of kx and ky and the value of G0

is always significantly greater than zero for the considered
wavenumbers. Hence, the division in (19) does not lead to
ill-posedness of the inversion problem.

We should note that because of the finite size of the
apertures, not all the wavenumbers (kx, ky) can be measured.
This imposes lower and upper limits on kx and ky , which
in turn limits the cross-range resolution of the images as
discussed in [11].

The collected data from each S-parameter can be pro-
cessed using (19) to create an image of the object. In this case,
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we obtain four separate images with various resolutions. To
reconstruct a single image, the datasets of all S-parameters
can be used simultaneously where a least-square solution is
sought as discussed in [11] and similarly to the inversion
procedure given in Section 2.2.

5. Results

In this section, we present the results of 2D and 3D vector
holographic imaging when employing real antennas. We
obtain both the incident field and Green’s function in a single
numerical simulation as discussed in Section 3. Also, both
tangential components of the field (x- and y-components)
are considered on the reconstruction planes. Obviously, this
leads to improved reconstruction results compared to the
scalar holography in which only the co-polarized component
of the field is considered on the reconstruction planes.

We employ simulation data to validate both 2D and 3D
holography algorithms. However, due to the availability of
only transmission S-parameters in our current measurement
setup, we present experimental results only for 2D hologra-
phy. We do not incorporate reflection S-parameters in the
simulated 2D results for congruence with the measurements.
According to our experience, the availability of the reflection
S-parameters is crucial for 3D holography reconstruction.
We note that the use of a multisensor array on the receiving
side would enable 3D holography with transmission signals
only; however, this system is currently under development.

5.1. TEM Horn Antenna Tailored for an Aperture Raster Scan-
ning Setup. The design, fabrication, and characterization of
an ultra-wideband antenna for near-field microwave imaging
of dielectric objects has been presented in [13] together with
an imaging setup based on raster scanning. The focus here

is on an application in microwave breast tumor detection.
This TEM-horn antenna (shown in Figure 3) operates as
a sensor with the following properties: (1) direct contact
with the imaged body, (2) more than 90% of the microwave
power is coupled directly into the tissue, (3) ultra-wideband
impedance match, (4) excellent decoupling from the outside
environment, (5) small size, and (6) simple fabrication.

The near-field imaging setup employs planar aperture
raster scanning. It consists of two antennas aligned along
each other’s boresight and moving together to scan two
parallel apertures. The imaged object lies between the two
apertures.

5.2. 2D Holographic Imaging Results. To verify the proposed
processing algorithms, we present simulation and exper-
imental results first employing 2D holographic imaging.
The properties of the background medium and the objects
are chosen to be close to those of biological healthy and
cancerous tissues, respectively.

In the first example, we use FEKO [15] simulation data
from the 2D raster scanning of five spheres with εr = 15
and σ = 2 S/m embedded inside a medium with εr = 10
and σ = 1 S/m as shown in Figure 4. The diameter of the
spheres is 7.6 mm and the center-to-center distance between
the spheres on the periphery is 21 mm and the center-to-
center distance between each sphere on the periphery and the
central sphere is 15 mm. The distance between the antenna
apertures is 50 mm.

The antennas perform 2D scan on a region of size
90 mm × 90 mm with spatial sampling rate of 5 mm. At each
sampling position, the complex S21 is measured at 5 GHz,
7 GHz, and 9 GHz.

Figure 5(a) shows the raw images created from calibrated
|S21| obtained with the simulation setup in Figure 4. Cali-
bration scheme has been discussed in [10, 11]. The spheres
cannot be distinguished from each other at 5 GHz. At 7 GHz
and 9 GHz, the resolution improves but still the image
quality is poor. Then, we apply the holographic imaging al-
gorithm to the complex-valued S21. Figure 5(b) shows the
reconstructed images. It is observed that the objects are viv-
idly distinguished and the quality of the images is much
improved.

We also combined the data obtained from 5 GHz, 7 GHz,
and 9 GHz in a single least-square-based image reconstruc-
tion algorithm as explained in Section 4. Figure 6 shows
the reconstructed image in which the objects are clearly
discernible.

