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Abstract

Introduction: Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is
known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-
gathered weather data may be useful for anticipating disease risk and planning interventions.

Methodology/Principal Findings: We fit time series models using meteorological covariates to predict CL cases in a rural
region of Bahı́a, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models
accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up
to 16% relative to forecasts from a null model accounting only for temporal autocorrelation.

Significance: These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to
forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological
mechanisms by which weather influences CL risk merit future research attention as public health intervention targets.
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Introduction

Diseases caused by the Leishmania parasites, including cutane-

ous leishmaniasis (CL), are important in tropical and subtropical

areas worldwide, causing over one million cases per year [1].

Although the burden of leishmaniasis in the Americas has

reportedly decreased [2], areas of northeastern Brazil, where

Leishmania (Viannia) braziliensis is endemic, have seen increasing

CL case notifications in recent decades [3,4]. Recurring epidemics

in this region comprise an increasing component of overall CL

burden in Brazil [5,6]. The endemic area is additionally

expanding eastward from its historical center in the interior

cerrado uplands toward coastal Atlantic forests [7,8].

The increase in CL incidence and geographic range expansion

by L. (V.) braziliensis are significant public health concerns. While

CL does not cause death in the absence of complications, the

disease causes debilitating and stigmatizing lesions and may

progress to dangerous manifestations including mucosal or

disseminated infection if treatment is not initiated early in the

clinical course [9–11]. Individuals infected with L. (V.) braziliensis

are more likely than other CL victims to experience such

complications, which have been observed with increasing

frequency in northeastern Brazil over the last three decades

[3,7,9]. These trends are problematic because current chemother-

apeutic regimens for CL have limited efficacy and because an

increasing proportion of L. (V). braziliensis infections are resistant

to first-line antimonial treatment [7,12–14].

Forecasting CL epidemics could aid the allocation of public

health resources in advance of high-risk periods [15]. Poor

understanding of L. (V.) braziliensis has historically hindered

efforts to anticipate CL risk in Brazil [16–18]. However, as for

other vector-borne infections, variations in rainfall and tempera-

ture might be associated with outbreaks [15,19–22]. Seasonal and

weather-dependent population dynamics of insect vectors that

transmit CL in South America motivate consideration of climatic

and meteorological factors that may drive disease incidence [23–

29]. Recent studies have demonstrated that local meteorological

observations and global climate patterns such as the El Niño

Southern Oscillation improve CL forecasting in Costa Rica

[15,19,22,30]. Although correlations between weather and CL
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[31] or visceral leishmaniasis (VL) [32] have been documented

elsewhere, these observations have not yet led to the development

disease forecasting systems serving most populations at risk [15]. In

this study, we sought to identify potential associations between

weather and CL risk and used these findings to develop model-

based early warning systems for CL in a region of Northeast Brazil

with endemic L. (V.) braziliensis transmission.

Materials and Methods

Disease data
The Corte de Pedra health post in Presidente Tancredo Neves,

Bahı́a, Brazil maintained paper records for leishmaniasis cases

treated from 1988 onward. The health post treats over 90% of CL

cases from surrounding municipalities; although the area has

historically supported L. amazonensis, only L. (V.) braziliensis has

been isolated from CL patients in the past two decades

[7,8,14,33,34]. We used an aggregated time series comprising

10% of leishmaniasis cases identified at the health post; the

dataset, and epidemiologic and clinical summaries of the cases, are

described in a previous article [7]. Institutional review boards of

the Federal University of Bahia and Weill Cornell Medical College

approved the human subject protocol for the original study. We

considered only CL cases to avoid double-counting CL patients

progressing to disseminated or mucosal infection after initial

treatment and to minimize heterogeneity in latent and pre-

treatment periods.

Meteorological data
We obtained daily ground-surface meteorological observations

from all weather stations within a 500 km radius of the health post,

as reported through the historical databank of the Instituto

Nacional de Meterologia (INMET; http://www.inmet.gov.br/

portal/). Daily meteorological data were available from 11

weather stations in and adjacent to Bahı́a as listed in the

supplement (Table S1). Data from the weather stations were

sparse prior to 1992. To allow consideration of lags up to 24

months in length between weather exposures and disease

outcomes, we considered only cases presenting for treatment from

1994 onward. To monitor ENSO variations, we used the monthly

Multivariate ENSO Index (MEI) [35], which quantifies meteoro-

logical anomalies related to variations in sea surface temperature

in Niño Region 3.4 of the Pacific Ocean (5uN–5uS, 120u–170uW).

