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Abstract: Wearable Internet of Things (IoT) devices can be used efficiently for gesture recognition
applications. The nature of these applications requires high recognition accuracy with low energy
consumption, which is not easy to solve at the same time. In this paper, we design a finger gesture
recognition system using a wearable IoT device. The proposed recognition system uses a light-
weight multi-layer perceptron (MLP) classifier which can be implemented even on a low-end micro
controller unit (MCU), with a 2-axes flex sensor. To achieve high recognition accuracy with low
energy consumption, we first design a framework for the finger gesture recognition system including
its components, followed by system-level performance and energy models. Then, we analyze system-
level accuracy and energy optimization issues, and explore the numerous design choices to finally
achieve energy–accuracy aware finger gesture recognition, targeting four commonly used low-end
MCUs. Our extensive simulation and measurements using prototypes demonstrate that the proposed
design achieves up to 95.5% recognition accuracy with energy consumption under 2.74 mJ per gesture
on a low-end embedded wearable IoT device. We also provide the Pareto-optimal designs among a
total of 159 design choices to achieve energy–accuracy aware design points under given energy or
accuracy constraints.

Keywords: MLP; gesture recognition; flex sensor; model search; neural network

1. Introduction

Gesture recognition is among the popular issues for human–machine interface applica-
tions. In particular, hands are the parts that can move most accurately with relatively little
energy, compared to other body parts. Thus, hand gesture recognition is used as an efficient
interface for human–computer interaction (HCI) [1–8]. Traditionally, vision-based gesture
recognition received much attention since it avoid the need to wear any tools or equipment
on the body [1,2,6]. However, it is also known that the performance of vision-based gesture
recognition is highly dependent on camera setup such as the angle to the object, the size of
the image and the intensity of illumination [9]. In addition, high computation requirements
and power consumption are needed to process and analyze multiple images in real time.
Thus, it may not be feasible to implement vision-based gesture recognition applications on
low-end embedded devices.

An alternative method of implementing gesture recognition is to use wearable sensors
such as inertial measurement units (IMU), electromyography (EMG) sensors, flex sensors,
and pressure sensors [3,8,10–13]. Unlike vision-based approaches, a wearable sensor-
based approach is not only less sensitive to the perceived environments but also generates
relatively small amounts of data with affordable (or even higher) recognition accuracy. In
addition, this approach can recognize minimal body movements including small finger
gestures. Most of all, its computation and power requirements may be less than vision-
based approaches. In that sense, a wearable sensor-based approach is more suitable for
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gesture recognition than a vision-based approach if we are targeting low-end wearable
IoT devices.

Among various wearable sensors such as IMUs, EMG, and flex sensors, we focus
on using a state-of-the-art flex sensor [14] which can measure bi-directionally in 2 axes
of bending with a single sensor. This sensor is suitable for being implemented in low-
end embedded devices because it provides low-power, drift-free, and path-independent
sensing with high accuracy. In addition, the sensor is made from silicon, which is good for
wearable implementations.

In this paper, we design a light-weight finger gesture recognition system that can be
implemented in low-end embedded devices using a single flex sensor. To this end, we
first design a framework for a finger gesture recognition system that recognizes 17 finger
gestures. The framework consists of data collection, preprocessing filters, and a light-
weight multi-layer perceptron (MLP)-based classifier. Then, we construct performance
and energy models to find optimal design choices efficiently. We analyze and discuss the
energy–accuracy aware system-level design issues, and explore the design choices of finger
gesture recognition by considering computation requirements/memory resource targeting
for four types of low-end micro controller units (MCUs). Finally, the functionality and
feasibility of the proposed work are verified by implementing prototypes. The contributions
of this paper are summarized as follows:

- Provide the full design for a finger gesture recognition system using a single flex sensor.
- Explore the design choices of a finger gesture recognition system in terms of perfor-

mance, accuracy, and energy consumption using the conducted performance and
energy consumption models.

- Demonstrate the functionality and feasibility of the proposed designs by implementing
the prototypes using four commonly used low-end embedded MCUs.

- Show the energy–accuracy aware design which achieves up to 95.5% accuracy with
an energy consumption of 2.74 mJ per gesture.

- Provide the energy–accuracy aware Pareto-optimal designs among a total of 159 design choices
to find energy–accuracy aware design points under given energy or accuracy constraints.

The rest of this paper is organized as follows. The backgrounds are described in
Section 2. In Section 3, the framework and component-level design for the finger gesture
recognition system are described, while Section 4 discusses energy–accuracy aware design
optimization. Finally, Section 5 demonstrates the experiment results, followed by the
conclusion in Section 6.

2. Backgrounds

This section describes the backgrounds of this work which consists of the existing
work related to gesture recognition and the basics of the flex sensor used in this work.

2.1. Related Work

An IMU sensor which embeds micro electro mechanical systems (MEMS) accelerome-
ters, gyroscopes, and magnetometers was popularly used because it can capture the wide
range of body movements. An IMU sensor can even be attached to a cane to detect falls in
the elderly [10]. However, IMUs generally require high filtering resources because raw data
contain a lot of noise and drifts [4]. In addition, a high sampling rate (higher than a few kilo
samples per second) requirement for recognizing delicate movements and high recognition
accuracy are major concerns for implementing on low-end embedded devices [15].

EMG sensors are used for body movement recognition as well. Instead of directly
measuring the physical movements of the body, the sensor alternatively measures the
biomedical signals using specially made probes attached to the skin surface. EMG sensors
can detect the very fine movements of the body that cannot be detected by physical
movement measuring sensors alone [3,16,17]. However, the acquired biomedical signals
vary for different people even with the same movement and are noise sensitive depending
on the condition of the skin surface even for the same person [18].
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Conventional flex sensors based on conductive ink, fiber-optic, or conductive fabric
technologies are used for various wearable IoT applications such as embedded device-based
health care [19], sign language recognition [20,21], and posture correction [22]. Multiple
sensors are attached to each joint of the body, and the measured bending information
is used for recognizing the body movement. This method provides a low-cost and low-
energy solution that can be easily implemented in low-end embedded devices. However,
the recognized body activity is generally simple and must use multiple sensors to detect
complex body movements. Recently, an advanced flex sensor that can measure two axes
of bi-directional bending with a single sensor was developed [14]. The sensor embeds a
low-power integrated analog front and generates digital angular data in degree. We use
this advanced flex sensor for finger gesture recognition in this paper. Thus, the details on
this flex sensor will be explained in Section 2.2.

