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ABSTRACT

Background: Rule-base clinical decision support alerts are known to malfunction, but tools for discovering mal-

functions are limited.

Objective: Investigate whether user override comments can be used to discover malfunctions.

Methods: We manually classified all rules in our database with at least 10 override comments into 3 categories

based on a sample of override comments: “broken,” “not broken, but could be improved,” and “not broken.”

We used 3 methods (frequency of comments, cranky word list heuristic, and a Naı̈ve Bayes classifier trained on

a sample of comments) to automatically rank rules based on features of their override comments. We evaluated

each ranking using the manual classification as truth.

Results: Of the rules investigated, 62 were broken, 13 could be improved, and the remaining 45 were not bro-

ken. Frequency of comments performed worse than a random ranking, with precision at 20 of 8 and

AUC¼0.487. The cranky comments heuristic performed better with precision at 20 of 16 and AUC¼0.723. The

Naı̈ve Bayes classifier had precision at 20 of 17 and AUC¼0.738.

Discussion: Override comments uncovered malfunctions in 26% of all rules active in our system. This is a lower

bound on total malfunctions and much higher than expected. Even for low-resource organizations, reviewing com-

ments identified by the cranky word list heuristic may be an effective and feasible way of finding broken alerts.

Conclusion: Override comments are a rich data source for finding alerts that are broken or could be improved.

If possible, we recommend monitoring all override comments on a regular basis.
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BACKGROUND

Clinical decision support (CDS) has the potential to improve patient

safety and quality of care.1–3 One commonly used subset of CDS is

rule-based alerts, which analyze patient data in the electronic health

record (EHR) and alert providers when specified conditions are

met.3–5 For example, a CDS alert may notify the provider of a dan-

gerous situation (such as potential drug interactions) or of a useful

clinical action that the provider might take (such as prescribing a

medication or adding a problem to the problem list). CDS alerts are

now used widely in healthcare organizations with uptake increasing

over time.6 Studies investigating the effect of CDS alerts on health-

care quality have had positive but mixed results, suggesting that

CDS alerts can improve provider behavior and patient outcomes,7–9

but often do not.
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In particular, there is a growing body of evidence to suggest that

CDS systems and alerts are vulnerable to malfunctions.5,10,11 CDS

alerts can malfunction in a variety of ways: an alert might break; the

way an alert is designed might not be helpful to users; or an alert

might leave out clinically important inclusions or exclusions, caus-

ing it to be triggered for the wrong population of patients or pro-

viders.4,12–14 Malfunctioning alerts may pose a safety risk to

patients if they encourage providers to take clinical actions that are

not appropriate for the patient. Furthermore, flooding providers

with clinically inappropriate alerts may cause providers to lose faith

in CDS systems and begin to ignore alerts that matter—a phenome-

non often referred to as alert fatigue.15 Additionally, when alerts are

not triggered for users who should receive the alerts, there is a lost

opportunity to provide a meaningful clinical intervention to patients

and, if the user was depending on the alert, an elevated risk for

harm.15,16 Thus, finding and fixing CDS alert malfunctions is an im-

portant part of maintaining safe and helpful CDS systems that im-

prove patient safety and quality of care.

In prior work, we developed a taxonomy of CDS alert malfunc-

tions based on 68 cases of alert malfunctions collected from health-

care institutions in the United States.13 One of the axes of this

taxonomy is the method by which a malfunction is discovered. Al-

though the most common discovery method in the sample was user

reports via traditional channels such as the help desk, safety reports,

and contacting CDS maintenance personnel, 5 malfunctions were

discovered by reading free-text override reasons written by providers

when overriding alerts.

These malfunctions were discovered at our own institution, by

chance, when a student researcher was reviewing alert overrides

and noticed that some comments seemed to express strong frustra-

tion and disagreement with the alerts. After the discovery, we in-

vestigated a sample of rules with a large number of comments

seeming to express user frustration to see if there was any merit to

the comments, and whether they highlighted an actual issue with

the alert. A brief description of 3 illustrative cases and the results

of the investigation are provided in Table 1. We found that not

only were some of the rules broken, but the comments were helpful

for determining why the rules were broken, and helped us fix the

rules.

