Hindawi

Disease Markers

Volume 2021, Article ID 5558458, 12 pages
https://doi.org/10.1155/2021/5558458

Research Article

Identification of Novel Biomarkers for Evaluating Disease
Severity in House-Dust-Mite-Induced Allergic Rhinitis by

Serum Metabolomics

Shaobing Xie,"” Hua Zhang,l’2 Zhihai Xie,"> Yongzhen Liu,"? Kelei Gao,'? Junyi Zhang,l’2

Shumin Xie,'? Fengjun Wang,l’2 Ruohao Fan®,"? and Weihong Jiang

1,2

'Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
2Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China

Correspondence should be addressed to Ruohao Fan; ruohao.fan@csu.edu.cn and Weihong Jiang; jiangwh68@126.com

Received 13 January 2021; Accepted 21 April 2021; Published 19 May 2021

Academic Editor: Peng fei Li

Copyright © 2021 Shaobing Xie et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of this study was to identify differences in serum metabolomics profiles of house-dust-mite (HDM)-induced allergic
rhinitis (AR) patients compared to controls and to explore novel biomarkers reflecting disease severity. Serum samples were
collected from 29 healthy controls and HDM-induced 72 AR patients, including 30 mild patients (MAR) and 42 moderate to
severe AR patients (MSAR). Metabolomics detection was performed, and orthogonal partial least square discriminate analysis
was applied to assess the differences between AR patients and controls and for subgroups based on disease severity. These
analysis results successfully revealed distinct metabolite signatures which distinguished MAR patients and MSAR patients from
controls. MSAR patients also could be discriminated from MAR patients based on their metabolic fingerprints. Most observed
metabolite changes were related to glycine, serine, and threonine metabolism, pyrimidine metabolism, sphingolipid metabolism,
arginine and proline metabolism, and fatty acid metabolism. Levels of sarcosine, sphingosine-1-phosphate, cytidine, and linoleic
acid significantly correlated with the total nasal symptom score and visual analogue scale in AR patients. These results suggest
that metabolomics profiling may provide novel insights into the pathophysiological mechanisms of HDM-induced AR and

contribute to its evaluation of disease severity.

1. Introduction

Allergic rhinitis (AR) is an IgE-mediated immunologic dis-
ease characterized by mucus hypersecretion and airway
hyperresponsiveness caused by common allergens such as
house dust mite (HDM), pollen, and animal dander [1, 2].
Among these allergies, HDM is the most common one, and
HDM-induced AR is particularly troublesome, given the
almost ubiquitous presence of HDMs in indoor environ-
ments worldwide [3]. Epidemiological studies showed that
AR affected at least half a billion people worldwide, and more
than half of them were moderate to severe [3]. In China, the
prevalence of AR even rises to 34.3% of the general popula-
tion, and rates still continue to increase [4, 5]. Although not
life threatening, AR exhibits a negative influence on people’s
quality of life and their work production and brings about a

high medical cost on individuals and society. Currently, AR
is subdivided into intermittent AR and persistent AR accord-
ing to the allergic rhinitis and its impact on asthma (ARIA)
classification [6], and persistent AR is further grouped into
mild AR (MAR) and moderate to severe AR (MSAR) based
on the severity scale. The immunological underpinnings
and their associations with disease severity have been a hot
topic of significant research, but remain poorly clarified.
Previous publications reported that AR was a heteroge-
neous disease with a wide degree of severity; there was no
available objective indicator or biological marker that is
specific for its disease activity [7, 8]. Current monitoring of
the severity of this clinical disorder relies primarily on the
subjective clinical symptom score, which is relatively insensi-
tive, particularly in children [9, 10]. For most AR patients,
they often do not recognize how severe their symptoms are
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because of progressive tolerance to these symptoms. Further-
more, self-reported symptoms used by physicians to guide
treatment and evaluate the therapeutic effect are likely impre-
cise. Potentially, this also can lead to growing costs of health-
care and wasted resources [7]. In addition, clinical research in
AR is hampered because of a lack of sensitive biological
measures of disease severity. Therefore, identification of
biomarkers of disease severity is urgently required to
improve patient management and then accelerate drug devel-
opment in AR.

