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Protein functions can be predicted based on their
three-dimensional structures. However, many multi‐
domain proteins have unstable structures, making it
difficult to determine the whole structure in biological
experiments. Additionally, multidomain proteins are
often decomposed and identified based on their domains,
with the structure of each domain often found in public
databases. Recent studies have advanced structure pre‐
diction methods of multidomain proteins through com‐
putational analysis. In existing methods, proteins that
serve as templates are used for three-dimensional struc‐
ture prediction. However, when no protein template is
available, the accuracy of the prediction is decreased.
This study was conducted to predict the structures of
multidomain proteins without the need for whole struc‐
ture templates.

We improved structure prediction methods by per‐
forming rigid-body docking from the structure of each
domain and reranking a structure closer to the correct
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structure to have a higher value. In the proposed
method, the score for the domain-domain interaction
obtained without a structural template of the multi‐
domain protein and score for the three-dimensional
structure obtained during docking calculation were
newly incorporated into the score function. We success‐
fully predicted the structures of 50 of 55 multidomain
proteins examined in the test dataset.

Interaction residue pair information of the protein-
protein complex interface contributes to domain reorga‐
nizations even when a structural template for a multi‐
domain protein cannot be obtained. This approach may
be useful for predicting the structures of multidomain
proteins with important biochemical functions.

Key words: multidomain protein, protein tertiary structure
prediction, interaction residue pair, rigid-body
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More than half of prokaryote and eukaryote genes pro‐
duce multidomain proteins with multiple partial structures
known as protein domains [1,2]. Each protein domain is
folded into a tight and stable structure that is conserved
among different multidomain proteins [3].

Because protein functions differ depending on their

We have developed a novel multidomain protein structure prediction method named PINE without the need for whole multidomain structure
templates. The score for the domain-domain interaction obtained without a structural template of the multidomain protein and score for the
three-dimensional structure obtained during protein docking calculation were newly incorporated into the score function. We successfully
predicted the structures of 50 of 55 multidomain proteins examined in the test dataset. Interaction residue pair information of the protein-
protein complex interface contributes to domain reorganizations even when a structural template for a multidomain protein cannot be
obtained.
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three-dimensional (3D) structures, determining these struc‐
tures is very important [4]. Typically, the 3D structure of a
protein is determined by X-ray crystallography analysis,
nuclear magnetic resonance analysis, or electron micros‐
copy. However, determining structures experimentally is
difficult because multidomain proteins are generally diffi‐
cult to crystallize [5,6]. Even if the entire 3D structure has
not been elucidated, structure information for protein
domains is collected in public databases such as the Protein
Data Bank (PDB) [7]. Therefore, experimental costs can be
reduced by computationally predicting the whole structure
based on the structure of each domain. Structure prediction
methods include ab initio methods [8–10], template-based
methods [11–13], and template-free methods [14–16].

Ab initio methods require high levels of computational
resources to construct an entire protein structure, and thus it
is difficult to predict the structures of all multidomain pro‐
teins using these methods [9]. Template-based methods
require homologous templates whose 3D structural infor‐
mation is known; when such proteins are not available or
only low sequence similarity proteins are available, predic‐
tion accuracy may be low [11]. Template-free methods are
based on the property that protein domains are conserved
even in multidomain proteins and can be used to predict
structures by rigid-body docking with the 3D structure of
protein domains. This method is superior to other methods
in that the entire multidomain protein structure can be pre‐
dicted from the 3D structure of protein domains stored in
the PDB. Hirako, S. et al. [16] used individual domains of
tertiary structures in two-domain proteins and structural
docking tools for protein complexes to generate structural
models for two-domain protein conformational prediction.
They developed a scoring method for selecting an appro‐
priate association model between two domains. However,
the scoring method requires information on the structure of
a homologous template multidomain protein and cannot be
used when the template structures do not exist. The number
of protein tertiary structures that can function as templates
is continually increasing [7]. A template structure may be

sufficient for protein complex structure prediction [17]; still
this approach may not be effective in multidomain proteins
[11].

In this study, we developed a new scoring method, PINE
for selecting a structural model of a two-domain protein
even when template structures cannot be obtained. This
method estimates the pattern of interaction between
domains using dimeric protein-protein interaction (PPI)
residue pair information. As a result, the association model
of the two domains can be selected with high accuracy
when a template structure cannot be obtained.

Materials and Methods
Problem setting

First, we obtained the structure of a protein with two
domains from PDB. Next, we separated each domain at the
linker region and predicted the original structure from these
two domains. The structural model was generated using a
rigid-body docking tool, and reranking (scoring) was per‐
formed for the generated structural model using a scoring
function. By reranking, a structure close to the original
structure was predicted to have a higher rank. A structure
whose root mean square deviation (RMSD) with the origi‐
nal structure was within 10 Å (acceptable structure) in the
top 10 positions was defined as a successful prediction
(Fig. 1).