As has been noted in the literature before, users sometimes pro-

vide information in override comments or other text fields in the

EHR that seem to be communicating information to someone else,

but in fact are not sent to the implied recipient and are never acted

upon.17 Override reasons are an example of this kind of text field:

although intended for audit purposes, override reasons are typically

not intended for communication of clinical information or issues

with the CDS itself. Nonetheless, users sometimes provide meaning-

ful information in their override reasons.18,19 Free-text override rea-

sons have been used in previous research studies to evaluate the

clinical appropriateness of user overrides, commonly for medication

alerts such as drug–drug interaction checking.20 A study analyzing

the appropriateness of overrides suggested that override reasons

could potentially be used to improve alert logic.20 To our knowl-

edge, this has not become common practice, nor have free-text over-

ride reasons been studied directly for their use in the detection of

alert malfunctions.

The objective of this study was thus to determine whether free-

text override reasons can be systematically used to identify CDS

alerts that are malfunctioning. A secondary hypothesis was that fea-

tures of override comments can be used to identify alerts that are

broken.

METHODS

We built our dataset by extracting records for all best practice adviso-

ries (BPAs)1 displayed to users at Partners Healthcare from May 30,

2015, to March 20, 2017, in all settings (both inpatient and outpatient),

excluding alerts for test patients (patient profiles in the EHR used for

software testing purposes that do not represent real patients). We in-

cluded the rule identification number (ID), the description of the rule,

the date that the rule was triggered, and the override comment if one

was given. We excluded rules that received fewer than 10 comments.

In Part 1, we developed a method to systematically review over-

ride comments to identify rules that were broken, and we applied

this method to classify all rules in the dataset. In Part 2, we applied

several ranking methods that attempt to sort broken rules to the top

of the list. We used the classification from Part 1 to evaluate the

rankings in Part 2.

Methods Part I: rule-level investigation
Each rule was manually classified into one of 3 categories based on

a detailed analysis of its logic and a sample of comments: “broken,”

“not broken, but could be improved,” or “not broken.”

To begin, a random sample of 50 comments was drawn for each

rule. If a rule had fewer than 50 comments, all available comments

were included in the sample. A human reviewer (author SA) analyzed

the comments for each rule. The reviewer had access both to the back-

end Enterprise Data Warehouse consisting of data such as orders, labs,

and notes, as well as to the patient’s chart in the front-end EHR, and

finally to the rule logic available in the training version of the EHR.

Rules were classified as “broken” if there was at least 1 instance in

which an alert was triggered contrary to the stated rule logic. Rules

were classified as “not broken, but could be improved” if the rule was

not classified as “broken” and there was at least 1 instance in which

the rule logic had omitted an important piece of clinical data that was

in the patient’s chart. Rules were classified as “not broken” if none of

the alert instances met either criterion. The process is summarized in

Figure 1 and described in greater detail in Supplementary Appendix A.

After the comment-level reviews were completed, a second re-

viewer (author AW) assessed the overall findings for each rule to de-

termine whether he agreed with the classification. When there was

disagreement, the 2 reviewers discussed the evidence together to

reach consensus about the classification.

Methods Part 2: ranking methods
Since there are many override comments and it may not be possible

to review them all, sentiment analysis is a natural place to turn for

automatically identifying high-yield comments. Sentiment analysis

uses natural language processing (NLP) techniques to extract affec-

tive states from text.21 For example, sentiment analysis can be used

to identify angry tweets,22 positive movie reviews,23 or popular sen-

timent towards politicians.24 The goal of Part 2 was to identify and

evaluate methods that use linguistic features of override comments

to find rules that are more likely to have had a malfunction. Success-

ful methods for automatically identifying rules with malfunctions

may be helpful for organizations with many CDS rules or limited

resources to review them.

1 Best practice advisories (BPAs) are a subset of rule-based CDS alerts

at our organization. For the remainder of this paper we will refer to these

entities as “rules” and will use “alert” to refer to specific instances in

which a rule was triggered and an alert was generated for an EHR user.
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For this section, we combined “broken” and “not broken, but

could be improved” into 1 larger category called “malfunction” and

compared that to the “not broken” category. We evaluated 3 meth-

ods of ranking rules to see whether any of the methods brought rules

with malfunctions to the top of the list.