Metabolomics, a branch of omics science that systemati-
cally analyzes the concentration profiles of low molecular
weight endogenous metabolites generated by living systems,
is a promising approach to identify new biomarkers and
novel metabolic pathways for several diseases, simulta-
neously providing new insights into the underlying patho-
physiological mechanisms [11, 12]. Recently, several studies
have employed metabolomics technologies to explore the
metabolic changes in asthma, pneumonia, and chronic
obstructive pulmonary disease and successfully identified
some potential biomarkers and key metabolic pathways
[13-15]. However, no previous study has focused on metab-
olite and metabolic pathway changes in the serum of AR
patients, especially regarding the disease severity.

Therefore, the primary aim of this study was to explore
the metabolic profiling of HDM-induced AR patients and
determine the relationship between the metabolite changes
and clinical severity, thus to provide new insights into the
complex pathophysiological mechanisms and monitor
disease activity. In this study, ultrahigh-performance liquid
chromatography mass spectrometry (UHPLC-MS) was
performed to detect metabolites in serum samples of MSAR,
in comparison with MAR and healthy controls. In addition,
linear regression analysis was performed to evaluate the
correlation between metabolites and disease severity.

2. Materials and Methods

2.1. Participants and Settings. This is a prospective study with
101 participants recruited between June 2018 and January
2019. All participants were divided into three groups: the
MAR group (n=30), MSAR group (n=42), and control
group (n = 29). The diagnosis of HDM-induced AR was done
on the basis of medical history and allergic symptoms (sneez-
ing, rhinorrhea, nasal congestion, and nasal itching) for at
least 2 years, positive skin test results (a mean wheal
diameter > 3mm), and positive specific IgE to HDM
(>0.351U/mL). Patients with persistent AR were categorized
into MAR and MSAR according to ARIA criteria [6]. Exclu-
sion criteria included current smoking, other allergic dis-
eases, systemic steroid treatment, inflammatory or septic
diseases, autoimmune diseases, cardiovascular diseases and
liver and kidney dysfunction, age < 18 years, pregnant condi-
tion, immunotherapy, and use of antiallergic drugs during
the 1 month that preceded the study. The total IgE levels,
specific IgE to HDM levels, blood eosinophil count, and
demographic information of the study subjects were col-
lected, including gender, age, body mass index (BMI), and
the duration of disease duration. All participants scored their
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symptoms by using the widely accepted total nasal symptom
score (TNSS) and visual analogue scale (VAS) which were
described by previous studies [7, 16]. The TNSS is the sum
of 4 individual symptom scores for sneezing, rhinorrhea,
nasal congestion, and nasal itching, and each symptom score
was regarded on a 4-point scale from 0 to 3 (0 =no symp-
toms; 1 =minimal, well-tolerated symptoms; 2 = bothersome
but tolerated symptoms; and 3 =severe and hard to tolerate
symptoms). In addition, the global disease severity over the
last week was evaluated by a VAS (0-10 cm: where 0 is no
symptoms and 10 cm is the maximum severity). The detailed
clinical information of the recruited participants among
three groups is described in Table 1.

2.2. Serum Sample Collection and Preparation. Serum sam-
ples were collected from HDM-induced AR patients and
healthy controls with serum separator tubes without anticoa-
gulation or coagulant before breakfast, and serum samples
were stored for 1 hour at room temperature. All blood
samples were centrifuged at 4°C (3000 rpm for 10 minutes);
then, we collected the supernatants and stored them at
-80°C in equal aliquots for subsequent detection and analysis.
The serum samples were prepared for UHPLC-MS analysis
by mixing 100 L of serum sample with 300 uL methanol
containing an internal standard (L-2-chlorophenylalanine,
2 ug/mL). After a 30-second vortex, the samples were soni-
cated for 10 minutes in ice-water bath. Then, the samples
were incubated at -40°C for 1 hour and centrifuged at
12000 rpm for 15 minutes at 4°C. 100 yL of the supernatant
was transferred to a fresh glass vial for UHPLC-MS analysis
[16]. The quality control (QC) sample was prepared by mix-
ing an equal aliquot of the supernatants from all the samples
and used to evaluate the reproducibility and reliability of the
UHPLC-MS analytical system as described by the previous
study [17].