Division of multidomain proteins into domains was per‐
formed according to the definition of SCOP [18]. However,
the region between domains, known as the linker, is not
always clearly defined. Therefore, we defined the linker
region as the region between the last residue of the sec‐
ondary structure of the N-terminal domain and first residue
of the secondary structure of the C-terminal domain. The
region without secondary structure between the domains
was considered as the linker. DSSP [19] was used to deter‐
mine whether secondary structures were formed for each
residue. Additionally, the linker region was excluded during
docking calculation and during model evaluation.

Figure 1 Problem setting. Step 1: We obtained a two-domain protein from the PDB and divided each domain according to the definition.
Next, we generated a structural model using a rigid-body docking tool with two input domain structures. Step 2: We calculated some scores for
each structural model. Step 3: We evaluated and reranked each model with a score function using some scores. As a result, the prediction was
considered as successful when there was at least one acceptable structure within the top 10 solutions.
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Related work: DINE
DINE is a method of reranking (scoring) the results of

rigid-body docking of each domain structure for two-
domain proteins. First, 2,000 domain-domain docking
poses are generated by rigid-body docking using ZDOCK
[20], after which scoring is performed by calculating the
linear sum of the binding energy score Szrank, inter-domain
distance score Sete, and domain interface score Sint. Finally,
the DINE score is obtained from these scores as a linear
weighted sum as follows.

DINE Score = wzrankSzrank + weteSete + wintSint

Binding energy score
The binding energy score (Szrank) is a value calculated by

ZRANK [21], a protein complex scoring tool. The score zr
obtained by ZRANK is based on van der Waals energy,
electrostatic interaction energy, and desolvation energy
[22,23]; a smaller value is preferable [24]. Szrank is calcu‐
lated with the following equation using zr, where zrmax and
zrmin are respectively the maximum and minimum zr values
for the generated poses.

Szrank = −zr + zrmax

zrmax − zrmin

Domain interface score
The domain interface score (Sint) is a value of the inter‐

face of the binding pose estimated from the homology
template structure. Protein domains with 30% or more
sequence homology may have the same spatial arrangement
and interaction surface within multidomain proteins [25,26].
Therefore, previous studies were conducted to improve pre‐
diction accuracy by predicting the interaction surface using
the known structure of a multidomain protein. The KIP
method [16] was used to predict interaction surfaces and
obtain Sint. The KIP method uses a database in which multi‐
domain proteins whose entire structures and interaction
residues are known and are clustered by homology. The
authors searched for proteins homologous to the query
multidomain protein in the database and predicted inter‐
acting residues. Sint is the ratio of this predicted interaction
residue to the interaction residue of each structural model.

Inter-domain distance score
The inter-domain distance score (Sete) is calculated from

the statistics of the residue length of the linker region and
inter-domain distance. Sete is calculated using the following
equation

Sete =

1 if de − μe L ≤ σe L

2 −
de − μe L

σe L if σe L < de − μe L ≤ 2σe L

0 if de − μe L > 2σe L

where L is the number of residues in the linker region, de is
the distance between domains of the structural model, μe(L)
and σe(L) are the mean and standard deviation of the dis‐
tance between domains when the number of linker residues
is L, respectively; μe(L) and σe(L) are based on the statistics
from 1,657 multidomain proteins [16].

Proposed method: PINE
The DINE Sint function cannot be calculated when no

template proteins are available. DINE uses structural infor‐
mation of homologous multidomain proteins as query pro‐
teins to calculate Sint. Therefore, in this study, we propose a
new scoring method named PINE. PINE solved this
problem by using a heterodimeric interaction residue pair
score Sppi, which is a new scoring term for predicting the
interaction surface, without using a protein as a homolo‐
gous template, and docking score Sdock, calculated during
rigid-body docking. Figure 2 shows the flow of the pro‐
posed PINE method.

Model generation
Generation of the structural model was performed using

MEGADOCK 4.0.2 [27,28]. The top three structural
models of the docking score were output for each rotation
angle, and the number of rotation angles was 3,600. There‐
fore, 3×3,600=10,800 poses were used for structural pre‐
diction of one multidomain protein (the option -t 3 -N
10800 was used). Among the domains of multidomain pro‐
teins, we considered the domain with a large number of
residues as the receptor (argument of -R option) and that
with few residues as the ligand (argument of -L option).
Moreover, domain-domain docking was performed by
excluding the linker region.

Sppi and Sdock

Rather than using the score based on the interaction sur‐
face prediction in the score function of the existing method,
Sint, two new terms were used. The interaction amino acid
residue score (Sppi) derived from the PPI and the docking
score (Sdock) derived from the docking calculation with
MEGADOCK are new terms in the proposed score function
of PINE. Szrank and Sete are the same as those used in the pre‐
vious study [16]. To calculate Szrank, hydrogen must be
added to the structural model, which was performed using
reduce ver. 3.23 [29]. The score function is defined as
follows:

PINE Score = wzrankSzrank + weteSete + wppiSppi + wdockSdock .