Ranking method 1. Frequency of override comments

In this simple ranking method, rules were ranked by the proportion of

alerts that received an override comment (number of comments divided

by number of alert firings), with the hypothesis that rules that got com-

ments more frequently may be more likely to exhibit a malfunction.

Ranking method 2. Cranky comments heuristic

We created a preliminary list of words, phrases, and punctuation

that seemed likely to indicate frustration or annoyance with an alert.

Using this list, we queried override comments containing any fea-

tures on the list. We then used a snowball method to look for other

words and punctuation that appeared in these comments that we

felt indicated frustration or brokenness, and added them to the list.

We deleted features that brought up many comments that did not

indicate frustration or brokenness. The final list is shown in Supple-

mentary Appendix B. For each rule, a ratio was computed by divid-

ing the number of comments for that rule that matched the heuristic

by the total number of comments for that rule.

Ranking method 3. Naı̈ve Bayes classifier

A random sample of 10 comments was drawn for each rule. (As in

Part I, we excluded rules with fewer than 10 comments available.) A

human annotator (author SA) classified each comment into 2 bins,

based on whether the comment warrants investigation (“worthy of

investigation”) or not. The first bin included all cases in which the

comment either suggested the rule was broken or clinically inappro-

priate (that is, any comment that would have warranted investiga-

tion in Part I was flagged). The annotator did not have access to any

information besides the alert ID, alert description, comment text,

and alert date. (Note that although presented later in the text, this

process was completed before Part I, to avoid bias in annotating

comments when the outcome was already known.)

The Natural Language Toolkit (nltk) package25 in Python26 was

used to tokenize each comment. Unigrams and bigrams were used as

features, and capitalization was removed. The nltk Naı̈ve Bayes clas-

sifier was then trained on the sample of annotated override com-

ments. Using the classifier trained on the annotated comments, all

remaining comments were classified as “worthy of investigation”

or not, based on which category was more likely, given the fea-

tures of the comment. For each rule, a ratio was computed by di-

viding the number of comments for that rule that the Naı̈ve

Bayes classifier flagged as “worthy of investigation” by the total

number of comments for that rule. A 10-fold cross-validation

was performed, with the average of scores used for the final

score. Rules were ranked by their final score.

Evaluation of ranking methods

The ranking methods were compared using 3 performance metrics:

1. The median ranking of rules without malfunctions was

compared to the median ranking of rules with malfunctions.

Table 1. Three rules are described that had override comments indicating frustration. These rules were investigated further to determine if

there was anything wrong with the alerts. Tangible improvement to the alerts was sought when possible

Rule 200002 - Potassium and Digoxin

Classification Broken

Alert text “Patient is taking digoxin and potassium level is low (less than 3.0) or a patient has not had a potassium level in the last

90 days. Consider potassium supplementation and recommend repeating electrolytes.”

Representative comments “BPA misfiring: no potassium on file, but there was a K done!” “Inappropriate warning as K is 4.3”

Investigation The alert fired when a non-numeric value (eg, “hemolyzed”) was stored in the potassium field. Thus, if a patient had

non-numeric text stored in the potassium field, the alert would fire even if the patient did not have a potassium level

less than 3.0 in the past 90 days.

Resolution The knowledge management team updated the rule logic so that the rule would be triggered only for patients who had

a numeric lab value with K< 3.0. After the change, alert volume for the rule fell from 977 alerts per week to 474 per

week.

Rule 1005 - Coronary Artery Disease and Beta Blockers:

Classification Broken

Alert text “Patient has CAD-equivalent on problem list and a beta blocker is not on the medication list. Recommend beta blocker.”

Representative comments “He is on beta blocker!” “you are stupid” “this is an inappropriate rec” “On carvedilol!!!!!!!”

Investigation The alert uses a drug class reference to identify beta blockers. Carvedilol was classified as an alpha/beta blocker, and

this class was not included in the rule logic.

Resolution The knowledge management team had previously updated the rule logic to include alpha/beta blockers such as carvedi-

lol. Several other changes were made to the rule, so it was not possible to assess the effect on the firing rate.