In general, data collected from the wearable flex sensor for body movement recog-
nition requires time-domain data analysis using machine learning (ML) techniques such
as dynamic time warping (DTW) [20], hidden Markov models (HMMs) [21], recurrent
neural networks (RNNs), and long short-term memory (LSTM). Although these techniques
support relatively high recognition accuracy for time-series data, it is questionable whether
these techniques can be efficiently implemented in a low-end wearable device [7,23] because
of the not trivial size of memory requests. Since the data used in HCI applications generally
have a small number of dimensions compared to the images, a simple MLP technique can
be a sufficient solution if it satisfies the desired performance and accuracy. Therefore, this
paper focuses on using an MLP technique where the computation requirements (processing
time) are simply proportional to the size of MLP model. The optimal MLP structure was
determined in terms of model size, accuracy, and energy consumption in this paper.

2.2. Basics of Flex Sensors

Flex sensors measure the amount of bending or deflection. There are three types of
commonly used flex sensors, as shown in Figure 1. Depending on the material, the sensor
is categorized as conductive ink, fiber-optic, or conductive fabric. The operating principle
of the sensors utilizes a phenomenon where the electrical properties of a material used in
the sensor change when the flex sensor is physically bending. Depending on the type of
flex sensor, the maximum bending angle, durability, and stability of the measured value
appear differently. For example, sensors made with conductive ink are widely used due
to low cost, but accuracy is relatively low, and calibration or filtering is required because
the measured values vary slightly depending on the measurement environment such as
temperature and humidity. In addition, the physical length of the sensor is fixed without
elasticity, which limits the wearability of the sensor.
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Sensors made with an optical fiber support high accuracy and high durability. How-
ever, a pair of a light source and a detector is required, and only unidirectional sensing
is possible [24]. Conductive fabric/polymers can be used for wearable applications due
to the elasticity of the sensor compared to other technologies. The cost of these sensors
is relatively high, compared with other types of sensors, and these sensors respond to
pressure as well as bending, making it difficult to maintain high accuracy. Most of all,
conventional flex sensors can measure one axis of bending. Thus, multiple sensors must be
used to measure complex movements [13].
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The advanced flex sensor introduced in the previous subsection is made with a silicone
elastomer layered with a conductive and non-conductive material. This sensor not only
measures the bending degree of two axes stably with a single sensor, but also has the
advantage of being flexible and stretchable with silicon material. As mentioned, this
sensor is not a simple variable resistor type but a sensor module that embeds a low-
power integrated analog front, resulting much less noise over time compared with the
other sensors. In addition, it generates digital data through an inter-integrated circuit
(I2C) standard communication interface. This means that power-hungry analog-to-digital
converters (ADCs) are not necessary, which is good for wearable IoT devices.

Figure 2 shows the collected sample data from two users, repeating several gestures
with their index fingers, where a single flex sensor is attached. The measured values indicate
the angle changes according to the movement of the finger. Although there are slight
deviations in the measured values of each repeated gesture, we observe specific patterns
for each gesture regardless of the users. These patterns appear differently depending on the
type of gesture. We also note that the duration of a single gesture—the number of sample
data related to the gesture—varies depending on the type of the gesture and user. The
duration of a single gesture also varies depending on the time even for the same gesture
by the same person. Therefore, gesture recognition should be appropriately designed in
consideration of these variations.
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Figure 2. Example outputs of the flex sensor (four types of gestures from two users).

3. Designing the Finger Gesture Recognition System

This section mainly describes the design for a light-weight finger gesture recognition
system using a wearable flex sensor, implemented in low-end wearable devices. To this
end, the system-level design including its framework is proposed. Then, the component-
level design consisting of designing preprocessing filters and an MLP-based classifier
is described.

3.1. System Architecture

Figure 3 shows the framework for the proposed finger gesture recognition system. The
system simply consists of three parts: raw data collection, preprocessing, and classification.
The first step for finger gesture recognition is to collect motion data generated from a 2-axes
flex sensor. The flex sensor attached to the index finger generates a series of 32-bit sample
data. One set of sample data represents the X-axis (16 bits) and Y-axis (16 bits) bending
degrees of the index finger at the moment of sampling. The flex sensor can operate at a
sampling rate of up to 500 Hz. In this work, we set the maximum sampling frequency to
100 Hz, which is sufficient for finger gesture recognition applications.

Raw data collected from the flex sensor can be directly used as an input to the gesture
classifier. However, in general, the raw data may include lots of measurement noise and
there are non-negligible deviations in the raw data collected even for the same gestures
depending on the time and user, as shown in Figure 2. Additionally, the group of data
sent to the classifier for gesture recognition should not be mixed with other sample data
related to past or future gestures. Without resolving these problems prior to classification,
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recognition accuracy can be degraded while the computation requirements and energy
consumption during the classification process can be increased significantly. For this reason,
we design preprocessing filters which will be described in detail in Section 3.2.
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Figure 3. The framework for the proposed finger gesture recognition system.

Finally, the preprocessed group of data is sent to the classifier for recognizing the
gesture among predefined ones. The main purpose of this study is to design and implement
a gesture recognition system with high accuracy that can be implemented even on a low-
end embedded device which operates with a limited energy resource such as a tiny battery
or via energy harvesting. To this end, we design a light-weight MLP-based classifier to
decrease computation requirements and energy consumption to as low as possible. The
design and optimization of this MLP-based classifier will be explained in Section 3.3.