Interaction amino acid residue score
The interaction amino acid residue score is a term that

focuses on the combination of interacting residues. The
domain-domain interaction interface is predicted from the
pair of amino acid residues involved in the PPI. This
eliminates the need to know the entire structure of the
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multidomain protein homologous to the prediction of the
interaction surface. In this study, if the distance between Cα
atoms in two domains was within 8 Å, the residue pair was
defined as interacting. Proteins are often multimers, and the
PDB catalogs conformations of multimers. Therefore,
among the dimers stored in the PDB, the number of amino
acid residue pairs present in interacting positions was
counted using 12,532 complex structures excluding redun‐
dancy based on UniProtID. As a result, a 20×20 upper
triangular matrix (PPI matrix) P=(pij) indicating the number
of interacting amino acid residues pairs was obtained.
However, for each element in the PPI matrix, the number of
interaction residue pairs counted was the value obtained by
min-max normalization of the minimum value to 0 and
maximum value to 1 as follows:

pi j
pi j − min pi j

max pi j − min pi j
.

In addition, the number of amino acid residue pairs inter‐
acting between domains was counted from each domain
docking structure model generated, and the 20×20 upper
triangular matrix (domain contact matrix) C=(cij) was
determined. For these two matrices, the interaction amino
acid residue score Sppi of each model was calculated by the
following formulas:

Sppi = ∑i, j = 1
20 ci j pi j

∑i, j = 1
20 ci j

,

Sppi
Sppi − min Sppi

max Sppi − min Sppi
,

which has a minimum value of 0 and maximum value of 1.

Docking score
Model generation was performed using MEGADOCK

ver. 4.0.2 [27,28]. Sdock is the docking score calculated for
each of the 10,800 structural models to be generated and
was min-max normalized, so that the score ranges between
0 and 1.

Dataset
For consistency purposes, we used the same training and

test datasets that were used by Hirako, S. et al. [16]. The
training set contained 62 non-redundant two-domain pro‐
teins originally proposed by Wollacott, A. M. et al. [8]
excluding the 14 proteins defined as single-domain proteins
in SCOP [18]. The test set contained 55 non-redundant
two-domain proteins used by Cheng, T. M. K. et al. [14].
Parameter optimization of the score function weights, wzrank,
wete, wppi, and wdock, was conducted using the training
dataset, and evaluation of PINE was performed using the
test dataset. These training and test datasets are shown in
Tables 1 and 2, respectively.

Parameter optimization
The score function weights wzrank, wete, wppi, and wdock were

optimized using the training dataset. Each weight was

Figure 2 a. Outline of the proposed method. Step 1: Obtain domains as in the existing method and generate 10,800 structural models for each
multidomain protein with the rigid-body docking tool MEGADOCK. Docking score is calculated at the time of this docking calculation. Step 2:
Calculate the proposed score for each structural model. Step 3: Rerank the structural model with the score function PINE using each score and
predict the structure. b. Calculation of the interaction amino acid residue score Sppi. The PPI matrix P was generated from protein complex
structures in advance and the domain contact matrix C was generated from a predicted two-domain protein structure. Next, Sppi of the predicted
structure was calculated with P and C. This score predicts interactions without requiring a template for the overall structure of the
multidomain protein.
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Table 1 Detail and prediction result of Wollacott dataset (training set, 62 proteins). (values in parentheses are RMSD (Å))

PDB IDa Domain 1 Domain 2 Linker length Linker region
Best rank of acceptable docking pose