Rule 1852 - Cyclosporine Level Monitoring

Classification Not broken, but could be improved

Alert text “Patient is due for a Cyclosporine Level. Please use the following SmartSet to enter order or go to the Health Mainte-

nance activity to update modifier.”

Representative comments “NOT ON CYCLOSPORINE!!!!!!!!!!!!!!!!!!!!!!!!!!,” “cyclosporine is eye drops!,” “stupid EPIC reminder-N/A for oph-

thalmic CyA”

Investigation The rule did not include the route of administration for cyclosporine orders, so it matched both systemic and ophthal-

mic preparations, even though ophthalmic administration does not require cyclosporine level monitoring.

Resolution The knowledge management team updated the rule to exclude ophthalmic cyclosporine orders. There was no significant

drop in alert firing rate after the change.
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Statistical significance for the comparison was calculated using

the Mann–Whitney U test.

2. Precision at 10, 20, and 30 was calculated.

3. The receiver operating characteristic (ROC) curve was plotted

and the area under the curve (AUC) calculated.

The performance evaluations were conducted using the stats,27

pROC,28 and ggplot229 packages in R.27

RESULTS

Results Part 1: rule level investigation
There were 282 rules that triggered an alert shown to a user at least

1 time during the study period. Of these, 120 rules had at least 10

comments, and thus qualified for inclusion in the dataset, with a to-

tal of 36 369 associated free-text override comments. For the pur-

poses of the rule level investigation, 4868 comments were sampled.

Figure 1. Procedure for classifying rules based on comments.
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As summarized in Figure 2, 62 of the rules were classified as

“broken,” 13 were classified as “not broken, but could be

improved,” and the remaining 45 were classified as “not broken.”

Thus, reviewing the sample of override comments led to the identifi-

cation of 75 rules with a malfunction (were broken or could be im-

proved), comprising 62.5% of rules with at least 10 comments (and

26.6% of all rules in the EHR).

Results Part 2: ranking methods
Each method for ranking rules assigns a continuous value from 0 to

1 to each rule, and then sorts the rules based on their score. Since

there were 120 rules in the dataset, the rankings range from 1 to

120, where a lower rank corresponds to a higher score. Rankings

for ties were averaged. We hypothesized that rules with malfunc-

tions would have higher scores and thus a lower ranking.

Three metrics were calculated for each ranking. Precision at n

reports the number of rules that were actually broken out of the top

n rules. Since there are more rules with malfunctions than rules

without, we would expect precision at 20 to be good for a baseline

random ranking; on average 12.3 out of the top 20 rules will have a

malfunction. However, there should be no statistically significant

difference on average between the median rankings for rules with

malfunctions and rules without. The Mann–Whitney U test was

used to test for significance, with group sizes 75 and 45. Finally, the

AUC reports the AUC of the ROC curve, shown in Figure 3. Ran-

dom rankings will converge to an AUC of 0.5, whereas a perfect

ranking (all rules with malfunctions are sorted ahead of all rules

without malfunctions) would have an AUC of 1.

The performance of each method is compared in Table 2. In

brief, sorting by the Frequency of Override Comments performed

worse than a baseline random sort would have. Sorting by the

Cranky Comments Heuristic performed well. Sorting by the Naı̈ve

Bayes Classifier performed best.

DISCUSSION

We found a substantial number of rules at our institution that were

broken or could be improved by examining override comments: al-

most two-thirds of rules with at least 10 comments fit into 1 of these

categories. This represents 27% of all rules that were active during

the study period, which is much higher than expected and unaccept-

able from a safety perspective.

Of the 3 sentiment analysis methods evaluated for their use in

ranking rules, 2 performed better than a random ranking, and 1 did

Figure 2. Results of rule-level classification. 120 rules qualified for the rule-level investigation and were sorted into 2 categories and 2 subcategories. 62.5% of

rules investigated had some kind of malfunction.