3.2. Designing Preprocessing Filters

In this section, we design preprocessing filters that convert the shape of data, as shown
in Figure 4 by applying a noise filter, a segmentation filter, a normalization filter, and a
reshape filter in order.
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Noise filter: No matter how well the sensor circuit is designed, it is unavoidable
that the raw data contain a lot of noise during data collection from the sensor, as shown
in Figure 4a. Noise is generated in a random and non-uniform pattern, which makes
detecting the unique pattern of each gesture even more difficult, and finally requires more
computation. To minimize the effect of noise, we use an infinite impulse response (IIR),
where the input signal and output signal are applied recursively to perform filtering. This
IIR filter is more suitable for our work than a finite impulse response (FIR) filter because of
its low implementation cost and low latency.
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Data segmentation filter: The segmentation filter first separates a group of data, only
related to a single gesture among continuously collected data from the sensor. To design
this segmentation function, we investigate an average rate of change in sampled data to
indicate the start and end of collecting a group of data only related to a single gesture,
assuming that the finger is not moving for a certain amount of the time before and after
each gesture. The average rate of change can be simply calculated at the same time as
executing the noise filter so that the overhead for calculating the average rate of change
is minimized. Starting from a steady state, the collection is started if the average rate of
change is over the predefined threshold, and the collection is stopped if the average rate
of change is under the predefined threshold as well. We reasonably set this threshold
empirically after intensive experiments.

The second role of the segmentation filter is to change the variable number of sampled
data for a single gesture to the fixed number. As mentioned, the number of sample data
grouped into a single gesture varies depending on gesture type, user, and time of trial. If
this number varies, it is difficult to apply a simple MLP-based classifier. To resolve this
issue, we interpolate the data if the number of data is smaller than the predefined number
while we reduce the number of data by applying a smoothing function in the opposite
case, so that the number of sampled data to the classifier is fixed with the predefined one,
as shown in Figure 4b. Since the number of data to be sent to the classifier for a single
gesture recognition is also tightly coupled with setting the sample rate of the flex sensor
and designing a classifier as well, we discuss this issue in Section 4, separately.

Normalization and Reshaping: Normalization is an efficient method for an MLP-
based classifier to increase recognition accuracy while reducing the computation require-
ments by adjusting the amplitude of data. We use a MinMax scaler, which normalizes
the amplitude of data based on maximum and minimum values among the whole set of
data, as shown in Figure 4c. Note that minimum and maximum values of the data are
determined during the segmentation, the additional overhead of this process is almost
negligible. The last process before sending the data to the classifier is reshaping the output
of the sensor to fit the input of the MLP with a predefined size. Since the output of sensor
data is 16 bits from the X-axis and 16 bits from the Y-axis, it is converted from 2D array to
1D array data, as shown in Figure 4d. This process is simple, with almost no computational
overhead for this process if this process is performed with the normalization process.

3.3. Designing an MLP-Based Classifier

For recognizing hand gestures, we design a simple MLP-based classifier but support
high recognition accuracy using minimal resources. This section only describes a classifier
design and component-level optimization issue while system-level optimization issues will
be discussed in Section 4.

Input Layer: In designing the input layer of an MLP-based classifier, the number
of nodes is mainly determined by the size of the input data set. In our design, since the
segmentation filter determines the size of the input data set with a predefined number, the
number of nodes in the input layer is also designed to have the same number with the
predefined one in the segmentation filter.

Hidden Layer: Determining the number of hidden layers and the number of nodes
for each hidden layer is a main design issue because they are directly related to the amount
of computing, memory space, and energy consumption, in addition to recognition accuracy.
Huge design choices include selecting a proper structure for the hidden layer. In this
work, the amount of data generated by the flex sensor is smaller compared with that of
image processing. Thus, the number of hidden layers we consider is limited to a single
or a double hidden layer. To find the best solution, we intensively explore the design
choices of the MLP-based classifier by changing the number of nodes used for each layer in
terms of recognition accuracy, energy consumption, and the feasibility of implementation
considering the performance and memory size targeting low-end embedded devices. Each
node in the hidden layer uses a rectified linear unit (ReLu) activation function. For each
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explored MLP model, we perform an independent training and testing process. The
exploration in detail will be described with system-level optimization in Section 4, while
the results will be described in Section 5.

Output Layer: The number of nodes in the output layer is generally determined by
the number of recognized gestures. In this work, the number of gestures is set to 17. Thus,
we design the output layer to have 17 nodes. Each node in the output layer uses a Softmax
activation function to generate a probability value for each gesture so that the gesture with
the highest probability is selected as the final result.

4. Energy–Accuracy Aware Design Optimization

Based on the design described in Section 3, this section analyzes the implementation
issues of energy–accuracy aware system-level optimization targeting low-end embedded
devices. We first analyze the practical issues of designing an entire system focusing on
performance and power management. Then, we build performance and energy estimation
models to find the energy–accuracy trade-offs. Finally, energy–accuracy aware system-level
design optimization is described.

4.1. Performance (Timing) Estimation Models

In terms of the design components, the proposed system consists of data collection,
preprocessing filters, and an MLP-based classifier. At the same time, in terms of hardware
components, the system mainly consists of a flex sensor and an MCU board. Thus, man-
agement of these hardware components is a practical issue of the implementation. For
example, activation/deactivation scheduling of the MCU and the sensor module is tightly
coupled with the performance and energy consumption of the system. The MCU can be
in a standby state synchronized with the operating frequency of the sensor. When the
preprocessing and MLP classification tasks are executed in the MCU, the sensor can be
entered into a standby state to minimize the power consumption of the sensor. To address
these issues, we first build timing models of gesture recognition, as shown in Figure 5.
Table 1 describes the parameters used in our timing models.
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The time taken per single gesture recognition, tges, is defined as the sum of the time
for executing data collection, tcol , which is equal to the duration of a gesture, the time for
preprocessing, tpre, and the time for MLP classification, tMLP. Depending on the user and
the type of gesture, tcol varies from 0.8 s to 1.2 s based on our experiences. tpre and tMLP
vary from 33 µs to 1727 µs, and 284 µs to 3360 µs, respectively, depending on the number
of sensor data, the size of MLP models, and the type of MCUs.