Since MEI is computed as a two-month running average, we

matched the disease cases in the current month with the MEI that

covered the current and previous month.

Because the location of the weather stations does not necessarily

match the study area, we interpolated [36] the time series of

meteorological data for the study location based on the

surrounding weather stations. We describe the interpolation

procedure in detail in the supplemental methods (Text S1). Using

these interpolated time series, we calculated the expected mean

noontime temperature (uC), relative humidity (%), days with

rainfall (%), and total daily rainfall (cm) within each municipality

in the study area for each month over the period 1992–2008. To

aggregate values at the regional level, we took the mean

interpolated value for each month across all municipalities.

Time series modeling
We normalized the time series of monthly CL cases by taking

the square root. We identified an autoregressive integrated moving

average (ARIMA) or seasonal ARIMA (SARIMA) specification for

a null model describing temporal dependence in the transformed

case series. Formal descriptions of the ARIMA and SARIMA

frameworks, and procedures for model identification, are present-

ed elsewhere [37,38]. We determined an appropriate order for

non-seasonal and seasonal autoregressive, integrated, and moving-

average parameters in the null model according to three factors:

(1) we identified significant lags in the autocorrelation and partial

autocorrelation functions computed from the time series (Fig-
ure 1); (2) we ensured residuals from the null models did not

retain significant temporal autocorrelation based on the Ljung-

Box test [39] and inspection of the autocorrelation and partial

autocorrelation functions computed from the residuals; and (3) we

investigated potential overfitting relative to simpler order specifi-

cations according to the Akaike and Bayesian Information Criteria

(AIC and BIC) [40,41].

We used a common pre-whitening approach to select lags of the

predictors to be used as covariates in forecasting models [37,42]. The

first step involved fitting a unique (S)ARIMA model to each predictor

variable (Xi) on the basis of the variable’s autocorrelation and partial

autocorrelation functions, reducing the residuals of the Xi input to

white noise. We used the fitted models for the predictors to filter the

transformed case series (Y). We computed the cross-correlation

function (CCF) between the residuals of the Y and Xi series and tested

for significance at the 95% confidence level (cut-off at 1.96n21/2,

where n was the length of the time series in months). We considered

as covariates all lags of the Xi variables where the absolute value of the

CCF between the filtered series exceeded the cut-off.

We partitioned the data into an initial ‘‘training’’ period

comprising observations for the interval ending in 2004 (132

months), and a ‘‘validation’’ period for the remaining 48 months

from 2005 to 2008. The data from the training period served as a

basis for estimating the initial autocorrelation and partial

autocorrelations to be used for time-series modeling and lag

filtering. We parameterized models to fit the training data and

used the fitted models to forecast the number of cases in future

time periods. The model fit was updated iteratively with the next

most recent month, and new forecasts were generated based on

the updated models. We generated forecasts at predictive horizons

ranging from one month to the maximum number of months

ahead that would be possible to predict from incoming data; the

shortest significant lag in the CCFs thus specified the maximum

Author Summary

Cutaneous leishmaniasis (CL) is a disease resulting from
infection by the Leishmania parasites, which humans may
acquire when bitten by an infected sandfly. From a public
health standpoint, it is important to identify cases early
and monitor patients’ clinical outcomes because unsuc-
cessfully-treated patients are at risk for severe complica-
tions. Since weather conditions affect survival and repro-
duction of sandflies that transmit Leishmania, routinely-
gathered weather and climate data may be useful for
anticipating CL outbreaks, bolstering clinical capacity for
high-risk periods, and initiating interventions such as
active case-finding during these periods to limit disease
burden. Here we assessed whether the number of CL cases
occurring per month in a rural region of Bahı́a, Brazil was
associated temperature, humidity, precipitation, and El
Niño sea surface temperature oscillation patterns observed
during preceding seasons. We formulated models that
improved accuracy of one, two, and three month-ahead CL
predictions by accounting for weather. Forecasts of this
nature can contribute to reducing CL burden by informing
resource allocation and intervention planning in prepara-
tion for epidemics.
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forecast horizon (3 months). We centered and scaled all covariates

