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Abstract

Background

Exclusive breastfeeding promotes beneficial modifications on the microbiota of cesarean

born infants, but little is known about the role of specific breast milk components in this mod-

ulation. Women with an active FUT2 gene (called secretors) secrete α1–2 fucosylated

human milk oligosaccharides (HMOs), which promote Bifidobacterium in the infant’s gut and

may modulate the microbiota of cesarean born infants.

Objective

To compare the microbiota composition of cesarean and vaginally born infants breastfed by

secretor mothers.

Methods

Maternal secretor status was determined by the occurrence of 4 different α1–2 fucosylated

HMOs in breast milk by LC-MS. The fecal microbiota composition from cesarean and vagi-

nally born infants was analyzed by 16S rRNA gene sequencing and qPCR, stratified by the

maternal secretor status, and compared.

Results

Alpha and beta diversity were not significantly different in cesarean born, secretor-fed

infants (CSe+) compared to vaginally born, secretor-fed infants (VSe+). There were no sig-

nificant differences in the fecal relative abundance of Bifidobacterium between CSe+ and

VSe+ infants, but the prevalence of the species B. longum was lower in CSe+. The fecal
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relative abundance of Bacteroides was also lower, while Akkermansia and Kluyvera were

higher in CSe+ infants.

Conclusion

Cesarean and vaginally born infants fed with breast milk containing the α1–2 fucosylated

HMOs fraction present similar amounts of Bifidobacterium in the feces, but differences are

observed in other members of the microbiota.

Introduction

Disruptions in the natural assembly of the neonatal microbiota have been associated with

increased risk of immune-mediated diseases [1,2] and excessive weight later in childhood [3–

5]. The mode of birth is one of the major factors that significantly affect bacterial colonization

and the development of the gut microbial community [6]. Vaginally born infants harbor a

microbiota enriched with mutualistic bacteria such as Bifidobacterium, Escherichia, Bacter-
oides, and Parabacteroides. In contrast, cesarean born infants are depleted of these genera and

are instead dominated by Enterococcus, Staphylococcus, Streptococcus, Klebsiella, Enterobacter,
and Clostridium, which are commonly associated with the human skin and the hospital envi-

ronment [6–10].

Previous studies demonstrated that exclusive breastfeeding can partially restore the disrup-

tions caused by cesarean birth in the infant gut microbiota, without exploring the role of breast

milk composition [11,12]. Liu et al. reported that cesarean born/exclusively breastfed infants

share a more similar gut microbiota with vaginally born/exclusively breastfed than cesarean

born/mixed-fed infants [12]. Recently, a study showed that 2’-fucosyllactose (2’FL) as an indi-

cator of maternal secretor status, might be involved in the restoration promoted by exclusive

breastfeeding on the gut microbiota of cesarean born infants [13]. So far, this is the only evi-

dence on the role of a human milk component in repairing the changes caused by cesarean

section on the infant gut microbiota.

Human milk oligosaccharides (HMOs) comprise the third largest solid fraction of human

milk, after lactose and lipids, containing more than 150 different molecules with a total con-

centration between 5 and 20 g/L in mature human milk [14–16]. HMOs are not digested by

the infant and reach the colon intact, where they act as prebiotics, antimicrobials, prevent

pathogen binding, and promote the gut barrier function [15]. The composition and concentra-

tions of HMOs are highly variable and influenced by several maternal characteristics, espe-

cially the secretor status, determined by the activity of the FUT2 gene [17–19]. FUT2 encodes

the enzyme fucosyltransferase 2, which adds a fucose residue in an α1–2 linkage to the HMO

chain [20,21]. Secretor women have an active FUT2 enzyme and produce high amounts of

α1–2 fucosylated HMOs, such as 2’FL and lacto-N-fucopentaose I (LNFP I).

In contrast, due to a single nucleotide polymorphism in FUT2, non-secretors produce no

or only small amounts of α1–2 fucosylated HMOs [13]. Breastfed infants from secretor moth-

ers are colonized earlier by Bifidobacterium and present higher amounts of this genus in the

feces than non-secretor-fed infants [22,23]. Furthermore, isolated Bifidobacterium from secre-

tor-fed infants can consume 2’FL and distinct sets of Bifidobacterium dominate the microbial

community in secretor-fed and non-secretor-fed infants [23].

Therefore, we hypothesized that besides the birth mode, the maternal secretor status (or the

presence of α1–2 fucosylated HMOs in breast milk) also influences the fecal microbiota of
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exclusively breastfed infants. The purpose of this study was to compare the microbiota compo-

sition of cesarean and vaginally born infants breastfed by secretor mothers.