2.3. Untargeted UHPLC-MS Metabolomics. Samples were
analyzed on a 1290 Infinity series UHPLC System (Waters
Corporation, Milford, MA, USA) as previous study described
[17]. Briefly, 10 uL of reconstituted sample was injected on a
UPLC BEH Amide column (2.1 mm x 100 mm, 1.7 ygm). The
mobile phase consisted of 25 mmol/L ammonium acetate
and 25mmol/L ammonia hydroxide in water (pH =9.75)
(A) and acetonitrile (B). Each sample was analyzed in the
positive ion mode and negative ion mode. The Triple TOF
6600 mass spectrometry (AB Sciex, Boston, MA, USA) was
used for its ability to acquire MS/MS spectra on an
information-dependent basis (IDA) during an LC/MS exper-
iment. In this mode, the acquisition software (Analyst TF 1.7,
AB Sciex, Framingham, MA, USA) continuously evaluates
the full scan survey MS data as it collects and triggers the
acquisition of MS/MS spectra depending on the preselected
criteria. In each cycle, the most intensive 12 precursor ions
with intensity above 100 were chosen for MS/MS at a colli-
sion energy (CE) of 30eV. The cycle time was 0.56 second.
Electrospray ionization (ESI) source conditions were set as
follows: gas 1 as 60 psi, gas 2 as 60 psi, curtain gas as 35 psi,
source temperature as 600°C, declustering potential as 60V,
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TasLE 1: Clinical characteristics of participants.
Variable Control (n=29) MAR (n =30) MSAR (n=42) P value
Gender (male/female) 14/15 17/13 22/20 0.914
Age (years) 28.5+8.5 282+9.6 30.4+8.4 0.518
BMI (kg/m?) 222+1.8 22.8+1.8 2.1+1.6 0.224
Disease duration (years) NA 55+2.8 49+2.2 0.300
Total IgE (IU/mL) 79.2+£29.1 212.4+83.6 430.4 + 155.7 <0.001
Specific IgE to HDM (IU/mL) 0.2+0.1 0.7+0.2 58+3.9 <0.001
Blood eosinophil counts (cells/pL) 81.2+24.0 176.1£97.8 451.2+192.4 <0.001
TNSS 1.2+£0.7 39+£1.0 95+1.7 <0.001
VAS 1.3+£0.6 3.1+0.9 6.9+1.5 <0.001

MAR: mild allergic rhinitis; MSAR: moderate-severe allergic rhinitis; BMI: body mass index; HDM: house dust mite; TNSS: total nasal symptom score;

NA: not applicable.

and ion spray voltage floating (ISVF) as 5000 V or -4000 V in
the positive or negative modes, respectively.

2.4. Data Processing and Analysis. MS raw data (.wiff) files
were converted to the mzXML format by Proteo Wizard
and processed by R package XCMS V3.2. The process
includes peak deconvolution, alignment, and integration.
Minfrac and cut-off are set as 0.5 and 0.3, respectively, as
before [18]. In-house MS2 database was applied for metabo-
lite identification [19]. The resultant data was exported to
SIMCA (version 14.1, Umetrics, Umea, Sweden) for multi-
variate analysis. Orthogonal partial least square discriminant
analysis (OPLS-DA) was performed to find potential
biomarkers that contributed to the metabolic difference
between the groups [20]. The quality of the models was
validated by R*Y(cum) (goodness of fit) and Q2(cum)
(goodness of prediction). Meanwhile, the 7-fold cross-
validation and 200 permutation tests were conducted to
reduce the risk of overfitting and the possibilities of false-
positive findings. Metabolites contributing were selected
according to the variable importance for project (VIP) values
(VIP > 1.0) and P values (P <0.05) [21]. To determine the
performance of the identified combination, receiver operat-
ing characteristics (ROC) analysis was conducted, and area
under the curve (AUC) was calculated to assess the sensitivity
and specificity. In order to gain insight into the underlying
metabolic mechanisms associated with AR and its severity,
the metabolic pathway was analyzed in both ion modes using
MetaboAnalyst 3.0.

2.5. Statistical Analysis. Normally distributed variables were
displayed as mean + standard deviation (SD), and one-way
analysis of variance (ANOVA) was performed for compari-
son among three groups, Student’s t test was utilized for
comparison between two groups; nonnormally distributed
data were described as median and interquartile range, and
Kruskal-Wallis H test and Mann-Whitney U test were uti-
lized for comparison among three groups and between two
groups, respectively. Categorical variables are described as
number (%) and compared utilizing Chi-square test. To
explore the correlation between the levels of metabolites

and the severity of AR, Spearman’s correlation analysis was
conducted. Differences were considered as significant when
P <0.05. All the above statistical analyses were carried out
using SPSS statistics software version19.0 (IBM, Chicago,
IL, USA).