prior to modeling by subtracting their means and dividing by their

standard deviations; this allows parameters to be interpreted in

terms of covariate standard deviation units to facilitate comparison

of effect sizes [43,44]. As a linear transformation of the covariates,

this maintains a linear functional form relating measured

predictors to square root-transformed cases. Models predicting

square root-transformed CL cases using linear and non-linear

relations to meteorological covariates have been compared in

previous studies [15]. We ensured via the Ljung-Box test, and by

checking autocorrelation and partial autocorrelation functions

computed from model residuals, that introducing covariates did

not induce temporal dependence in model residuals.

Multi-model inference
We considered several potential forecasting models for CL. First,

we generated a null (S)ARIMA model predicting the transformed

case series on the basis of its temporal dependence patterns alone.

We additionally generated regression models considering all

possible combinations of covariates, and fit each model with the

null (S)ARIMA error specification determined from the ACF and

PACF of the transformed case series. Last, we used Bayesian model

averaging [41] to pool parameter estimates from the fitted models

and formulate a global model. We calculated model weights

(posterior probabilities for each fitted model) via the AIC, AICc, and

BIC and used the weights to pool parameter, variance, and

covariance estimates, as described elsewhere [41]. In addition to

providing parameter estimates, the model averaging approach can

be used to calculate the posterior probability that each covariate is

useful in predicting monthly CL cases; this value is given as the sum

of posterior model probabilities for models that included the

covariate (we refer to parameter posterior probability as PPP

henceforward). For model averaging, we updated posterior weights

at each time point as models were re-fitted to incoming data. We

conducted sensitivity analyses without updating of weights to verify

certainty in the results.

We evaluated models’ predictive accuracy on the basis of MSE

in predictions; we computed this value by comparing model

forecasts to the square root-transformed cases observed during the

validation period. We compared predictive accuracy for models

with covariates relative to the null model to ascertain improve-

ments in forecasting.

Results

Epidemiologic characteristics
The dataset included 1,209 leishmaniasis cases treated at the

Corte de Pedra health post between 1988 and 2008. We identified

Figure 1. Cutaneous leishmaniasis cases in the study region, 1994–2008. (A) Cases presenting to the Corte de Pedra health post,
aggregated by month; (B) Autocorrelation function computed from the square root-transformed case series during the training period; (C) Partial
autocorrelation function computed from the square root-transformed case series during the training period. For (B) and (C): the dotted line indicates
the 95% significance cut-off.
doi:10.1371/journal.pntd.0003283.g001
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853 cases without disseminated or mucosal infection presenting for

care between 1994 and 2008. Of these, 586 occurred in the initial

training period (1994–2004) and 267 occurred in the validation

period (2005–2008). The most notable epidemic appeared in

1999–2000 (Figure 1). The majority of cases occurred among

adult male agricultural workers. The median age at symptom

onset was 22, and the age distribution was heavily skewed toward

younger ages. Further epidemiologic and clinical details about the

cases are available elsewhere [7].

The transformed case series had a stationary mean indicating

differencing was not required. The autocorrelation function

showed significant dependence extending to a four-month lag,

while significant partial autocorrelation cut off after a two-

month lag (Figure 1). We identified no evidence for recurring

seasonal patterns in the autocorrelation and partial autocorre-

lation functions. AIC and BIC scores indicated that accounting

for autoregressive or moving average dependence at four-month

lags resulted in model overfitting, as did incorporating a 12-

month autoregressive term in a SARIMA framework. According

to these observations and on the basis of eliminating autocor-

relation in the residuals as detected by the Ljung-Box test and

residual series’ autocorrelation and partial autocorrelation

functions, we selected an ARIMA(2,0,3) framework for the null

model.