Initial weight Optimized weight

1A62A 1–44 49–125 4 45–48 4 (1.2) 2 (1.2)
1A6QA 2–290 299–368 8 291–298 1 (0.8) 1 (0.8)
1A79C 9–81 85–179 3 82–84 1 (1.1) 1 (1.1)
1A8DA 1–243 266–452 22 244–265 1 (1.6) 1 (1.6)
1A8LA 1–116 123–226 6 117–122 1 (0.8) 1 (1.4)
1AMMA† 1–80 90–174 9 81–89 6 (0.9) 3 (0.9)
1AOAA 12–244 261–375 16 245–260 2 (1.8) 1 (1.8)
1AVAA 1–343 352–403 8 344–351 1 (1.6) 1 (1.6)
1B63A 2–215 218–331 2 216–217 1 (1.2) 1 (1.3)
1BAGA† 1–343 361–425 19 342–360 1 (1.3) 1 (1.1)
1BG6A 4–185 189–359 3 186–188 1 (1.7) 1 (1.3)
1BI5A 1–232 237–389 4 233–236 1 (1.4) 1 (1.4)
1BKBA 4–73 77–139 3 74–76 52 (7.7) 10 (4.1)
1BU6O 3–252 260–499 7 253–259 1 (1.6) 1 (1.6)
1C2AA 4–56 72–123 15 57–71 8965 (8.6) 7455 (8.6)
1CA1A† 1–245 259–370 13 246–258 3 (1.2) 2 (1.2)
1CDYA 1–96 99–178 2 97–98 4 (1.8) 5 (1.8)
1CJXB 4–143 156–356 12 144–155 1 (1.6) 1 (1.6)
1CLCA† 35–130 132–575 11 129–131 1 (1.8) 1 (1.7)
1CLIB 1021–1168 1180–1345 11 1169–1179 1 (1.5) 1 (1.5)
1CRZA 7–136 145–409 8 137–144 1183 (9.9) 806 (9.9)
1CTUA 1–148 157–294 8 149–156 1 (2.4) 1 (1.7)
1CVRA 1–339 356–432 16 340–355 1 (5.9) 1 (5.9)
1CX4A 130–264 267–412 2 265–266 1 (1.8) 1 (1.8)
1D09B 1–95 102–153 6 96–101 56 (4.3) 173 (4.3)
1D5RA 14–184 192–351 7 185–191 1 (4.3) 1 (4.3)
1DZFA 5–140 152–215 11 141–151 717 (7.9) 520 (7.8)
1EGAB 4–171 190–296 18 172–189 78 (1.9) 21 (1.9)
1EOVA 71–198 208–557 9 199–207 281 (9.7) 440 (9.7)
1EUDA 1–128 134–306 5 129–133 1 (1.6) 1 (1.4)
1F1ZA 8–167 170–267 2 168–169 1 (1.6) 1 (1.6)
1F3AA 1–77 85–221 7 78–84 1 (1.4) 1 (1.4)
1F5NA 7–276 290–583 13 277–289 1 (1.3) 1 (1.3)
1FMTA 1–200 209–314 8 201–208 1441 (8.4) 422 (1.1)
1FTSA 201–280 294–495 13 281–293 1 (1.1) 1 (1.1)
1GCYA 1–355 362–418 6 356–361 1 (1.6) 1 (1.6)
1GV1B 1–141 144–299 2 142–143 1 (1.3) 1 (1.3)
1HANA 2–118 140–289 21 119–139 1 (1.4) 1 (1.4)
1HYEA 1–144 149–313 4 145–148 1 (1.7) 1 (1.7)
1I8DB† 1–86 105–206 18 87–104 891 (0.9) 2189 (0.9)
1J8MF 3–83 99–297 15 84–98 1 (1.4) 1 (1.4)
1JAKA 8–147 153–506 5 148–152 1 (1.7) 1 (1.7)
1JGTB 2–206 219–508 12 207–218 1 (1.3) 1 (1.3)
1JPMA 1–122 129–359 6 123–128 1 (1.3) 1 (2.1)
1JPNA 1–85 99–296 13 86–98 1 (1.4) 1 (1.4)
1K0MA 6–87 101–240 13 88–100 1 (1.4) 1 (1.3)
1KBWC 13–155 165–314 9 156–164 1 (1.6) 1 (1.6)
1KNYA 1–124 128–253 3 125–127 3 (1.8) 8 (1.8)
1KS9A 1–165 169–291 3 166–168 1 (1.0) 1 (1.3)
1LAMA 1–158 161–484 2 159–160 1 (1.2) 1 (1.2)
1LBUA 1–76 88–213 11 77–87 1 (1.5) 1 (1.5)
1MGTA 1–83 91–169 7 84–90 1 (1.5) 1 (1.5)
1NKRA 6–99 109–200 9 100–108 398 (7.7) 388 (9.0)
1PGSA† 4–135 150–314 14 136–149 1 (1.3) 1 (1.3)
1PIIA 1–253 258–452 4 254–257 1 (1.9) 1 (1.9)
1QCSA 0–83 87–201 3 84–86 3 (2.5) 1 (8.1)
1QFJC 1–92 105–232 12 93–104 1 (1.0) 1 (1.0)
1QH4B 2–99 112–381 12 100–111 1 (1.2) 1 (1.2)
1RHSA 1–135 158–293 22 136–157 1 (1.4) 1 (1.2)
1SMDA 1–401 406–496 4 402–405 1 (1.1) 1 (1.1)
1TF4B 1–444 463–605 18 445–462 1880 (1.7) 60 (2.6)
2REBA 3–266 270–328 3 267–269 1 (1.3) 1 (1.3)

a The first 4-letters are PDB ID and the 5th letter is chain ID. † It is also included in Cheng dataset (Table 2).
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Table 2 Details and prediction result of Cheng dataset (test set, 55 proteins) (values in parentheses are RMSD (Å))