In the second example, we use the measured data from
the 2D raster scanning setup shown in Figure 7. Two objects
are embedded in a brick-shaped phantom. The objects are
two spheres with εr ≈ 50 and σ ≈ 4 S/m resembling tumors.
They are made of alginate powder and are embedded inside
the glycerin-based phantom emulating tissue with εr ≈ 7
and σ ≈ 1 S/m, at 7 GHz. The diameter of the spheres
is about 10 mm and the center-to-center distance between
the spheres is about 16 mm. The phantom is compressed
between two thin plexi-glass sheets. The distance between the
antenna apertures after this compression is 50 mm including
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Figure 5: (a) Raw images obtained from calibrated |S21| at 5 GHz, 7 GHz, and 9 GHz, (b) normalized images after applying 2D holographic
imaging at 5 GHz, 7 GHz, and 9 GHz.
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Figure 6: Image obtained when combining the data simulated at 5,
7, and 9 GHz in a single reconstruction process based on the least-
square solution.

the sheets. The antennas perform 2D scan on a region of
size 70 mm × 70 mm with a spatial sampling rate of 5 mm.
This scanning is performed by an automatic positioning
system. At each sampling position, the complex transmission
S-parameter between the two antennas (S21) is measured at
7 GHz and 9 GHz using a vector network analyzer (VNA).
The VNA averaging and resolution bandwidth are set to 16
and 1 KHz, respectively. To improve the accuracy of the
measurements (obtain signal well above the noise floor of
VNA), an amplifier is employed in the transmitter side and a
three-stage low-noise amplifier was employed in the receiver
side.

Antennas

phantom

VNA

Figure 7: Experimental setup for aperture raster scanning.

Figure 8(a) shows the raw images created from the
calibrated |S21| obtained from the measurement setup shown
in Figure 7. The two tumor stimulants cannot be distin-
guished clearly. Then, we apply the 2D holographic imaging
algorithm to the complex-valued S21. Figure 8(b) shows the
reconstructed images. As seen in this figure, the objects are
clearly discernible.

Also, similar to the simulation results, we employed the
data obtained at 7 and 9 GHz in a single image reconstruction
technique based on least-square solution. Figure 9 shows the
reconstructed image. The two objects can be distinguished
well in this image.
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Figure 8: (a) Raw images obtained from calibrated |S21| at 7 GHz and 9 GHz, (b) normalized images after applying 2D holographic imaging
at 7 GHz and 9 GHz.
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Figure 9: Normalized image obtained when combining the mea-
sured data obtained at 7 and 9 GHz in a single reconstruction
process based on the least-square solution.

5.3. 3D Holographic Imaging Results. In this section, we
present the simulation results for implementing 3D holo-
graphic image reconstruction for the two examples shown in
Figure 10.

In the first example, as illustrated in Figure 10(a), two
small objects with properties εr = 15 and σ = 1 S/m are
placed at a range position of 15 mm inside a homogeneous
background medium with εr = 10 and σ = 0.5 S/m. The
diameter of the spheres is 5.6 mm and the center-to-center
distance between them is 16 mm. Two antennas perform 2D
raster scan on the rectangular apertures placed at z = 0 and
z = 50 mm with size 72 mm × 102 mm. The spatial sampling
rate in both x and y directions is 3 mm. The simulated
reflection and transmission S-parameters are obtained from
in the frequency range 3 GHz to 10 GHz with a step of
0.5 GHz. The incident field and Green’s function for the an-
tennas are obtained from a single simulation of one antenna
in the absence of the objects as described in Section 3.