Figure 3. ROC curves and AUC for each of the 3 ranking methods.
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not. The frequency of override comments out of total alert instances

was not a good indicator of malfunctions. However, both the cranky

comments heuristic and the Naı̈ve Bayes classifier performed well—

investigating the top 20 rules selected by each method would have

yielded 16 and 17 true malfunctions, respectively. Annotating the

training set for Naı̈ve Bayes required substantially more work than the

cranky comments heuristic, with little improvement from a practical

standpoint. Given the very short length of comments (25 characters on

average), our organization decided not to continue with the classifier

approach, since a daily manual review of all comments is feasible.

Our results suggest that user feedback provided through override

comments has been an underutilized but valuable data source for

improving CDS. For organizations that can afford to do so, reading

all the override comments may be worthwhile. At our own organiza-

tion, we now send a daily email to the CDS knowledge management

team with all override comments from the previous 24 hours and

cranky comments highlighted (as determined by the cranky word

list). We also recommend putting contact links within alerts so that

users who would like to provide feedback are encouraged to do so.

Giving users channels to provide feedback may increase the likeli-

hood that they do so.

One strength of this methodology is that it can be used to find

rules that have malfunctioned since inception. Other methods for

detecting malfunctions that we have prototyped rely on changes in

the alert firing rate, and thus cannot be used to identify rules that

have a stable firing rate but are nonetheless broken. In contrast,

override comments can be used to find malfunctions even when the

rule has a consistent firing rate. When it is possible for an organiza-

tion to do so, we recommend using multiple monitoring strategies

that complement each other to identify as many malfunctions as

possible. At our institution, in addition to the daily review of over-

ride comments, we also monitor the firing rate of rules, changes to

rule logic, and changes to underlying codes used in rule logic.

One limitation is that the study did not examine changes in clas-

sification over time. When changes are made to rule logic, the EHR

system is upgraded, or underlying codes such as medication codes

and lab codes are revised, it is possible that rules that were previ-

ously broken can begin to function correctly, and vice versa. An-

other limitation of the study is that it provides only a lower bound

on the malfunction rate at our institution—rules that did not receive

comments or that did not have comments indicating a malfunction

were not investigated and may be broken. Additionally, the 2 suc-

cessful methods for ranking rules predict which rules were likely to

be investigated, which predicts malfunctions only by proxy. Finally,

the methods may not be generalizable to other EHRs or

institutions—the methodology requires that override comments can

be retrieved and that users are providing useful information in their

comments—conditions that may not be met at all institutions.

CONCLUSION

This study develops a novel method for detecting CDS malfunctions

and contributes to the growing body of evidence that malfunctions

in CDS are common and often go undetected. Analyzing override

comments was an effective strategy for detecting malfunctions. Fur-

thermore, in several cases, comments provided a guide to diagnosing

how rules were broken and could be fixed.

The specific methods used to analyze override comments can be

adapted to suit organizations with different resources and monitoring

needs. A simple heuristic list of words that expressed frustration or

brokenness was effective at identifying broken alerts with high preci-

sion. This is a low-cost method of finding malfunctions that could be

useful even for organizations with relatively few resources to devote

to the maintenance of CDS. For organizations with more resources to

devote to monitoring CDS, analysis of override reasons can be made

more comprehensive and/or sophisticated. When it is possible and

seems fruitful to do so, we recommend that CDS knowledge manage-

ment personnel review all override comments on a daily basis, and we

have recently deployed this approach at our own organization.

Finally, the methods developed in this study may be useful for

identifying CDS malfunctions that cannot be found via other means.

When possible, we recommend using multiple malfunction detection

techniques that complement each other.
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Table 2. Summary statistics of 3 methods for ranking rules. Each method assigns a continuous score of 0 to 1 to each rule, and then ranks

rules based on their score. Lower ranks correspond to a higher score

Frequency of Override Comments Cranky Comments Heuristic Naı̈ve Bayes Classifier

Median rank of rules with malfunctions 56.5 47.5 46

Median rank of rules without malfunctions 71 98.5* 86*

Mann–Whitney U statistic 1732 936 883

Precision at 10 5/10 8/10 9/10

Precision at 20 8/20 16/20 17/20

Precision at 30 14/30 24/30 26/30

Area under the receiver operating characteristic curve (AUC) 0.487 0.723 0.738

*Median rank of rules with malfunctions is different from median ranking of rules without malfunctions with P< .0001
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