PDB IDa Domain 1 Domain 2 Linker length Linker region Best rank of acceptable
docking pose by PINE

1A8PA 2–92 109–258 16 93–108 1 (1.1)
1AH5A 3–216 226–313 9 217–225 1 (1.5)
1AMMA† 1–80 90–174 9 81–89 3 (0.9)
1AORB 1–204 218–605 13 205–217 1 (1.1)
1AQHA 1–348 362–448 13 349–361 1 (1.1)
1AR4A 1–80 94–201 13 81–93 1 (1.1)
1AW7A 1–89 98–194 8 90–97 1 (1.4)
1AW9A 2–76 95–217 18 77–94 1 (2.0)
1B06A 3–89 103–210 13 90–102 1 (1.7)
1B25A 1–202 216–619 13 203–215 1 (1.6)
1B8PA 3–156 161–329 4 157–160 1 (1.3)
1BAGA† 1–341 361–425 19 342–360 1 (1.1)
1BAYA 1–73 85–209 11 74–84 1 (0.8)
1BIKA 25–76 95–134 18 77–94 1 (1.2)
1CA1A† 1–245 259–370 13 246–258 2 (1.2)
1CHMB 2–155 166–402 10 156–165 5 (1.8)
1CLCA† 35–128 140–575 11 129–139 1 (1.7)
1CLVA 1–373 386–471 12 374–385 1 (1.4)
1CR5B 23–101 121–207 19 102–120 1 (0.9)
1DLUB 4–260 274–392 13 261–273 1 (1.5)
1E5MA 6–249 260–416 10 250–259 1 (1.1)
1E9IB 1–132 147–430 14 133–146 1 (1.4)
1EBGA 1–132 143–436 11 133–143 1 (1.4)
1EE0A 20–230 244–395 13 231–243 1 (1.6)
1ET6B 4–93 105–209 11 94–104 1 (1.7)
1ET9A 1–92 101–204 8 93–100 1 (1.5)
1ETPB 1–86 102–190 15 87–101 224 (1.1)
1F2EA 1–74 90–201 15 75–89 1 (1.0)
1FDRA 2–91 108–248 16 92–107 1 (1.6)
1FFHA 2–85 99–295 13 86–98 1 (0.8)
1FFUF 1–173 181–287 7 174–180 1 (0.9)
1FIQB 224–410 419–528 8 411–418 1 (1.7)
1GK8C 7–145 155–475 9 146–154 1 (1.7)
1GSQA 1–71 83–202 11 72–82 1 (1.6)
1H1OB 213–285 302–383 16 286–301 2 (0.9)
1I8DB† 1–86 105–206 18 87–104 2189 (0.9)
1IK6A 1–180 201–326 20 181–200 16 (1.0)
1J3NA 1–240 254–408 13 241–253 1 (1.0)
1JLVA 1–73 89–207 15 74–88 1 (1.0)
1KGZA 12–75 87–344 11 76–86 1 (1.2)
1KZLA 1–86 105–202 18 87–104 213 (1.1)
1MB8A 56–171 188–293 16 172–187 1 (3.9)
1N5WF 1–173 183–286 9 174–182 1 (1.7)
1OE7A 4–79 98–207 18 80–97 1 (0.8)
1OI7A 1–113 139–288 25 114–138 1 (9.5)
1P5UA 9–143 155–234 11 144–154 211 (2.1)
1PBJA 2–56 74–121 17 57–73 1 (1.1)
1PDYA 1–132 143–433 10 133–142 1 (1.3)
1PGSA† 4–145 150–314 14 136–149 1 (1.3)
1PMTA 1–74 8–8201 14 75–88 1 (1.7)
1QNNA 1–79 91–191 11 80–90 1 (1.4)
1R5AA 2–75 91–215 15 76–90 1 (1.7)
1R6LA 1–143 160–239 16 144–159 1 (1.4)
1RWZA 1–109 129–244 19 110–128 1 (1.1)
1V8GA 1–61 73–329 11 62–72 1 (1.4)

a The first 4-letters are PDB ID and the 5th letter is chain ID. † It is also included in Wollacott dataset (Table 1).

Matsuno et al.: PINE: multidomain protein structure prediction 7



assigned an integer value of 1–10. First, the structural
model was reranked using a score function with all weights
set to 1. As a result, 51 of 62 proteins in the training dataset
had at least one structure model whose RMSD was less
than 10 Å, which is considered as an acceptable model,
within the top 10 poses. From this initial state, we changed
each weight by 1 and searched for the weight (optimized
weight) that maximized the number of proteins with at least
one acceptable model within the top 10 poses.

Evaluation performance
RMSD was used to evaluate the generated structural

model, which was defined as follows:

RMSD = 1
N ∑i = 1

N
di

2 ,

where N is the number of atoms and di is the distance
between atoms with the same residue number for the
structural model and native structure. Additionally, when
calculating the RMSD of the structural model, we only
considered Cα atoms between the native structure of the
domain with fewer residues and structural model among the
two domains of the structural model. We fitted the domain
with a large number of residues (receptor) and calculated
the RMSD of the domain with a small number of residues
(ligand).