The 3D holographic image reconstruction algorithm is
applied to the collected data. The contrast function is re-
constructed on the planes the size of which is 140 mm ×
140 mm. The planes are at z = 5, 15, 25, 35, and 45 mm.
The distance between the planes (10 mm) is larger than the
minimum range resolution of 7 mm computed here from
the 7 GHz bandwidth. As explained in [7, 10], the range
resolution is inversely proportional to the bandwidth of the
system. Although far-field propagation has been assumed
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Figure 10: Simulation setup for two examples where spherical objects with diameter of 5.6 mm and properties εr = 15 and σ = 11 S/m are
embedded inside a homogeneous background medium with properties εr = 10 and σ = 0.5 S/m; (a) two objects placed at the range position
z = 15 mm with center-to-center distance of 16 mm and (b) two objects placed at the range position z = 15 mm with center-to-center
distance of 16 mm and a third object centered at (0, 10, 35). The dimensions are in mm.
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Figure 11: Reconstructed images for the example shown in Figure 10(a) after applying 3D holographic image reconstruction algorithm.
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Figure 12: Reconstructed images for the example shown in Figure 10(b) after applying 3D holographic image reconstruction algorithm.

in deriving the formula for range resolution, the expression
gives a good approximation in the case of near-field measure-
ments [10].

Figure 11 shows the reconstructed images. The two
objects are reconstructed correctly in the plane at z = 15 mm.
The image reconstructed at z = 25 mm shows weak artifacts
and the images at other range positions correctly do not show
the presence of any objects.

In the second example, as illustrated in Figure 10(b),
three small spherical objects with properties εr = 15 and
σ = 1 S/m are embedded between the two antennas in-
side a homogeneous background medium with εr = 10

and σ = 0.5 S/m. The diameter of the spheres is 5.6 mm.
Two of the objects are placed at a range position of 15 mm
and the center-to-center distance between them is 16 mm.
The third object is centered at the position (0, 10, 35)
mm. Two antennas perform 2D raster scan on the rec-
tangular apertures placed at z = 0 and z = 50 mm.
The size of the scanned apertures is 48 mm × 60 mm.
The spatial sampling rate in both x and y directions is
3 mm. The simulated reflection and transmission S-pa-
rameters are obtained in the frequency range from 3 to
10 GHz with steps of 0.5 GHz. The incident field and
Green’s function for the antennas are obtained from a single
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simulation of one antenna in free space as described in
Section 3.

The 3D holographic image of the contrast function is
obtained on planes of size 140 mm × 140 mm at z =
5, 15, 25, 35, and 45 mm.

Figure 12 shows the reconstructed images. The three ob-
jects are reconstructed well at the correct positions z =
15 mm and z = 35 mm. The reconstructed image at z =
25 mm shows some artifacts. However, the maximum of the
reconstructed contrast | f (x, y, z3)| (image at z = 25 mm)
is more than two times smaller than the maximum of
| f (x, y, z2)| reconstructed at z = 15 mm. The images at the
other range positions correctly do not show the presence of
any objects.

It is worth noting that the difference between the scales
in the images of Figures 11 and 12 is due to the application
of the artifact removal technique, first proposed in [10].

6. Conclusion

In this paper, for the first time, we presented the formu-
lations for a full vectorial 3D microwave holography. We
also discussed how this full vector formulation reduces to
the scalar microwave holography when considering two
linearly polarized antennas oriented in a copolarized man-
ner. Furthermore, we described a new approach based on
the reciprocity principle to obtain Green’s function from
the same simulation used to obtain the incident field.
This significantly mitigates the computational burden to
obtain Green’s function as well as eliminates the need for
implementing “deblurring” algorithms prior to microwave
holography when employing non-point-wise antennas.

We employed our recently proposed TEM-horn antennas
in a rectangular aperture raster scanning setup to acquire
wideband S-parameters. The capabilities of the proposed
processing techniques in reconstructing the shape of the
objects in 2D and 3D spatial domains were demonstrated
through a number of simulations and experiments. The
algorithms can reconstruct the object’s shapes in quasi-
real time. The images obtained from both simulations and
measurements suffer from some artifacts. The artifacts in the
experimental results are larger. In general, they are due to
the measurement noise caused by the environment and the
equipment, by the slight mis-match between the simulated
and experimental performance of the antennas, as well as
finite apertures. The artifacts in the simulated data are
weaker. They are due to the numerical noise in obtaining the
S-parameters, incident field, and Green’s function as well as
the finite aperture sizes. Proper signal processing techniques
can be employed to reduce the artifacts.

The presented techniques are promising in the micro-
wave imaging of tissues where they can provide an initial
guess for the interior of the tissue while further processing
would be employed to take into account the heterogeneity of
the tissues.
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