3. Results

3.1. Baseline Characteristics of All Participants. The main
characteristics and clinical information of the participants
are shown in Table 1. No statistically significant difference
was observed in gender, age, BMI, and disease duration
among the three groups. In comparison with the control
group and MAR group, the MSAR group showed higher
levels of serum total IgE, specific IgE to HDM, blood eosino-
phil counts, TNSS, and VAS (all P < 0.001).

3.2. Metabolomics Profiling of MAR vs. Health Controls.
OPLS-DA models showed a clear and distinctive clustering
between the MAR group and control group in both the ESI
+ and ESI- modes (P <0.05, Figures 1(a) and 1(c)). These
models were then assessed by permutation analysis, and all
permuted R?s were below or around 0.6, and all permuted
Qs were below 0, which means that all R*s and Q?s are lower
than the original on the right (Figures 1(b) and 1(d)). Thus,
this suggests that these model fittings were valid and predic-
tive. Finally, a total of 35 metabolites including 15 in the ESI+
mode and 20 in the ESI- mode responsible for distinguishing
MAR patients from health controls were detected by
UHPLC-MS analysis. The contribution plot ranks metabo-
lites by their contribution to the model which is shown as a
VIP. The top 10 metabolites with the highest VIP scores were
identified as the most potential discriminant metabolites and
6 related metabolic pathways are listed in Table 2. According
to metabolic pathway analyses, the most important pathways
were arginine and proline metabolism, glycerophospholipid
metabolism, sphingolipid metabolism, and fatty acid metab-
olism (Figure 2).

3.3. Metabolomics Profiling of MSAR vs. Health Controls.
MSAR patients had different serum metabolic profiles in



80
40 -
A
3 =
= A
A
~40 Laa
Py
[ ]
-80 : : ° :
-20 -10 0 10 20
t(1)P
® MAR
A Control
(a)
40
20 1
@)
= 0
= A
AA
~201
—q0 L, : i :
-20 -10 0 10 20
t(1) P
® MAR
A Control

()

Disease Markers

Intercepts: R?Y (cum) = (0, 0.45), Q% (cum) = (0, —0.84)

T o05{ L_———m L H’H1—
= c e
o) . . e
ke, g ! prad
< 00 T | THIDS
g H I: I’IL!41
£ " el
32 H
3 -0.54 - l!h:
i
& 2 .
-1.0 o
0.00 0.25 0.50 0.75 1.00
Correlation coefficient
® R%Y (cum)
® Q?(cum)
(b)
Intercepts: R%Y (cum) = (0, 0.65), Q* (cum) = (0, -0.78)
S ~HHHH
£ 0.5
o)
o . -
(@7 . i . . "
< N . .
2 00 .: RH
% 11 o
- .
\8/—05- ’::l:lll:.
= -0 e THHTL
& e "R e
-1.01 . " . .
0.00 0.25 0.50 0.75 1.00
Correlation coefficient
® R%Y (cum)
B Q?(cum)

(d)

FIGURE 1: Metabolomics analysis of serum samples from the MAR group and control group. Score plot with OPLS-DA in the ESI+ (a) and
ESI- (c) modes in MAR patients and controls. Permutation test of the OPLS-DA model in the ESI+ (b) and ESI- (d) modes. The values of R?Y
and Q? represent the goodness of fit and predictability of the model, respectively. OPLS-DA: orthogonal partial least square discriminant
analysis; ESI: electrospray ionization; MAR: mild allergic rhinitis.

TaBLE 2: Top ten metabolites with different variations discriminating MAR patients from health controls.