Evaluation of the score function was performed using a
test dataset. When 10,800 structural models were reranked
using a score function for one multidomain protein, the pre‐
diction was defined as a ‘success’ if at least one ‘accept‐
able’ (RMSD <10 Å) model within the top 10 positions
was obtained. For the 55 proteins in the test dataset, we
determined the score function as the number of successful
predictions.

Results and Discussion
Optimized parameters for score function

We optimized the four weights wzrank, wete, wppi, and wdock

of the score function using the training set for optimization
(62 proteins). In the initial state in which all weights were
1, prediction was successful for 51 of 62 proteins. After
optimizing the weights, the optimized weights were
wzrank=9, wete=2, wppi=1, and wdock=4. When the training
dataset was predicted using the score function with this
combination of weights, prediction was successful for 52
proteins. The protein (PDB ID: 1BKB) that was newly suc‐
cessfully predicted by weight optimization, had a structural
model with a smaller RMSD reranked higher than with the
initial state.

Score function evaluation
After reranking the test dataset (55 proteins) using the

optimized weights shown in the previous section, the

proposed method obtained ‘acceptable’ predictions (where
the top 10 models include at least one model with RMSD
<10 Å) for 50 multidomain proteins among the 55 tested.
On the other hand, the baseline method (only using Szrank

and Sete) in which there was no template and the interaction
surface obtained acceptable predictions for 47 proteins
among 55 (while the original DINE successfully predicted
46 proteins [16]). Thus the proposed method, PINE, suc‐
cessfully identified 3 more proteins than the baseline
method. In addition, PINE obtained 49 ‘good’ predictions
(where the top 10 models include at least one model with
RMSD <5 Å) among 55 proteins, whereas DINE obtained
39 among 55 [16].

Residue pair
When reranking was performed using only interaction

amino acid residue scores, only one of the 55 proteins
showed an acceptable model within the top 10 positions.
The successfully predicted protein (PDB ID: 1BAG)
reranked a structural model with an RMSD of 4.3 Å at
rank 9.

Docking score
When the structural model was reranked by docking

score only, the prediction was successful for 48 of 55 pro‐
teins. The score can predict more proteins than other terms
when it was calculated using only one term.

Contribution of score term
To investigate the contribution of each term (Szrank, Sete,

Sppi, Sdock) to the score function, the prediction was per‐
formed using a score function in which the combination of
terms used was changed (Table 3). The weight of the score
function was also optimized in the same manner. The test
dataset was reranked using this score function, and Figure 3
shows the distribution of acceptable models.

Table 3 Differences in success rate by combination of scores

Terms of score function Rank 10 Rank 20 Rank 500

Szrank 0.82 0.85 0.95
Sete 0.75 0.87 0.93

Scont 0.02 0.05 0.51
Sdock 0.87 0.91 0.96

Szrank +Sete 0.85 0.85 0.95
Szrank +Scont 0.84 0.84 0.93
Szrank +Sdock 0.85 0.89 0.95

Sete +Scont 0.09 0.13 0.67
Sete +Sdock 0.87 0.91 0.96

Scont +Sdock 0.84 0.85 0.95
Szrank +Sete +Scont 0.85 0.87 0.95
Szrank +Sete +Sdock 0.91 0.91 0.98
Szrank +Scont +Sdock 0.85 0.89 0.95

Sete +Scont +Sdock 0.87 0.91 0.96
Szrank +Sete +Scont +Sdock 0.91 0.93 0.98
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Binding energy score
The weight of each score term in the proposed method

was optimized using a training dataset. Among these
weights, a largest value was assigned to the binding energy
score, wzrank=9, which was more than 2-fold higher than the
other weights. Additionally, when the score function con‐
taining Szrank was compared to that not containing this value,
a higher success rate was achieved. Therefore, the binding
energy score was a major contributor to this score function.
However, 5 of 10 proteins that could not be predicted using
only the binding energy score were predicted using the
proposed method.

Docking score
Prediction using only docking score was successful for

48 of 55 proteins. This was the highest prediction accuracy
among those using a single score term. In addition, the
weight of Sdock and wdock had the second highest value (=4)
after wzrank. Therefore, docking scores were considered to
contribute significantly to the accuracy of the proposed
method. Among the 10 proteins that failed to be predicted
by the binding energy score alone, 5 proteins were success‐
fully predicted by the proposed method. Because these pro‐
teins were reranked to the top by prediction based on the
docking score, prediction using the proposed method was
successful. In fact, the proposed method showed a higher
success rate than the score function using the three terms
other than Sdock.