Materials and methods

Participants and sample collection

The participants of the study were a subset of mother-infant pairs enrolled in a cross-sectional,

observational study whose aim was to identify maternal and infant factors associated with

HMOs concentrations [19]. Mothers and their infants were included at one month postpartum

(median: 34 days, 25th-75th percentile: 25–45 days postpartum). Data and samples were col-

lected on the same day of enrollment in the study. Healthy full-term (gestational age� 37

weeks), singleton, exclusively breastfed infants were included. Infants that received antibiotic

treatment, probiotics, water, or any other food besides human milk were not enrolled. The

inclusion criteria for the present study were the availability of a human milk sample from the

mother and a stool sample from the infant. From the 78 pairs included in the original cohort,

54 provided both samples and were selected for this subset (S1 Fig).

Human milk samples (5 to 15 mL) were obtained by manual expression of the breast during

the morning (8:30–12:00 a.m.) and stored at −20˚C until HMOs analysis. Infant feces were col-

lected from disposable diapers and transferred to a microfuge tube containing 1 mL of the ASL

buffer from the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany) and stored at −20˚C

until DNA extraction. Human milk and infant feces samples were collected on the same day.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the Universidade Federal de São Paulo

(protocol No. 419.162) and complied with the Declaration of Helsinki. All mothers received

detailed oral and written information about the study and voluntarily agreed to participate.

Written informed consent was obtained from each participant before the data and sample

collection.

Maternal secretor status determination

Maternal secretor status was determined based on the presence of α1–2 fucosylated structures

in the human milk sample by liquid chromatography-mass spectrometry (LC-MS), as previ-

ously described in detail [24]. Briefly, after fat and protein removal, the human milk sample

was diluted and subjected to a reduction reaction with 0.25M sodium borohydride. The result-

ing extract containing the HMOs fraction was injected into the LC-MS system for HMOs anal-

ysis. Mothers whose human milk sample presented at least one of the α1–2 fucosylated

structures 2’-FL, LNFP I, lacto-N-difucohexaose I (LNDFH I), and difucosyllacto-N-hexaose c

(DFLNHc) were ascribed as secretors, and those that did not present any of those HMOs up to

quantifiable amounts (0.039 μg/mL for 2’-FL, LNDFH I and DFLNHc and 0.156 μg/mL for

LNFP I) were ascribed as non-secretors.

Fecal microbiota analysis

Whole genomic DNA was extracted from feces using the QIAamp DNA Stool Mini Kit (Qia-

gen, Hilden, Germany) following the manufacturer’s instructions. Purified DNA was diluted

to a final volume of 200 μL, and DNA quantification was performed using a spectrophotome-

ter, model Denovix DS-11 (Denovix, Delaware, USA). All DNA samples were diluted to a final

concentration of 20 ng/μL and stored at -20˚C.
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The overall fecal microbiota composition was analyzed by 16S rRNA gene sequencing. The

bacterial 16S rRNA gene, hypervariable region V4, was amplified by PCR using V4 primers

with specific Illumina adaptors [25]. Amplification of the target sequences was performed in

two stages, following the instructions of the Illumina protocol (Illumina1, California, United

States). After amplification, the samples were grouped in equimolar amounts, with a final con-

centration of 12 pM and sequenced using the 500-cycle Miseq V2 Kit (Illumina1, California,

United States), including 20% PhiX as an internal control for low libraries diversity. Besides,

all reagents and ultrapure water were used as blank samples, and no signal was detected in the

sequencing cartridge, indicating that bacterial contamination was minimal during library

preparation and sequencing.

The main bacterial genera and species were quantified by qPCR using specific primers (S2

Table). The qPCR reactions were conducted on the Rotor-gene Q (Qiagen) equipment, in

duplicate, in a final volume of 10 μL. The qPCR conditions were as follows: initial denaturation

at 95˚C for 5 minutes, 40 cycles at 95˚C for 10 s, and a final stretching step at 60˚C for 15 s.

The dissociation cycle of the products for the melting curve was 95˚C for 1 minute and a step

to perform the denaturation curve with a variation of 70˚C to 95˚C, with a gradual increase in

temperature of 1˚C/s.

The standard curve for the quantification was created by TopoTA cloning plasmids (Invi-

trogen, Carlsbad, CA, USA), containing the reference gene fragment for each bacterium, previ-

ously amplified by PCR. With the molecular mass of the plasmid and the size of the insert, it

was possible to calculate the number of copies of the genes according to the formula: mass in

Daltons (g/mol) = (double-strand size [ds] amplicon in base pairs [bp]) (330 Da × 2 nucleo-

tides [nt] / bp). In this way, dividing the concentration in g/mol by the Avogadro constant, the

number of molecules/g was obtained, which is equal to the number of copies/g of the gene. As

a negative control, samples containing all reagents were used, except for DNA.