Metabolites Ton mode VIP P value Regulation AUC Pathway

Sarcosine Positive 3.24 0.005 Up 0.77 Arginine and proline metabolism
Palmitic acid Positive 2.74 0.000 Up 0.87 Fatty acid metabolism
5'-Methylthioadenosine Positive 2.58 0.002 Up 0.60 Cysteine and methionine metabolism
Triethanolamine Negative 2.16 0.047 Up 0.79 Glycerophospholipid metabolism
5-Methoxyindoleacetate Negative 1.86 0.004 Up 0.75 Tryptophan metabolism
trans-Vaccenic acid Positive 1.79 0.004 Down 0.93 Fatty acid metabolism
Creatinine Negative 1.73 0.000 Up 0.78 Arginine and proline metabolism
S1P Negative 1.70 0.019 Up 0.91 Sphingolipid metabolism
Arachidic acid Positive 1.62 0.014 Down 0.54 Fatty acid metabolism
L-Methionine Negative 1.61 0.022 Down 0.49 Cysteine and methionine metabolism

MAR: mild allergic rhinitis; VIP: variable importance for project; AUC: area under the curve; S1P: sphingosine-1-phosphate.
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FIGURE 2: Metabolic function bubble chart based on the serum metabolomics profiles between MAR patients and controls in ESI+ (a) and
ESI- (b) modes. ESI: electrospray ionization; MAR: mild allergic rhinitis.

comparison with health controls by UHPLC-MS analysis in
both the ESI+ and ESI- modes (P < 0.05, Figures 3(a) and
3(c)). The permutation analysis results showed that the model
fittings were valid and predictive (Figures 3(b) and 3(d)).
Compared to the control group, 59 metabolites including 29
in the ESI+ mode and 30 in the ESI- mode were expressed at
significantly different levels in the MAR group. Results of the
top 10 potential discriminant metabolites and 9 related meta-
bolic pathways are listed in Table 3. The most important path-
ways including sphingolipid metabolism, pyrimidine
metabolism, and arginine and proline metabolism are revealed
in Figure 4.

3.4. Metabolomics Profiling of MSAR vs. MAR. In this study,
AR patients were grouped into MSAR patients and MAR
patients according to ARIA criteria, and the metabolic differ-
ences of these patients were further analyzed. As shown in
Figure 5, the serum metabolomics profiles of MSAR patients
and MAR patients were significant different form each other
in both ion modes (P < 0.05, Figures 5(a) and 5(c)). The
permutation analysis results exhibited good validation and
predictability (Figures 5(b) and 5(d)). Compared with the
MAR group, 30 metabolites including 17 in the ESI+ mode
and 13 in the ESI- mode were detected at significantly differ-
ent concentrations in the MSAR group. Results of the top 10
potential discriminant metabolites and 8 related metabolic
pathways are displayed in Table 4. The most important path-
ways including fatty acid metabolism and sphingolipid
metabolism are revealed in Figure 6.

3.5. Metabolomics Profiling and Severity of AR. The distinc-
tive metabolites among the three groups with good predict-
ability (AUC > 0.7) were included in Spearman’s correlation
analysis to evaluate their correlation with the severity of AR.
As presented in Table 5, sarcosine, sphingosine-1-phosphate
(S1P), and cytidine levels were positively correlated with TNSS
and VAS in AR patients (P < 0.05). However, linoleic acid
levels were negatively correlated with TNSS and VAS
(P <0.05). In order to evaluate the prediction power of four
significantly distinctive metabolites in reflecting the disease
severity, we performed a single-composite ROC analysis. The
result showed that the composite predictor exhibited good
accuracy and utility (AUC = 0.90, P < 0.001) (Figure 7).

4. Discussion

In the current prospective cohort study, we described a novel
application of metabolomics in identifying the serum meta-
bolic signatures and assessing the association between the
distinctive metabolites and the severity of HDM-induced
AR. The OPLS-DA model showed that obvious discrimina-
tors between patients with different disease severity and
health controls. Thirty-five and 59 metabolites responsible
for differentiating MAR and MSAR patients from health con-
trols, respectively, were identified. In addition, 30 metabolites
were found to be responsible for discriminating MSAR
patients from MAR patients. After analyzing the relation-
ships between the major discriminative metabolites and
clinical parameters of patients, we observed that sarcosine,
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FIGURE 3: Metabolomics analysis of serum samples from the MSAR group and control group. Score plot with OPLS-DA in the ESI+ (a) and
ESI- (c) modes in MSAR patients and controls. Permutation test of the OPLS-DA model in the ESI+ (b) and ESI- (d) modes. The values of
R?Y and @ represent the goodness of fit and predictability of the model, respectively. OPLS-DA: orthogonal partial least square discriminant
analysis; ESI: electrospray ionization; MSAR: moderate to severe allergic rhinitis.