Inter-domain distance score
Prediction accuracy using only the term based on the

inter-domain distance Sete was not high (success rate of
75%), and prediction using a single score was difficult.
However, the score function with Szrank, Sdock, and Sete using
two terms with high prediction accuracy in a single case
and inter-domain distance score showed higher prediction
accuracy than that using only Szrank and Sdock. This may be
because the distance between the domains was limited.

Interaction amino acid residue score
The value of wppi was the smallest among the four

weights. In addition, the number of proteins successfully
predicted with only this term was one of the 55 proteins,
showing the lowest prediction accuracy. As shown in
Figure 4, there was variation from the predicted protein
structure (PDB ID: 1BAG), which was the only successful
prediction using only Sppi. The only model with an RMSD
of less than 10 Å was the 9th model, and the models ranked
1st to 3rd were not similar to the native structure. However,
the proposed method using the interaction amino acid
residue score predicts more acceptable structures at higher
ranks (Fig. 3). This indicates that the type of residue pair
interacting in the protein complex also affects interactions
between domains.

Figure 3 Total number of acceptable structures in each score function. The score function using the binding energy score reranks many
acceptable structures to higher ranks. Moreover, although the interaction amino acid residue score could predict only one protein in the test
dataset, the score function containing this term reranks many acceptable structures to higher ranks. Particularly, comparing the proposed method
with the score function excluding interaction amino acid residue score from the proposed method, the prediction accuracy was the same, whereas
the number of acceptable structures within the top 500 predicted by the former method was larger than that predicted by the latter method.
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Score function evaluation
Table 4 shows the proteins for which prediction failed.

These five cases, also failed when the prediction was per‐
formed based on binding energy. This indicates that predic‐
tion using the proposed method fails if the wzrank value is
large and prediction accuracy is poor. Additionally, the
interaction surface of the native structure of the proteins for
which prediction failed were smaller than 1,400 Å2. In
these cases, because of the weak interaction, the results of
protein docking became worse [30], and thus prediction
based on binding energy and the generation accuracy of the
structural model by docking showed worse results. There‐
fore, this prediction failed.

Figure 4 PDB ID: 1BAG’s receptor domain (gray), 1BAG’s
native ligand domain (magenta), four ligand domain models (orange),
and the linker region (cyan). This is the only protein in which the per‐
missive structure exists within the top 10 in the prediction based on
the interaction amino acid residue score alone. However, the top three
structures are far from the native position, and their positions are dis‐
jointed. The acceptable model predicted to be 9th. Even for other pro‐
teins, predictions with only interaction amino acid residue scores may
dislocate the position of the structural model to prevent concentration
near the native structure.

Table 4 Best rank of acceptable pose for which prediction failed
(values in parentheses are RMSD (Å))

PDB ID
The best rank of acceptable structure

Interface area
only Szrank only Sdock PINE

1ETPB 1,243 (1.2) 36 (1.1) 224 (1.1) 784 Å2

1I8DB 1,296 (2.4) 891 (0.9) 2,189 (0.9) 821 Å2

1IK6A 106 (3.1) 14 (1.0) 16 (1.0) 1,090 Å2

1KZLA 1,728 (2.9) 12 (1.2) 213 (1.1) 979 Å2

1P5UA 472 (2.1) 3,255 (2.1) 211 (2.1) 585 Å2

Factors affecting prediction accuracy
Figure 5 shows an example of successful prediction in

this study. This protein (PDB ID: 1AOR) was also reranked
as 1st in the docking score and binding energy score by
ZRANK. Of the generated structural models, the centroids
of the top 100 ligand models ranked by docking scores
were plotted. The results indicated that the position of the
ligand domain was correctly predicted. In this case, the
structure model ranked 1st according the docking score
was also predicted based on the binding energy score and
the proposed method. Moreover, the interaction surface was
predicted accurately, and the high-rank structure models
were gathered near the native structure. Another case
visualizes how PINE works successfully. The protein in
Figure 6 (PDB ID: 1BKB) suggests that the ligand
centroids of the top 100 models by PINE were closer to the
native position than the ligand centroids of the top 100
from the initial docking.

However, the structural model of the ligand domain for
the failed protein (PDB ID: 1P5U) was concentrated at a
position that differed from that of the native structure
(Fig. 7). This indicates that the model generation accuracy
by MEGADOCK was low for this protein. Moreover, the
prediction was poor even when reranking by binding
energy was performed; as a result, prediction failed when
using the proposed method. As described in the previous
section, protein 1P5U may have failed the prediction
because of its small interaction surface. The interaction
surface area of the successfully predicted protein 1AOR
was 3,201 Å2, whereas that of the failed protein 1P5U was
585 Å2. This indicates that 1P5U domains interact on a