From this information, it was possible to determine the number of copies of each gene, pro-

viding a standard for the construction of a reference curve for quantification by qPCR. The

results of qPCR were expressed as bacterial units/g of feces (U/g of feces). The detection limit

was 1 cell/g for all organisms.

Bioinformatics

The generated fragments were joined and analyzed using the software QIIME version 1.9.1

[26] with each unique sequence assigned to an operational taxonomic unit (OTU) based

on� 97% similarity by the UCLUST algorithm, representing the smallest taxonomic entity

and classified phylogenetically using the ribosomal sequences from the SILVA reference data-

base, version 128 [27].

The resulting OTU table was filtered to remove singletons and any OTU with an abundance

of less than 0.05% across all samples. The median (25th-75th percentiles) number of sequences

found in the samples was 90158 (66398–153979), and the minimum number of sequences in a

sample was 7044 sequences. Alpha diversity was analyzed using the number of observed

OTUs, Chao1, and Shannon indexes, without rarefaction [28]. Beta diversity was calculated

using weighted and unweighted UniFrac distances [29].

Statistical analysis

Statistical tests were performed to compare the microbiota composition of infants from secre-

tor mothers, stratified in cesarean (CSe+, n = 27) and vaginally born (VSe+, n = 21). Non-

secretor mothers and their infants were not included in the statistical analysis of the micro-

biota, but their data were described.
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UniFrac distances were associated with birth mode using the method Adonis in QIIME

[22]. Analysis of Covariance (ANCOVA) and non-parametric Analysis of Covariance (Ranked

ANCOVA or Quade test [30]) were used to verify differences in α-diversity indices, relative

abundances of the most abundant phyla and genera, and species absolute concentrations

between CSe+ and VSe+ with age at inclusion as a covariate, according to the distribution of

each variable. We used a free web program (www.masungur.com) to perform the ranked

ANCOVA [31]. Chi-square test or Fisher’s exact test were used to compare the prevalence of

bacterial genera and species between the groups. Clinical and demographic characteristics of

the study population and the concentrations of α1–2 fucosylated HMOs were described using

mean (SD), median (p25 –p75) or proportions and compared using Student’s t-test, Mann-

Whitney rank-sum test, Chi-square test, or Fisher’s exact test according to the distribution and

nature of the variables. Zero/non-detected levels were included in the comparisons of qPCR

data and missing data were reported. Analyses were conducted with the software SigmaPlot

version 12.0 (Systat Software, Inc., Chicago, IL) or R version 3.4.4 (The R Foundation for Sta-

tistical Computing, Vienna, Austria). The p-values for α-diversity indices, relative abundances

of the most abundant phyla and genera, and species absolute concentrations were adjusted for

multiple comparisons using the Benjamini and Hochberg method [32] to control the false dis-

covery rate. Results were considered statistically significant when p< 0.05.

Results

Table 1 shows the characteristics of the study population according to the mode of birth and

maternal secretor status. No significant differences were observed in clinical and demographic

characteristics between the four groups (Table 1).

The median (25th-75th percentile) amount of LNFP I was significantly lower in the milk

from mothers of cesarean born infants than in the milk from mothers of vaginally born infants

(0.511 (0.269–0.962) g/L vs. 0.736 (0.444–1.564) g/L, respectively; p = 0.025). No significant

difference was observed in 2’-FL or the other α1–2 fucosylated HMOs amounts between the

groups (S1 Table).

The overall microbiota composition did not differ between CSe+ and VSe+ infants when

comparing the unweighted (p = 0.75) and weighted (p = 0.87) UniFrac distances using the

method Adonis (Fig 1A and 1B). The number of observed OTUs, the richness estimator

(Chao1), and the diversity index (Shannon) also did not differ between CSe+ and VSe+ infants,

as shown in Table 2.

The relative abundance of the most abundant bacterial phyla was not different in CSe+ and

VSe+ infants, except for Bacteroidetes and Verrucomicrobia (Table 3, Fig 2A). The relative

abundances of the most abundant bacterial phyla and genera of cesarean born, non-secretor

fed infants (CSe-, n = 2) and vaginally born, non-secretor fed infants (VSe-, n = 4) are pre-

sented in Fig 2 for descriptive purposes and were not included in the statistical analysis.