TaBLE 3: Top ten metabolites with different variations discriminating MSAR patients from health controls.

Metabolites Ion mode VIP P value Regulation AUC Pathway

S1P Positive 1.97 0.005 Up 0.89 Sphingolipid metabolism
2-Oxoadipic acid Negative 2.36 0.002 Up 0.68 Tryptophan metabolism
Phosphorylcholine Negative 2.19 0.002 Up 0.86 Glycerophospholipid metabolism
Cytidine Negative 2.01 0.000 Up 0.83 Pyrimidine metabolism
Betaine Positive 1.97 0.000 Up 0.84 Glycine, serine and threonine metabolism
Sarcosine Negative 1.95 0.002 Up 0.92 Arginine and proline metabolism
1,3-Diaminopropane Positive 1.85 0.007 Up 0.61 Beta-alanine metabolism
Taurocholic acid Positive 1.82 0.006 Down 0.74 Taurine and hypotaurine metabolism
Linoleic acid Negative 1.78 0.026 Down 0.79 Fatty acid metabolism
cis-9-Palmitoleic acid Positive 1.75 0.005 Up 0.64 Fatty acid metabolism

MSAR: moderate-severe allergic rhinitis; VIP: variable importance for project; AUC: area under the curve; S1P: sphingosine-1-phosphate.
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FIGURE 4: Metabolic function bubble chart based on the serum metabolomics profiles between MSAR patients and controls in the ESI+ (a)
and ESI- (b) modes. ESI: electrospray ionization; MSAR: moderate to severe allergic rhinitis.

sphingosine-1-phosphate, cytidine, and linoleic acid levels
were associated with the disease severity. These results
showed that the identified potential serum metabolites might
be useful for diagnosing HDM-induced AR and developing
objective indicators for evaluating its severity. We will next
discuss the most significant metabolites and related meta-
bolic pathways, which may help us to better understand the
underlying pathogenesis of HDM-induced AR and monitor
its disease severity.

Most importantly, arginine and proline metabolism
pathway was significantly perturbed among the most affected
pathways in HDM-induced AR patients. Arginine and
proline metabolism is of particular importance in the nitric
oxide synthesis and integrally links to cellular respiration,
metabolism, and inflammation [22, 23]. A recent publication
detected arginine and proline metabolism significant pertur-
bations in the serum of commuters following traffic pollution
exposure, and the researchers considered that arginase and
proline metabolism dysfunction were strongly associated
with oxidative stress and inflammation in the air pollution
toxicity [24]. Yang et al. [25] found that the levels of arginine
and its downstream products, such as ornithine, citrulline,
creatine, creatinine, hydroxyproline, and sarcosine, were
higher in the serum of asthma patients than in health con-
trols, and they held that arginine and proline metabolism
was the most important pathway in the development of
asthma. Consistent with the previous reports, we also
observed that the levels of sarcosine and creatinine were
higher in the serum of HDM-induced AR patients than

health controls, and the levels of sarcosine correlated posi-
tively with TNSS and VAS. Arginine is an essential amino
acid related to endothelial function, inflammation, and air-
way hyperresponsiveness, and higher levels of arginine and
its downstream products can regulate T cell function and
promote its activity, which act critical roles in several inflam-
matory diseases, including asthma and AR [22, 23, 26].
Therefore, we speculated that arginine and proline metabo-
lism might be involved in the development of HDM-
induced AR and sarcosine could roughly be related to the
disease severity.

Our results also provide evidence that the sphingolipid
metabolism alteration is involved in the occurrence and pro-
gression of HDM-induced AR. Sphingolipids are ubiquitous
components of the cell membrane and play an important role
in cell growth, inflammation, and tissue remodeling [27, 28].
Among the numerous sphingolipids, S1P has received the
greatest attention in allergic diseases and autoimmune dis-
eases, as it has been implicated in the modulation of a variety
of cell responses such as immune cell proliferation, differen-
tiation, and regulation [27, 29]. A previous study reported
that S1P upregulated the cytokine production, such as IL-
12, 1L-23, and IL-27, in activated murine bone marrow-
derived dendritic cells, and it might serve as a novel thera-
peutic target in the treatment of several inflammatory
diseases [30]. In another study, researchers found that the
plasma levels of SIP were elevated in cystic fibrosis patients,
and S1P levels correlated with routine laboratory parameters,
lung function, and clinical symptoms [31]. Kowal et al. [29]
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FIGURE 5: Metabolomics analysis of serum samples from the MSAR group and MAR group. Score plot with OPLS-DA in the ESI+ (a) and
ESI- (c) modes in MSAR patients and MAR. Permutation test of the OPLS-DA model in the ESI+ (b) and ESI- (d) modes. The values of
R?Y and Q* represent the goodness of fit and predictability of the model, respectively. OPLS-DA: orthogonal partial least square
discriminant analysis; ESI: electrospray ionization; MAR: mild allergic rhinitis; MSAR: moderate to severe allergic rhinitis.