Figure 5 Native protein structure of PDB ID: 1AOR and center
of gravity for top 100 ligands in docking score. Gray indicates the
receptor domain of 1AOR, magenta indicates the native ligand
domain, orange indicates top 1 ligand structure model predicted by
PINE, cyan indicates the linker region, and yellow spheres indicate
the center of gravity of the top 100 ligand models generated by initial
docking.
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small interface compared to ordinary PPI interface. The
domain-domain interaction form was constrained by its
linker, leading to distance limitation, and was different
from PPI with freely forming interaction. Hence, domains

Figure 6 Native protein structure of 1BKB and center of gravity
for top 100 ligands in docking score and PINE. Gray indicates the
receptor domain of 1P5U, magenta indicates the ligand domain, cyan
indicates the linker region, yellow sphere indicates the center of grav‐
ity of the ligand in the structural model generated by initial docking,
and green sphere indicates the center of gravity of the ligand in the
structural model generated by PINE.

Figure 7 Native protein structure of 1P5U and center of gravity
for top 100 ligands in docking score and PINE. Gray indicates the
receptor domain of 1P5U, magenta indicates the ligand domain, cyan
indicates the linker region, yellow sphere indicates the center of grav‐
ity of the ligand in the structural model generated by initial docking,
and green sphere indicates the center of gravity of the ligand in the
structural model generated by PINE.

in a multidomain protein can interact with each other not
only in a broad interface but also on a narrow interface. In
such a case, accurate prediction using free form docking
may be difficult. Figure 7 shows that structural models may
be generated on the wrong surface. As observed for other
failed proteins, the center of gravity of the top 100 struc‐
tural models of the docking score was not concentrated at
the position of the ligand domain in the native structure. In
contrast, in most proteins which were predicted at the 1st
rank, the center of gravity was concentrated at the position
in the native structure. We expect that it is possible to gen‐
erate a highly accurate structural model by modifying it so
that the interaction surface can be limited when generating
the model.

Further validation for domain-domain linking
Unlike PPI, the interaction between domains of multi‐

domain proteins is limited in distance by linking. Thus, it is
not always the case that the domain binding is coupled with
an interface which obtained optimal binding free energy.
Therefore, we verified whether the model selection could be
improved by changing the domain-domain linking score,
which limits the distance between domains. Specifically,
the Sete formula was modified as follows to give a penalty
depending on the distance between domains.

Sete′ =
1 if de − μe L ≤ σe L

2 −
de − μe L

σe L if σe L < de − μe L

As a result of this improvement, the protein (PDB ID:
1QCS), as an example, had the number of correct models
within the top 100 increased from 12 by original PINE to
22 by modified PINE. However, the S'ete did not improve
overall performance. If the linker length is short, scoring
with Sete will work, but it may not work well if the linker
length is long. As shown in Figures 6 and 7, some models
were not properly located within reach of the linker. As a
result, it can be considered that it is difficult to score appro‐
priately only by statistical information of linker length and
interdomain distance. Development of a more refined score
function depending on the secondary structure of the linker
and the vector direction at the domain terminal is needed.
In addition, since a turn that suddenly changes direction at
the terminal of the linker is unlikely to occur intrinsically, it
is necessary to consider other methods such as removing a
structural model that takes such a difficult conformation.

Conclusion
Most proteins have multiple domains. Because these

domains are folded and stable, various methods can be
used to predict the whole protein. The rigid-body docking
method uses the 3D structure of the domains and does not
require a template for predicting the whole structure of a
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multidomain protein; this method can also predict whole
structures from partial structures. In this study, we
improved the method for predicting multidomain protein
structures with two domains through computation. Existing
methods for predicting multidomain protein structures by
rigid-body docking using protein domains require template
proteins with homology to the query proteins, particularly
in the interface area.

In this study, we proposed a method for predicting
multidomain protein structure using an interaction amino
acid residue score without requiring a template protein
structure. This score estimates domain-domain interactions
based on protein-protein interactions. The interaction and
docking scores calculated by docking analyses were used as
the score function rather than the interface prediction of the
existing method. As a result, the prediction was possible
even when no template protein structure was available; by
using the interaction amino acid residue score, more
acceptable structures could be reranked to higher values.
Using the interaction amino acid residue score alone made
reranking into the top 10 difficult, but the score contributed
to improving the reranking. This suggests that the predic‐
tion of the interaction surface between domains is based on
the PPI. Additionally, in cases where the prediction accu‐
racy of docking and energy scoring is poor, the interaction
surfaces tend to be small. In such a case, a score that can
predict interaction surfaces between domains is important.
For the structural prediction of multidomain proteins that
are difficult to predict, designing interaction amino acid
residue scores corresponding to cases with small interaction
surfaces should be further examined. A previous study [16]
gave a uniform score for the structural model that fits the
linker length condition based on the inter-domain distance.
Studies are needed to improve this approach, such as by
gradually changing this score or giving a higher score to a
structural model closer to the native structure.
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