Meteorological predictors
We identified significant cross-correlations between the case

series and all predictors except temperature (Figure 2). The

three-month lag at which relative humidity and CL cases were

significantly correlated provided the maximum forecast hori-

zon. We identified significant, negative-valued cross correla-

tions linking pre-whitened CL cases to relative humidity and

rainfall frequency at lags between three and five months

(Table 1). We identified significant, positive cross-correlations

with MEI (22-month lag) and total rainfall (10- and 21-month

lags, respectively).

For the multivariate models, each covariate had the binary

option of being included or not included. Since we identified six

significant cross correlations, we fit 26 = 64 models in total. The

best-fitting model according to BIC weights accounted only for

a negative association between cases and five month-lagged

relative humidity. The best-fitting model by AIC and AICc

included a negative association with rainfall frequency at the

five-month lag and total rainfall at 10- and 21-month lags.

Averaging across all models did not reveal noteworthy

differences in variables’ contributions to model fit, as evidenced

by similarity in PPP values among covariates under each

averaging scheme. Parameter estimates averaged according to

AIC and AICc weights differed by less than 1024 and are

consequently presented together as a single averaged model.

Under the BIC and AIC/AICc weighting strategies, the models

with the greatest posterior probabilities accounted for relative

humidity and rainfall frequency at five-month lags, and total

rainfall at 10- and 21-month lags. Meteorological parameter

estimates differed across models, leading to averaged 95%

confidence intervals including zero in all cases. The BIC-

averaged model offered more conservative estimates and

narrower confidence intervals for all meteorological parameters

than the AIC/AICc-averaged model. Using model weights

computed from the training period only rather than monthly-

updated model weights did not lead to numerical changes in

parameter estimates or PPPs greater than 1024. Variable

selection for the best-fitting models by AIC/AICc and BIC

did not change as we updated the models.

Forecasts
We compared out-of-fit prediction accuracy for the null model

with the best-fit models and the averaged models, which

accounted for meteorological covariates (Table 2). The best-fit

and averaged models reduced the MSE relative to the null model

at all prediction lengths. Improvements in MSE relative to the null

model were greatest at the three-month horizon and smallest at

the one-month horizon for all models considered. The best-fitting

model by BIC produced one, two, and three month-ahead

forecasts with 10.6%, 12.8%, and 15.7% lower MSE than the null

model, respectively (Figure 3, Figure S1, Figure S2). This

model provided the most accurate forecasts at all prediction

lengths; two month-ahead forecasts were the most accurate in

terms of minimizing MSE. The averaged model constructed

according to BIC offered smaller marginal reductions in MSE

than the averaged model constructed according to AIC/AICc

weights for all but the one month-ahead predictive horizon.

Marginal reductions in prediction MSE were poorest from the

best-fitting model selected according to AIC/AICc weights.

The best-fitting model by BIC offered one-, two-, and three

month-ahead predictions with on average 6.0%, 7.3%, and 8.0%

lower variance than the null model, respectively. These improve-

ments in precision did not incur penalties to forecast accuracy.

Observed cases exceeded the upper limits of the 95% confidence

envelopes from all models in May of 2006 and May of 2008, at the

peaks of epidemics during those years. One- and three month-

ahead predictions from all models additionally under-estimated a

secondary peak in July of 2008 (Figure S1, Figure S2). Adjusting

models to include a seasonal autoregressive for the twelve-month

period term did not improve forecasting of the May epidemic

peaks, which became a regular feature in the data only from 2005

onward. Residuals from models incorporating covariates did not

show significant temporal dependence via the Ljung-Box and test

or in their autocorrelation and partial autocorrelation functions.

Discussion

In this study we found that accounting for meteorological and

climatic factors improved accuracy and precision of CL forecasts

in a region of endemic L. (V.) braziliensis transmission in

Northeast Brazil. Notably, dry conditions with respect to relative

humidity and precipitation were significantly associated with CL

case notifications three to five months later. Our results are

consistent with the view that CL is sensitive to meteorological and

climatic forcing [19,22,30–32,45,46].