TaBLE 4: Top ten metabolites with different variations discriminating MSAR from MAR.

Metabolites Ion mode VIP P value Regulation AUC Pathway

Linoleic acid Positive 2.79 0.049 Down 0.77 Fatty acid metabolism
Betaine Positive 2.24 0.034 Up 0.60 Glycine, serine, and threonine metabolism
Coumarin Positive 2.11 0.012 Down 0.63 Phenylpropanoid biosynthesis
S1P Negative 2.06 0.009 Up 0.72 Sphingolipid metabolism
Palmitoleic acid Positive 1.97 0.016 Down 0.75 Fatty acid metabolism
trans-Vaccenic acid Positive 1.89 0.003 Down 0.65 Fatty acid metabolism
D-Glucurono-6,3-lactone Negative 1.88 0.000 Up 0.59 Ascorbate and aldarate metabolism
Sarcosine Negative 1.83 0.007 Up 0.91 Arginine and proline metabolism
Cytidine Positive 1.79 0.017 Up 0.74 Pyrimidine metabolism
Pyroglutamic acid Negative 1.72 0.014 Down 0.81 Glutathione metabolism

MAR: mild allergic rhinitis; MSAR: moderate-severe allergic rhinitis; VIP: variable importance for project; AUC: area under the curve; SIP: sphingosine-
1-phosphate.
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F1GURE 6: Metabolic function bubble chart based on the serum metabolomics profiles between MSAR patients and MAR in ESI+ (a) and ESI-
(b) modes. ESI: electrospray ionization; MAR: mild allergic rhinitis; MSAR: moderate to severe allergic rhinitis.

TaBLE 5: Correlation of serum metabolites with severity of HDM-

induced AR.

. TNSS VAS
Metabolites r P value r P value
Sarcosine 0.551 0.012 0.376 0.040
Palmitic acid 0.489 0.137 0.413 0.107
Triethanolamine -0.212 0.170 0.301 0.019
Betaine 0.431 0.049 0.298 0.202
5-Methoxyindoleacetate -0.204  0.765 0.376 0.046
trans-Vaccenic acid -0.312 0.031 -0.178 0.099
Creatinine 0.702 0.129 0.561 0.049
S1P 0.821 0.004 0.673 0.030
Phosphorylcholine 0378 0418 0277  0.031
Cytidine 0.598 0.028 0.312 0.017
Diethanolamine 0.242 0.782 0.134 0.458
cis-9,10-Epoxystearic acid ~ 0.366 0232  -0.221 0.022
Taurocholic acid -0.207  0.651 -0.319  0.562
Linoleic acid -0.792 0.031 -0.493 0.041
Palmitoleic acid -0.377  0.052 -0.274  0.093
Pyroglutamic acid -0.134 0202  -0.307  0.089

AR: allergic rhinitis; TNSS: total nasal symptom score; VAS: visual analogue

scale; HDM: house dust mite; S1P: sphingosine-1-phosphate.
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Figure 7: Composite ROC analysis of sarcosine, S1P, cytidine, and
linoleic acid for predicting the disease severity in HDM-induced AR.
AR: allergic rhinitis; S1P: sphingosine-1-phosphate; HDM: house
dust mite; ROC: receiver operating characteristics.
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analyzed targeted metabolites in the serum of 22 allergic
asthma patients and 11 allergic rhinitis patients and found
that the sphingolipid metabolism was altered and the biosyn-
thesis of SIP was augmented. In the present study, we
observed that sphingolipid metabolism was disturbed and
the S1P levels elevated in the HDM-induced AR patients,
and the S1P levels were correlated positively with the disease
severity, which was in accordance with the results in previous
publications [29, 30]. Our results support the hypothesis that
alterations in serum metabolites reflect the chronic activation
of the immune system in AR patients and that the disease
severity is consistent with greater activation of the immune
system. However, the mechanism underlying these manipu-
lations has not been well clarified.