Looking at the data collection process which accounts for most of the time spent on
gesture recognition, the MCU repeats the sensor data read with the sampling frequency
fs. At each period of read, the MCU reads a single data set, and then transits back to the
standby state, waiting for the next interruption from the sensor. The time for reading a
single set of data is defined as tread, and the time spent in the standby state is defined as
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tstandby. In our experiments, tread is measured as 269 µs, which is determined by the I2C
configuration when running at 400 KHz. Note that the sensor is always in the active state
during tcol , while it is in the standby state during tpre and tMLP. Since tcol varies only with
the type of gesture and user, and not with the design parameters, the number of sampled
data per gesture to be recognized, N, is calculated as:

N = tcol ∗ fs (1)

When estimating tpre, since we expect that it is proportional to N, we model it as
a simple function of N. We also expect that tMLP may be proportional to N because N
determines the number of nodes in the input layer. However, since N varies depending on
the gesture and user, we change N into N′, which is a fixed number in the segmentation
process. In addition to N′, tMLP is also tightly coupled with the size of MLP parameters,
NMLP. Thus, we model tMLP as a function of N′ and NMLP. Based on the scenario described
above, tges can be estimated as follows:

tges = N ∗ 1
fs
+ tpre(N) + tMLP

(
N′, NMLP

)
(2)

Since our design considers N′ as close to N as possible, tges is mainly affected by
fs and NMLP because N is, in turn, determined by fs, as shown in Equation (1). We find
tpre(N) and tMLP(N′, NMLP) from the extensive measurements using several low-end MCU
prototypes which will be explained in Section 5.

Table 1. Description of the parameters used in the model.

Definition Description

N Number of sampled data per gesture to be recognized

NMLP Number of parameters used in the MLP classifier

fs Sensor frequency (sample rate)

tges
Time taken per gesture recognition
= tcol + tpre + tMLP

tread
Time taken to read one sample from the sensor
269 us (including time to wakeup, I2C transfer, time to sleep)

tpre
Time taken to perform preprocessing
Depends on fs

tMLP
Time taken to perform the MLP evaluation
Depends on # of parameters in the fs

tcol
Time taken to collect data
=

(
tread + tstandby

)
× N

4.2. Energy Estimation Models

Figure 6 visualizes the power consumption of two main hardware components during
tcol , tpre and tMLP. Considering the complexity of power management, our design only
uses two power states—active and standby—for both the MCU and the sensor.

The energy consumption per single gesture recognition, Eges, is defined as the sum
of the energy consumption in the MCU, Emcu, and the energy consumption in the sensor,
Esensor. The energy consumption of the MCU, in turn, consists of the energy consump-
tion for executing three tasks—data collection, Emcu_col , preprocessing, Emcu_pre, and MLP
classification, EMLP—as follows:

Emcu = Emcu_col + Emcu_pre + Emcu_MLP. (3)
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In the data collection task, the MCU operates periodically with the frequency of fs
to read data from the sensor, switching between the active and standby states. Thus, the
energy consumed by the MCU for executing the data collection task is the sum of the energy
consumption in the active and standby states as follows:

Emcu_col = tread·N·Pmcu_active + (tcol − tread·N)·Pmcu_standby, (4)

where Pmcu_active and Pmcu_statndby indicate the power consumption of the MCU in the active
and standby states, respectively.

The energy consumption for executing the preprocessing, Emcu_pre, and the energy
consumption for executing the MLP operation, Emcu_MLP, are simply estimated by:

Emcu_pre = tpre·Pmcu_active, Emcu_MLP = tMLP·Pmcu_active. (5)

As mentioned, the sensor is in the active state only during data collection for time tcol ,
and the Esensor is defined as:

Esensor = tcol ·Psensor_active +
(
tpre + tMLP

)
Psensor_idle, (6)

where Psensor_active and Psensor_idle indicate the power consumption of the sensor in the active
and standby states, respectively. Unlike the MCU, the power consumption of the sensor in
the active state depends on the sampling frequency, fs. To reflect the power consumption
change by fs, we build a power consumption model of the sensor by directly measuring
the power consumption depending on fs as follows:

Psensor_active = α· fs, (7)

where α is the coefficient, which is determined as 3.56, for the flex sensor we used in the
design with a 3.3 V operating voltage.

Based on Equations (3)–(7), Eges is finally estimated as below:

Eges =
(
tread·N + tpre + tMLP

)
·Pmcu_active + (tcol − tread·N)·Pmcu_standy + α·tcol · fs +

(
tpre + tMLP

)
·Psensor_idle. (8)

Similar to Equation (2), only fs and NMLP are major optimizable design parameters
among the parameters used in Equation (8), while the other parameters such as Pmcu_active
and Pmcu_standy are determined by the type of MCU device. Note that we do not consider
any dynamic frequency and voltage scaling in this work, thus Pmcu_active and Pmcu_standy are
constant if the same MCU devices are used in the design.

4.3. Energy–Accuracy Aware System-Level Design

There are numerous design choices where the energy and accuracy are trade-off
relations in general. This means that maximizing recognition accuracy while simultaneously
minimizing energy consumption is not easy to solve. Thus, we first define accuracy- or
energy-constrained objective functions as below:

Minimize Eges( fs, NMLP)

Subject to Acc(NMLP) ≥ TA
or

Maximize Acc( fs, NMLP)

Subject to Eges( fs) ≤ TE
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where TA and TE are the given thresholds for the minimum accuracy and for the maximum
energy consumption, respectively. In addition to this, we also consider a resource constraint
of the devices such as the memory size of the device.

As modeled in previous sections, the sampling frequency, fs, is a primary design factor
which affects all three tasks. In general, the lower the fs, the lower the Eges, while lowering
fs may negatively affect recognition accuracy. In addition to fs, there are many other design
choices as well as selecting a proper low-end device that can implement all the designs on
it. For these reasons, we first discuss major system-level design choices, and then narrow
down the design choices considering four types of commonly used low-end MCUs.

Using Equation (8), we can easily analyze and explore the design choices of fs in terms
of energy consumption. However, recognition accuracy cannot be simply explored with fs
and the other design parameters. For example, increasing fs may enhance recognition accu-
racy because it provides more information to the MLP classifier. However, improvement in
accuracy is not simply proportional to fs, and there is a saturation point. Thus, we have to
find an optimal setting of fs through system-level design choice exploration.

In designing preprocessing filters, a simple design choice is whether each filter is
adopted. We use a segmentation filter and a reshape filter for all design choices because
they are indispensable while noise and normalization filters are optional. In designing a
segmentation filter, determining N is tightly coupled with the setting of fs, as shown in
Equation (1), and the effects of this will be analyzed through design choice explorations as
well. In terms of changing the number of sampled data from N to N′ in the segmentation
filter, if the difference between N and N′ is larger, energy consumption in the sensor is
relatively high, while the information provided to the MLP classifier is limited. Thus, we
set the difference between the two numbers as close as possible by considering average tcol .