Differences in out-of-fit predictive accuracy among models likely

indicate where models may be overfit to within-sample data. The

model with the best predictive accuracy at all horizons was

selected by BIC and accounted only for five month-lagged relative

humidity as a meteorological covariate. AIC and AICc have a

lower penalty than BIC for potential overfitting [40,41], and in the

present analysis selected a model with more covariates, including

covariates operating at longer (10- and 21-month) lags. Tempo-

rally remote effects of this nature may be difficult to identify and

use for prediction due to heterogeneity in CL incubation periods

[47], in the time individuals take to seek medical attention, and in

ecological pathways connecting weather to disease risk. These

factors contribute to uncertainty when forecasting with case

notification data [48].

Although our analysis was not suited for identification of causal

effects, numerous biological mechanisms may support associations

between weather and CL epidemics. Inverse correlations between

precipitation and humidity variables at lags between three and five

months in particular demonstrate excess cases closely follow dry

Forecasting Cutaneous Leishmaniasis in Northeast Brazil
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Figure 2. Meteorological and climatic predictors, 1994–2008. Panels for each variable include (right) the interpolated time series for
meteorological and climate conditions in the study region, and (left) the cross-correlation with the square root-transformed case series during the
training period, in which the dotted line indicates the 95% significance cut-off. The X-axis gives the time separating the meteorological observation
from the month of case notification; negative X values indicate lags (weather precedes cases), while positive values indicate leads.
doi:10.1371/journal.pntd.0003283.g002
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periods. Ecological sampling studies have indicated population

densities of Lutzomyia sandflies in CL-endemic areas of Brazil and

South America to be inversely correlated with relative humidity

and rainfall in recent months [49–51]. While present year-round,

dominant vectors for CL in the study region (including Lu.
whitmani and Lu. migonei) are particularly abundant during the

warm, dry season [23,50]. The near-term moisture effects we

identify may thus result from environmental conditions conducive

to vector survival, reproduction, or feeding behavior. Mechanisms

connecting weather and CL risk at longer lags are more likely

mediated by the ecology of vertebrate L. (V.) braziliensis host

species than by sandflies, whose life cycles span only one to several

months. For instance, the positive cross-correlations with rainfall

and MEI at 21- and 22-month lags most probably relate to longer-

term effects of moisture surpluses on biological productivity

necessary to sustain large populations of mammalian reservoirs

[25,52].

Our analyses have several limitations. Having fit models to a

10% subset of total reported cases treated at the health post, our

estimates are sensitive to small month-to-month variations that

may be less pronounced in a dataset providing complete case

records. While forecasts succeeded in predicting overall epidemic

patterns exhibited from 2005 to 2008, a notable weakness was the

poor prediction of the size and duration of the 2008 epidemic. The

low number of cases appearing in June of that year, mid-way

through the epidemic, may be an artifact of the reduced dataset

and likely contributed to this shortcoming. The passive surveil-

lance system at the Corte de Pedra health post additionally

provided an incomplete sample of total CL cases within the area,

and may in particular under-represent persons unlikely to seek

care. For instance, other analyses of the data presented here

showed that many agricultural workers delay pursuit of therapy

until onset of complications including mucosal or disseminated

infection [7]. If long or heterogeneous gaps separate timing of

infection, disease onset, and care-seeking, case notification data

may not indicate sharp peaks in CL following important weather

events. Such bias obscures potentially meaningful meteorological

associations with CL risk.

While the Corte de Pedra health post remained the primary

center for CL diagnosis and treatment throughout the study period

[7,33,34], there were almost certainly long-term changes among

the population at risk with respect to size, demographics, access to

health services, and potential environmental exposures. Our

analysis could not address these factors as potential controls or

effect modifiers because the health post serves small rural

communities not tabulated by the Brazilian census. Ongoing

deforestation in the region, including conversion of cacao

plantations to cattle ranches, likely caused temporal variation in

habitat suitability for vectors and hosts and thus mediated disease

risk. In addition, Northeast Brazil experienced secular rural-to-

urban migration during the study period, likely offsetting natural

increase within the population. Individual risk factors likewise

predict variation within the population with respect to opportu-

nities for exposure to L. (V.) braziliensis in domestic, peridomestic,

and sylvatic environments [7]. Consequently, individual factors

not considered here may mediate temporal patterns and weather

sensitivity of CL risk among patients [23,25,53]. In view of these

limitations to the present study, implications of population- and

individual-level factors for CL transmission require future research

attention to inform interventions reducing disease risk in

northeastern Brazil.