We firstly found that cytidine, identified from UHPLC-
MS analysis, was associated with HDM-induced AR, and it
might be a novel marker and potential therapeutic target.
In our study, we observed that the levels of cytidine were
elevated in the MAR and MSAR groups, and the concentra-
tions of cytidine were positively correlated with TNSS and
VAS. Cytidine, a pyrimidine molecule, is considered the
precursor of the cytidine triphosphate (CTP), which is vital
in the synthesis, interconversion, and degradation of DNA,
RNA, and lipids [32, 33]. Previous studies have found that
abnormalities of pyrimidine metabolism could influence cell
growth, development, and differentiation of T cell and B cell
[34]. A recent report demonstrated that interference of
pyrimidine metabolism affected murine lymphocyte prolifer-
ation in vitro and attenuated the severity of experimental
autoimmune arthritis [35]. Another study observed that the
concentrations of 5,6-dihydorthymine were higher in the
serum of current asthma patients compared with health con-
trols, and the researchers believed that the alteration of
pyrimidine metabolism might have relevance for asthma
pathophysiology [36]. These events suggested that pyrimi-
dine metabolism might play a pivotal role in autoimmune
diseases and allergic diseases. Therefore, we ultimately
believed that cytidine was associated with AR and that it
might serve as a promising metabolic biomarker for assessing
its disease severity.

Interestingly, we also found that the fatty acid metabolism
was dysregulated in all OPLS-DA models. In recent years,
growing evidence suggested that the fatty acid metabolism
played important roles in the modulation of immune responses
[37]. Most researchers hold that unsaturation fatty acids, espe-
cially polyunsaturated fatty acids, exhibited potential protective
effects on allergic inflammation, while saturation fatty acids
promoted the inflammatory response [38]. In a recent animal
experimental study, Lee et al. [39] observed that oleic acid had
antiasthmatic effects, including downregulation of inflamma-
tory cells and eosinophils in bronchial alveolar lavage fluid,
IgE in serum. Several in vitro studies also demonstrated that
unsaturation fatty acids could exert immunosuppressive effects
on T cells, such as reducing its proliferation and activation in a
dose-dependent manner [37, 40]. However, saturation fatty
acids, such as palmitic acid, have been described as essential fac-
tors promoting T cell activation and cytokine secretion [41]. In
addition, considerable evidence shown that polyunsaturated
fatty acids could modify mast cell function and suppress its acti-
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vation and then reduce the production of cytokine or chemo-
kine receptors [42]. Therefore, we suppose that fatty acid
metabolism may be essential in the development of AR. In
the current study, the concentrations of several unsaturated
fatty acids (linoleic acid, arachidic acid, and trans-vaccenic acid)
were lower in the serum of MAR or MSAR patients in compar-
ison with health controls, while the concentrations of palmitic
acid were elevated. Moreover, the levels of linoleic acid were
correlated negatively with TNSS and VAS. Our results were in
line with most previous studies. However, further studies
should be conducted to confirm these results and to clarify
the underlying mechanism of AR subtypes.

We acknowledge several limitations in our study which
may affect the clinical applications of obtained results. First,
the total sample sizes were relatively small and a validation
cohort study was needed to confirm the conclusions. Second,
the recruited participants were from a single center with the
same ethnicity and region, which might limit the applicabil-
ity of our findings. Third, only one biological sample (serum)
was used in the present study; future studies should collect
other biological samples, such as urine and nasal lavage fluid,
to further verify whether the identified differential metabo-
lites were associated with AR. Last, we did not compare
serum metabolites between moderate AR and severe AR
patients, but it does not mean that there are no differential
metabolites. Future multicenter prospective clinical studies
with larger sample sizes utilizing untargeted and targeted
metabolomics will be important to support and extend our
present findings.

5. Conclusion

Our results suggest that serum metabolomics approaches can
be successfully used to discriminate MSAR patients, from
MAR patients and health controls, and establish a metabolite
signature associated with the severity of HDM-induced AR.
These results will be useful for diagnosing HDM-induced
AR and developing objective indicators for evaluating the
disease severity.
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