In designing a MLP classifier, finding the optimal number of parameters used in the
MLP is important to find an energy–accuracy aware design. The higher the NMLP, the
higher the accuracy but the larger the energy consumption. Similar to fs, the maximum
achievable accuracy is also limited even when NMLP is increasing continuously. Thus, we
also explore the design choices of the MLP classifier by varying NMLP and fs, considering
the constraint of memory space in the target device.

5. Evaluations

This section introduces experimental setups including the prototypes we implement
to verify the energy–accuracy aware design points. Then, the results of design choice
exploration and the Pareto-optimal energy–accuracy aware design points are presented
with some findings and discussions.

5.1. Experimental Setup

To demonstrate the feasibility of the proposed designs, we implemented an in-house
prototype tiny enough to wear on the body, as shown in Figure 7. The prototype consists
of an MCU board and a flex sensor attached to the index finger. The MCU board embeds
Bluetooth communication so that the recognized results can be transferred to PCs or
smartphones. The flex sensor is connected through I2C to the MCU board. We consider
four commonly used low-end MCUs for targeting low-end embedded devices. Table 2
shows the operating clock frequency, on-chip memory size, type of architecture, and power
consumption of four MCUs. CC2652R shows the highest computation speed and the largest
memory, including a single-precision floating point unit (FPU), while the other three MCUs
have lower computation requirements and memory resources without FPUs. Note that
using a hardware FPU and a different bus width of each MCU may affect the precision
of floating point operation slightly. However, this issue is beyond our work because
the compiler provided from each MCU handles this issue separately. In terms of power
consumption in the active state, Atmega2560 has the largest active power consumption
per MHz even though it is an 8-bit reduced instruction set computer (RISC) processor. In
the standby state, CC2652R consumes the largest amount of power, while Atmega2560
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consumes the least amount of power among four MCUs. For the flex sensor, we use a
2-axes flex sensor [14].
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Table 2. Characteristics of the low-end MCUs used in this work.

MCU
Clock

Frequency
(MHz)

On-Chip
Memory

(KB)

Max.
NMLP

Architecture
Active

Current
(mA/MHz)

Standby
Current

(uA)

CC2652R 48 80 18,100 CortexM4F
32 bit RISC 0.07 675

Atmega2560 16 8 1972 AVR 8 bit
RISC 2.3 170

Atmega1284P 16 16 3960
AVR 8 bit
RISC with
picoPower

0.86 210

MSP430 16 4 900 16 bit RISC 0.13 420

The prototypes are used for two purposes—data collection and design verification—
through real-time gesture recognition. In data collection, the raw data collected are directly
sent to the PC so that the data are used for training and for testing the MLP classifier. The
prototypes are also used to provide the timing information to the energy models defined
in Section 4.3. While the timing information is directly measured from the prototype
board, the power consumption of the MCU is acquired from the datasheet rather than the
prototype to fairly estimate only energy consumption related to gesture recognition. This
means that energy estimation is not affected by the type of board implementation.

In total, 17 types of gestures are defined as continuous motions, as shown in Figure 8.
The gray circles in the figure indicate the finger positions at the start/end of each motion.
We collected a total of 5100 gestures (300 sets) from 5 users. Each set consists of 17 different
gestures, and each user repeated one set of gestures 60 times. The users consist of four
males and one female, with ages from 20 s to 40 s and heights from 160 to 180 cm. In order
to prevent the overfitting of the trained network model and to ensure generalization ability,
the collected gestures were randomly mixed among the same gestures. Then, two-thirds of
collected data were used for training with the cross-validation method, while the remaining
one-third of collected data were used for evaluation.

MLP training is performed in the Pytorch environment. The hyper-parameters used
for trainings are 0.0075 and 500 for the learning rate and epoch, respectively. No significant
performance change is observed after the epoch of 500, so the maximum epoch is fixed
at 500. For comparison purposes, we build one gated recurrent unit (GRU) and two tiny
ML models generated using TensorFlow and Neuton’s AutoML, which is commercially
available from Google AI.
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Figure 8. Definition of 17 finger gestures.

5.2. Results of Design Choice Exploration

Figure 9a shows the changes in tpre for four types of MCUs by increasing fs. As
expected, tpre is almost linearly proportional to fs. Figure 9b shows the changes in tMLP
by increasing NMLP. Note that we change N into NMLP for simplification. Although it is
not precisely linearly proportional to NMLP, we can still use this approximate linear model
based on our experiments. As shown in the graphs, the slopes are lower in the order of
CC2652R, Atmega2560/1284P, and MSP430, which directly shows the computation power
of each MCU.
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Figure 9. Comparison of preprocessing and MLP time.

Figure 10 presents the results of recognition accuracy by varying NMLP for the single
and double hidden layers of MLPs, and also with and without preprocessing filters. In this
paper, NMLP is calculated as:

NMLP = i·h1 + ∑n−1
k=1 (hk·hk+1) + hn·o + ∑n

k=1 hk + o (9)

where i and o indicate the number of nodes in the input and output layers, respectively,
while hk is the number of nodes in the k-th hidden layer, and n is the number of hidden
layers. Note that i is equal to N′, which is affected by fs. This means that NMLP reflects the
effect of fs as well. For better understanding, we also mark the label of the X-axis with fs.
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As expected, recognition accuracy is highly correlated with NMLP in all four configura-
tions. Increasing NMLP enhances recognition accuracy in all four configurations until NMLP
reaches 689. However, increased accuracy starts to saturate from NMLP = 689 for the single
hidden layer with preprocessing and from NMLP = 1597 for the double hidden layer with
preprocessing. Clearly, applying preprocessing filters enhances accuracy for both single-
and double-hidden-layer configurations. The contributions of preprocessing filters are
significant especially when NMLP is in low regions—smaller than 900 in our experiments.
In case of MSP430, which has a maximum 900 of NMLP, the achievable maximum accuracy
without a preprocessing filter is 78.7% in the single layer of MLP, while that of the one with
a preprocessing filter is 91.0%.