Although the identified associations aided forecasting, inferen-

tial gains are limited by poor understanding of CL eco-

epidemiology, including the fact that the local animal reservoir
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for L. (V.) braziliensis is unknown. Ecological sampling studies in

the state of Pernambuco, near the study region, suggest several

species of mice and rats may contribute to transmission [18],

however the parasite is known to infect other rodents as well as

dogs, cats, and equines [54]. Potential pathways by which weather

affects ecological dynamics in American CL have been discussed

extensively in previous work [55,56], and are likely geographically

heterogeneous. Meteorological and climatic sensitivity of Leish-
mania spp. transmission cycles can be anticipated to vary spatially

according to species compositions, contact rates and competence

among local vectors and hosts, and ecological sensitivity to

weather and other environmental stressors; additionally, individ-

ually- and regionally-varying social factors influence human

exposure to primarily-enzootic transmission cycles, and vulnera-

bility to weather-related health risks [22,57]. It is known, for

instance, that seasonal dynamics of L. (V.) braziliensis and its

vectors differ across Brazil, where predominantly sylvatic,

peridomestic, or domestic transmission pathways in endemic foci

reflect divergent underpinnings of CL eco-epidemiology

[26,29,58]. For this reason, developing similar model-based early

warning systems at fine geographic resolutions remains an

important objective for other endemic settings within Brazil and

Latin America.

As CL continues to expand in parts of Brazil, developing

capacity to forecast epidemics will facilitate public health

responses. Using model-based predictions to anticipate disease

risk and expanding clinical capacity to address excess CL cases

may constitute an important operational strategy for alleviating

burden of disease. For example, understanding the timing of

epidemics will enable implementation of enhanced case detection

in advance of and during high-risk periods, limiting lesion size at

the time patients are identified and reducing patients’ risk for

treatment failure and metastatic complications. This can be

accomplished in part by ensuring adequate clinical and laboratory

personnel and diagnostic reagents or microscopy resources are

available to identify CL patients during high-demand periods.

Furthermore, since procurement and delivery of first-line penta-

valent antimonial agents to endemic regions requires significant

lead-time, acquiring and distributing these drugs preemptively in

response to model-based predictions may ensure that treatment

Figure 3. One month-ahead forecasts. (A) Null model; (B) Best-fitting model according to BIC; (C) Averaged model according to BIC. Black lines
plot the square root-transformed cases; orange lines plot model fit to data during the training period; red lines plot model forecasts, with the grey
area representing the 95% confidence region.
doi:10.1371/journal.pntd.0003283.g003
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centers are adequately stocked for epidemics. This is also critical

with respect to maintaining supplies of difficult-to-procure

alternative therapies such as liposomal amphotericin B [59],

which may need to be considered as L. (V.) braziliensis strains

resistant to conventional treatments continue to emerge [7,12–14].

Spatial and population-based criteria merit consideration in

service delivery so that clinical resources and surveillance attention

can be targeted focally towards vicinities or persons known to be at

high risk for infection [60,61]; in the study area, this population

primarily includes young men who work or live in agricultural

settings [7,8,14].

One key question with respect to the application of model-based

forecasting to improve responses to CL is the definition of

epidemic thresholds. The limited capacities of local and national

leishmaniasis control programs in resource-poor settings contrib-

ute to difficulty identifying alert and response priorities for early

warning systems [62], particularly with respect to defining

meaningful epidemic thresholds. Choice of such thresholds may

be arbitrary in practice [63]. WHO standards for initiating alerts

following months when incidence has been twice its monthly

average are likely sub-optimal for settings with highly variable

incidence rates, such as Northeast Brazil [64,65], where doubling

relative to previous monthly averages may not be an adequate

basis for identifying an epidemic and anticipating whether it will

continue. More meaningful intervention criteria in endemic

regions may be based on model-predicted probabilities for

incidence to exceed a level at which clinical resources are likely

to be strained; probabilistic alert systems of this nature are

increasingly recognized for their compatibility with model-based

epidemic projections, and interpretable implications for policy

responses [66]. Operational research is needed to assess how

clinical capacity and resilience to epidemics vary across endemic

settings, as a basis for setting alert thresholds informed by risk for

shortcomings in service delivery. Notwithstanding these limitations

to operationalizing early warning systems in Brazil, our outcomes

suggest that incoming weather data improves CL forecasts at a

sufficient predictive horizon to facilitate intervention planning.