The accuracy for the single hidden layer and double hidden layer of MLPs shows
different behaviors depending on whether the preprocessing filter is applied. When pre-
processing filters are not applied, the double-hidden-layer MLP shows better performance
at most ranges of NMLP. In general, it is known that using more hidden layers is useful
to solve non-linear problems [25]. We observe that without preprocessing, the gesture
data show more non-linearity. When processing filters are applied, the single-hidden-layer
MLP shows better accuracy than the double hidden layer when NMLP is not sufficient.
As shown in the figure, the accuracy of the single-hidden-layer MLP increases rapidly as
NMLP increases, while that of the double-hidden-layer MLP increases relatively slowly. The
accuracy of the single-hidden-layer MLP with preprocessing starts to saturate from 89.7%
at NMLP = 689, whereas the accuracy of the double-hidden-layer MLP starts to saturate
from 92.3% at NMLP = 1583, which uses 2.32-fold more resources. We found that applying
preprocessing filters reduces the non-linearity of the data so that maximum accuracy is
reached quickly to the saturation point in the single-hidden-layer MLP.

Based on comparisons of the four configurations, we conclude that the single-hidden-
layer MLP with preprocessing is more suitable for devices that have limited resources.

5.3. Pareto-Optimal Energy–Accuracy Aware Design Points

We explored the design choices of the proposed finger gesture recognition system in
terms of accuracy as well as the energy consumption by analyzing a total of 159 designs
with varying design choices. Figure 11 shows the energy–accuracy results of each design
choice as well as the Pareto-optimal designs. As shown in the figure, MSP430 and CC2652R
quickly converge to peak accuracy by increasing the energy constraints. MSP430 consumes
approximately half the energy compared to CC2652R while still reaching 91.0% accuracy.
However, the maximum NMLP of MSP430 is only 900, so it cannot reach the highest
achievable accuracy of 95.5%, and only CC2652R can achieve maximum accuracy even
though it consumes approximately twice the energy.

Atmega2560 has the worst energy–accuracy efficiency. We found that Atmega2560
is based on an 8-bit RISC architecture, and computation requirements during the prepro-
cessing and forward propagation operations in the MLP needs more active time of the
MCU, which increases energy consumption when fs and NMLP increase. We observe
similar energy–accuracy behaviors in Atmega1284P but with lower energy consumption
than that of Atmega2560 because the active power consumption of Atmega1284P is lower
than Atmega2560. Nevertheless, neither can be a Pareto-optimal.

Figure 11 also includes the energy–accuracy information of three models (one GRU
and two AutoML) which are generated by a commercial platform. Due to the memory
limitation, all three models are only applicable to CC2652R. The accuracy of two AutoML
models are comparable to our MLP model that has 891 to 3287 parameters. However, due
to the energy consumption, those models cannot be selected as Pareto optimal. The GRU
model shows slightly better accuracy than our design, with similar energy consumption.
Thus, it can be selected as a Pareto-optimal solution if CC2562R or higher MCU is used
for the target device. However, this GRU model cannot be a solution if the user wants to
implement it on a low-end MCU such as MSP430 or lower.
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Table 3 shows the design choices of each Pareto Front in detail. If the accuracy is given
as a design constraint, MSP430 can be used if the given accuracy is under 91.0% while
CC2652R MCU can be used over 91.0% of constraints. When energy consumption is a major
constraint of the design, MSP430 is mostly used if the budget of the energy is under 2.39 mJ
per gesture while CC2652R is used if the energy budget is over 2.39 mJ. ATmega2560/1284P
can still be considered as a target MCU if the users want to reuse the hardware and software
they have already developed. In this case, the results of our exploration could be useful
as well.

Table 3. Details of the Pareto Front design choices.

MCU Type Sample
Rate NMLP

Memory
Size (Byte) MLP Layers Accuracy

(%) Eges (mJ)

MSP430 5 185 740 10 × 6 × 17 51.1 1.31
7 297 1188 14 × 7 × 7 × 17 60.1 1.33
9 449 1796 18 × 12 × 17 78.1 1.36
11 589 2356 22 × 11 × 11 × 17 81.7 1.37
12 689 2756 24 × 16 × 17 89.7 1.42
14 891 3564 28 × 19 × 17 91.0 1.47

CC2652R 20 1583 6332 40 × 27 × 17 92.3 2.39
30 3287 13,148 60 × 30 × 30 × 17 92.9 2.49
40 5603 22,412 80 × 57 × 17 94.8 2.61
50 7787 31,148 GRU 95.8 2.72

A confusion matrix is useful for analyzing the patterns of mispredictions. Figure 12a
shows the confusion matrix of a model using 891 parameters with an accuracy of 91.0%
and an energy consumption of 1.47 mJ when using a MSP430. In this design, 21.0% of
“Double Click” gestures (class 7) are mispredicted as “Click” gestures (class 6). As defined
in Figure 8, “Click” moves the finger up and down once, while “Double Click” moves the
finger up and down in the same way but twice. Figure 13 shows the raw data collected
on two gestures directly from the sensors. As shown in the figures, the patterns of the
two gestures are similar, thus the model with 891 parameters is not enough to distinguish
them clearly.

Figure 12b shows the confusion matrix of the classifier using 8513 parameters, which
is 9.55-fold greater than using 891 parameters. This design achieves 95.5% accuracy with
an energy consumption of 2.74 mJ when using CC2652R. Nevertheless, 14.0% of “Double
Click” gestures (class 7) are mispredicted as “Click” gestures (class 6). This may indi-
cate that simple MLP may not be a perfect solution to completely distinguish these two
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gestures. Although this design shows a lower number of mispredictions than the design
with 891 parameters, energy consumption is increased by 1.86 fold, while improvement
in accuracy is only 4.4%. In addition, this design cannot be implemented in MSP430 be-
cause of memory shortage. Table 4 summarizes and compares this work with existing
hand/finger gesture recognition designs, in terms of the sensors, classification models
with size information, the number of recognized classes, accuracy, and implementation.
We do not directly compare recognition accuracy because the target applications, type of
sensor, the number of recognized classes, and the dataset used for training and testing are
different in each work. As shown in the table, most studies only provide the design and
performance analysis without details on implementation issues. The work in [3,7] tried to
reduce model size and can be implemented in MCU devices, but not on low-end MCUs
with only a few tens of KB memory and low computing resources. The work in [8] was
implemented on an Arduino Due board. However, the Arduino board only collects and
preprocesses the collected data while classifications are performed on Field Programmable
Gate Arrays (FPGAs). Most of all, none of the existing studies considers energy–accuracy
design choices, which is very important for designing wearable IoT devices.

Table 4. Comparisons of existing hand gesture recognition studies.

[1] [3] [5] [6] [7] [8] [13] [23] [26] This
Work

Used sensors Camera EMG
(Myo)

Depth
camera

Optical
and
IMU

Flex
Sensor IMU

Pressure,
flex, gyro,
IMU, etc.

Accelerometer Flex
sensor

2-axes
flex

sensor

Models
(num. of

parmas or
mem. size)

CNN +
RNN

(N/A)

CNN
(34 K)

Custom
(600 MB)

HMM
(N/A)

GRU +
MAP

(50 K~)

RCE
(274.3 Kb)

LSTM
(N/A)

RNN
(69 K)

AL 1

(N/A)
MLP

(185~8513)

Classes 4 7 124 26 4 10 31 8 4 17

Accuracy (%) 96.4 98.8 91.9 98.1 97.3 98.6 90.0 88.6 88.3 95.5

Implementation N/A N/A
Inter i5,

GPU
(GTX750)

N/A Raspberry
Pi 3

Arduino +
FPGA N/A N/A N/A

CC2652R,
Atmega,
MSP430

1 AL: adversarial learning.
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6. Conclusions

In this paper, we implemented a finger gesture recognition system based on a light-
weight MLP-based classifier using a low-end MCU and a 2-axes flex sensor. In order to
find energy–accuracy aware design points, we first designed a full process of finger gesture
recognition and its system-level performance and energy models. Then, we analyzed
system-level design issues including sensor operating frequency and the size of the MLP
classifier. Finally, we explored the numerous design choices based on accuracy and energy
constraints. Considering four commonly used MCUs, a total of 159 design points were
determined according to the configuration of the sensor operating frequency, the presence
of preprocessing filters, and the size of the MLP classifier. As a result of Pareto Fronts, the
proposed design achieved up to 95.5% accuracy with an energy consumption of 2.74 mJ,
which shows up to 10% higher accuracy than previous studies [26] with similar low-end
MCUs. Collectively, this study details how to achieve energy–accuracy aware design points
under given energy or accuracy constraints.

In this work, we do not address the effect of using AI accelerators such as digital
signal processors (DSPs), FPGAs or application-specific integrated chips (ASICs). Since
these accelerators will greatly affect performance as well as energy efficiency, considering
these components will be our future work to find energy–accuracy aware design choices
for wearable IoT devices.

Author Contributions: Conceptualization, W.J.; methodology, W.J.; software, W.J.; validation, W.J.;
formal analysis, W.J. and H.G.L.; investigation, W.J.; resources, W.J.; data curation, W.J.; writing—
original draft preparation, W.J.; writing—review and editing, W.J. and H.G.L.; visualization, W.J.;
supervision, H.G.L.; project administration, H.G.L.; funding acquisition, H.G.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Research Foundation of Korea (NRF) grant
number NRF-2020R1F1A1076533.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gunawan, M.R.; Djamal, E.C. Spatio-Temporal Approach using CNN-RNN in Hand Gesture Recognition. In Proceedings of the

2021 4th International Conference of Computer and Informatics Engineering (IC2IE), Depok, Indonesia, 14–15 September 2021;
pp. 385–389. [CrossRef]

2. Chen, X.; Guo, H.; Wang, G.; Zhang, L. Motion feature augmented recurrent neural network for skeleton-based dynamic hand
gesture recognition. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20
September 2017; pp. 2881–2885. [CrossRef]

3. Chen, L.; Fu, J.; Wu, Y.; Li, H.; Zheng, B. Hand Gesture Recognition Using Compact CNN via Surface Electromyography Signals.
Sensors 2020, 20, 672. [CrossRef] [PubMed]

4. Mendes, N.; Ferrer, J.; Vitorino, J.; Safeea, M.; Neto, P. Human Behavior and Hand Gesture Classification for Smart Human-robot
Interaction. Procedia Manuf. 2017, 11, 91–98. [CrossRef]

5. Alam, S.; Kwon, K.-C.; Kim, N. Implementation of a Character Recognition System Based on Finger-Joint Tracking Using a Depth
Camera. IEEE Trans. Hum.-Mach. Syst. 2021, 51, 229–241. [CrossRef]

6. Chen, M.; AlRegib, G.; Juang, B.-H. Air-Writing Recognition—Part I: Modeling and Recognition of Characters, Words, and
Connecting Motions. IEEE Trans. Hum.-Mach. Syst. 2015, 46, 403–413. [CrossRef]

7. Chuang, W.-C.; Hwang, W.-J.; Tai, T.-M.; Huang, D.-R.; Jhang, Y.-J. Continuous Finger Gesture Recognition Based on Flex Sensors.
Sensors 2019, 19, 3986. [CrossRef] [PubMed]

8. Kim, M.; Cho, J.; Lee, S.; Jung, Y. IMU Sensor-Based Hand Gesture Recognition for Human-Machine Interfaces. Sensors 2019,
19, 3827. [CrossRef] [PubMed]

9. Dang, L.M.; Min, K.; Wang, H.; Piran, J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition:
A comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]

10. Fernandez, I.G.; Ahmad, S.A.; Wada, C. Inertial Sensor-Based Instrumented Cane for Real-Time Walking Cane Kinematics
Estimation. Sensors 2020, 20, 4675. [CrossRef] [PubMed]