Best practices for integrating predictive models into planning for

responses to CL epidemics merit research attention and consid-

eration from public health authorities in CL-endemic areas

[15,19,67,68].
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P (2013) Bayesian geostatistical modeling of leishmaniasis incidence in Brazil.
PLoS Negl Trop Dis 7. doi:10.1371/journal.pntd.0002213.

63. Weinberger D, Baroux N, Grangeon J-P, Ko AI, Goarant C (2014) El Niño

Southern Oscillation and leptospirosis outbreaks in New Caledonia. PLoS Negl
Trop Dis 8: e2798. Available: http://dx.plos.org/10.1371/journal.pntd.

0002798. Accessed 2 May 2014.

64. Control of the leishmaniases. (2010). Geneva. Available: http://whqlibdoc.who.

int/trs/WHO_TRS_949_eng.pdf.

Forecasting Cutaneous Leishmaniasis in Northeast Brazil

PLOS Neglected Tropical Diseases | www.plosntds.org 10 October 2014 | Volume 8 | Issue 10 | e3283

http://www.ncbi.nlm.nih.gov/pubmed/17989780
http://www.ncbi.nlm.nih.gov/pubmed/17989780
http://dx.plos.org/10.1371/journal.pntd.0000176
http://www.ncbi.nlm.nih.gov/pubmed/16896132
http://www.ncbi.nlm.nih.gov/pubmed/16896132
http://doi.wiley.com/10.1111/j.1467-9892.2009.00643.x
http://biomet.oxfordjournals.org/content/65/2/297.short
http://biomet.oxfordjournals.org/content/65/2/297.short
http://www.jstor.org/stable/2336663?origin=crossref
http://www.jstor.org/stable/2336663?origin=crossref
http://doi.wiley.com/10.1111/j.2041-210X.2010.00012.x
http://doi.wiley.com/10.1111/j.2041-210X.2010.00012.x
http://doi.wiley.com/10.1002/joc.639
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4046095&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4046095&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/24342506
http://dx.plos.org/10.1371/journal.pntd.0002798
http://dx.plos.org/10.1371/journal.pntd.0002798
http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf
http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf


65. WHO Report on Global Surveillance of Epidemic-Prone Infectious Diseases–

Leishmaniasis (2012). Available: http://www.emro.who.int/neglected-tropical-

diseases/information-resources-leishmaniasis/cl-factsheet.html. Accessed 18

September 2014.

66. Gilbert JA, Meyers LA, Galvani AP, Townsend JP (2014) Probabilistic

uncertainty analysis of epidemiological modeling to guide public health

intervention policy. Epidemics 6: 37–45. doi:10.1016/j.epidem.2013.11.002.

67. Atkinson S, Cohn A, Ducci ME, Gideon J (2005) Implementation of promotion

and prevention activities in decentralized health systems: comparative case
studies from Chile and Brazil. Health Promot Int 20: 167–175. doi:10.1093/

heapro/dah605.

68. Thornton SJ, Wasan KM, Piecuch A, Lynd LLD, Wasan EK (2010) Barriers to
treatment for visceral leishmaniasis in hyperendemic areas: India, Bangladesh,

Nepal, Brazil and Sudan. Drug Dev Ind Pharm 36: 1312–1319. doi:10.3109/
03639041003796648.

Forecasting Cutaneous Leishmaniasis in Northeast Brazil

PLOS Neglected Tropical Diseases | www.plosntds.org 11 October 2014 | Volume 8 | Issue 10 | e3283

http://www.emro.who.int/neglected-tropical-diseases/information-resources-leishmaniasis/cl-factsheet.html
http://www.emro.who.int/neglected-tropical-diseases/information-resources-leishmaniasis/cl-factsheet.html