11. Côté-Allard, U.; Fall, C.L.; Drouin, A.; Campeau-Lecours, A.; Gosselin, C.; Glette, K.; Laviolette, F.; Gosselin, B. Deep Learning for
Electromyographic Hand Gesture Signal Classification Using Transfer Learning. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27,
760–771. [CrossRef] [PubMed]

http://doi.org/10.1109/IC2IE53219.2021.9649108
http://doi.org/10.1109/ICIP.2017.8296809
http://doi.org/10.3390/s20030672
http://www.ncbi.nlm.nih.gov/pubmed/31991849
http://doi.org/10.1016/j.promfg.2017.07.156
http://doi.org/10.1109/THMS.2021.3066854
http://doi.org/10.1109/THMS.2015.2492598
http://doi.org/10.3390/s19183986
http://www.ncbi.nlm.nih.gov/pubmed/31540184
http://doi.org/10.3390/s19183827
http://www.ncbi.nlm.nih.gov/pubmed/31487894
http://doi.org/10.1016/j.patcog.2020.107561
http://doi.org/10.3390/s20174675
http://www.ncbi.nlm.nih.gov/pubmed/32825029
http://doi.org/10.1109/TNSRE.2019.2896269
http://www.ncbi.nlm.nih.gov/pubmed/30714928


Sensors 2022, 22, 4801 17 of 17

12. Lin, B.-S.; Hsiao, P.-C.; Yang, S.-Y.; Su, C.-S.; Lee, I.-J. Data Glove System Embedded With Inertial Measurement Units for Hand
Function Evaluation in Stroke Patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2204–2213. [CrossRef] [PubMed]

13. Chan, J.; Veas, E.; Simon, J. Designing a Sensor Glove Using Deep Learning. In Proceedings of the 26th International Conference
on Intelligent User Interfaces, College Station, TX, USA, 14–17 April 2021; pp. 150–160. [CrossRef]

14. Bendlabs. 2-Axis Soft Flex Sensor. Available online: https://www.bendlabs.com/products/2-axis-soft-flex-sensor/ (accessed on
30 August 2018).

15. Laput, G.; Harrison, C. Sensing Fine-Grained Hand Activity with Smartwatches. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI’19), Glasgow, UK, 4–9 May 2019. [CrossRef]

16. Ketykó, I.; Kovács, F.; Varga, K.Z. Domain Adaptation for sEMG-based Gesture Recognition with Recurrent Neural Networks.
In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019;
pp. 1–7. [CrossRef]

17. Hao, J.; Yang, P.; Chen, L.; Geng, Y. A gait recognition approach based on surface electromyography and triaxial acceleration
signals. Chin. J. Tissue Eng. Res. 2019, 23, 5164. [CrossRef]

18. Roland, T.; Amsuess, S.; Russold, M.F.; Baumgartner, W. Ultra-Low-Power Digital Filtering for Insulated EMG Sensing. Sensors
2019, 19, 959. [CrossRef] [PubMed]

19. Ponraj, G.; Ren, H. Sensor Fusion of Leap Motion Controller and Flex Sensors Using Kalman Filter for Human Finger Tracking.
IEEE Sens. J. 2018, 18, 2042–2049. [CrossRef]

20. Lichtenauer, J.F.; Hendriks, E.A.; Reinders, M.J. Sign Language Recognition by Combining Statistical DTW and Independent
Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 2040–2046. [CrossRef] [PubMed]

21. Vijayalakshmi, P.; Aarthi, M. Sign language to speech conversion. In Proceedings of the 2016 International Conference on Recent
Trends in Information Technology (ICRTIT), Chennai, India, 8–9 April 2016; pp. 1–6. [CrossRef]

22. Hu, Q.; Tang, X.; Tang, W. A Smart Chair Sitting Posture Recognition System Using Flex Sensors and FPGA Implemented
Artificial Neural Network. IEEE Sens. J. 2020, 20, 8007–8016. [CrossRef]

23. Shin, S.; Sung, W. Dynamic hand gesture recognition for wearable devices with low complexity recurrent neural networks. In
Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montréal, QC, Canada, 22–25 May 2016;
pp. 2274–2277. [CrossRef]

24. Wang, L.; Meydan, T.; Williams, P.; Wolfson, K.T. A proposed optical-based sensor for assessment of hand movement. In Proceed-
ings of the 2015 IEEE Sensors, Busan, Korea, 1–4 November 2015; pp. 1–4. [CrossRef]

25. Shafi, I.; Ahmad, J.; Shah, S.I.; Kashif, F.M. Impact of Varying Neurons and Hidden Layers in Neural Network Architecture
for a Time Frequency Application. In Proceedings of the 2006 IEEE International Multitopic Conference, Islamabad, Pakistan,
23–24 December 2006; pp. 188–193. [CrossRef]

26. Panda, A.K.; Chakravarty, R.; Moulik, S. Hand Gesture Recognition using Flex Sensor and Machine Learning Algorithms.
In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi Island, Malaysia,
1–3 March 2021; pp. 449–453. [CrossRef]

http://doi.org/10.1109/TNSRE.2017.2720727
http://www.ncbi.nlm.nih.gov/pubmed/28678709
http://doi.org/10.1145/3397481.3450665
https://www.bendlabs.com/products/2-axis-soft-flex-sensor/
http://doi.org/10.1145/3290605.3300568
http://doi.org/10.1109/IJCNN.2019.8852018
http://doi.org/10.3969/j.issn.2095-4344.1493
http://doi.org/10.3390/s19040959
http://www.ncbi.nlm.nih.gov/pubmed/30813494
http://doi.org/10.1109/JSEN.2018.2790801
http://doi.org/10.1109/TPAMI.2008.123
http://www.ncbi.nlm.nih.gov/pubmed/18787250
http://doi.org/10.1109/ICRTIT.2016.7569545
http://doi.org/10.1109/JSEN.2020.2980207
http://doi.org/10.1109/ISCAS.2016.7539037
http://doi.org/10.1109/ICSENS.2015.7370222
http://doi.org/10.1109/INMIC.2006.358160
http://doi.org/10.1109/IECBES48179.2021.9398789

	Introduction 
	Backgrounds 
	Related Work 
	Basics of Flex Sensors 

	Designing the Finger Gesture Recognition System 
	System Architecture 
	Designing Preprocessing Filters 
	Designing an MLP-Based Classifier 

	Energy–Accuracy Aware Design Optimization 
	Performance (Timing) Estimation Models 
	Energy Estimation Models 
	Energy–Accuracy Aware System-Level Design 

	Evaluations 
	Experimental Setup 
	Results of Design Choice Exploration 
	Pareto-Optimal Energy–Accuracy Aware Design Points 

	Conclusions 
	References