Bacteroidetes and its main genus Bacteroides (Fig 3H) were significantly lower, whereas

Verrucomicrobia and its main genus Akkermansia (Fig 3I) were significantly higher in CSe

+ infants. The prevalence of Verrucomicrobia was significantly higher in CSe+ infants when

compared to the VSe+ (29.6% and 4.8%, respectively, Fisher’s exact test, p< 0.001). A high

abundance of Proteobacteria was observed in both CSe+ (> 40%) and VSe+ (> 30%), of

which Serratia and Kluyvera were the most abundant genera. While no differences were

observed in Serratia abundance between the groups, CSe+ infants presented a significantly

higher Kluyvera abundance (Table 3, Fig 3G). There were no significant differences in the

average relative abundance of other bacterial genera between CSe+ and VSe+ (Fig 3A–3F).
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In addition to the relative abundances of the main phyla and genera, there were no differ-

ences in the absolute amounts measured by qPCR of six Bifidobacterium species between CSe

+ and VSe+, except for Bifidobacterium longum (Table 4). However, CSe+ group presented a

lower (but not significant) prevalence of B. longum than VSe+ (22.2% vs. 52.4%, respectively;

p = 0.062), and differences in absolute amounts between CSe+ and VSe+ were no longer signif-

icant when considering only the samples that presented a quantifiable amount of B. longum
(6.00×105 cells/g vs. 6.66 ×105 cells/g, respectively; p = 0.725).

There were no significant differences in the prevalence and amounts of other bacterial spe-

cies of clinical relevance such as Escherichia coli, Clostridioides difficile and Methanobrevibacter
smithii (Table 4). The prevalence of Bacteroides fragilis was significantly lower in CSe+ than

Table 1. Characteristics of the mothers and their exclusively breastfed infants according to the mode of birth and maternal secretor status.

VSe+ (n = 21) CSe+ (n = 27) VSe- (n = 4) CSe- (n = 2) p
Mothers

Age, years (mean (SD)) 31 (6) 31 (7) 31 (6) 26 (2) 0.738f

BMI, kg/m2 (median (p25 –p75))

Pre-gestational 24.8 (22.4–27.9) 23.6 (21.5–30.6) 22.5 (21.3–22.7) 22.5 (21.5–23.5) 0.403g

At inclusion 26.8 (24.4–29.0) 25.8 (23.3–31.2) 23.3 (22.1–24.8) 25.2 (24.3–26.2) 0.446g

Parity, n (median (p25 –p75)) 2 (1–2) 1 (1–2) 2 (1–2) 1 (1–2) 0.535g

Allergic disease, n (%) 6 (29) 5 (19) 0 (0) 0 (0) >0.498h

Education, n (%) a

Elementary school 2 (11) 2 (8) 1 (25) 0 (0) 1.000h

High school 9 (47) 6 (25) 2 (50) 2 (100) >0.086h

Graduate 5 (26) 11 (46) 1 (25) 0 (0) >0.221h

Postgraduate 1 (5) 5 (21) 0 (0) 0 (0) >0.205h

Infants

Gestational age at birth, weeks (mean

(SD))

38.90 (1.10) 38.97 (1.40) 38.57 (1.41) 38.78 (0.71) 0.960f

Birth weight, g (mean (SD)) 3097.50 (731.90) 3179.77 (436.62) 3232.50 (202.05) 3097.50 (731.86) 0.922f

Age at inclusion, days (mean (SD)) 32.4 (10.7) 40.0 (14.7) 28.8 (5.9) 33.5 (19.1) 0.151f

Weight at inclusion, g (median (p25 –

p75))

4177.50 (2690.00–

5665.00)

4250.00 (3677.50–

5002.50)

4192.50 (4037.50–

4345.00)

4177.50 (2690.00–

5665.00)

0.990g

Length at inclusion, g (mean (SD)) 53.7 (2.4) 54.0 (3.3) 53.5 (1.3) 52.8 (5.3) 0.937f

Weight gain, g/day (mean (SD)) b 28.49 (14.82) 26.89 (11.98) 32.35 (8.84) 24.56 (26.95) 0.864f

Sex, n (%) c

Male 8 (38) 14 (54) 2 (50) 1 (50) >0.380h

Female 13 (62) 12 (46) 2 (50) 1 (50) >0.380h

Household

Household with siblings, n (%) d 10 (53) 7 (33) 3 (75) 1 (50) >0.270h

Household with pets, n (%) e 7 (37) 6 (30) 2 (50) 1 (50) >0.580h

VSe+: Vaginally born, secretor; CSe+: Cesarean born, secretor; VSe-: Vaginally born, non-secretor; CSe-: Cesarean born, non-secretor
a missing data from 2 mothers from group VSe+ and 3 mothers from group CSe+
b Weight gain = (weight at inclusion—birth weight)/age at inclusion
c missing data from 1 infant from group CSe+
d missing data from 2 infants from group VSe+ and 6 infants from group CSe+
e missing data from 2 mother-infant pairs from VSe+ and 7 pairs from group CSe+
f One-way ANOVA
g Kruskal-Wallis test
h Fisher’s Exact Test.

https://doi.org/10.1371/journal.pone.0246839.t001
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VSe+ infants (0.0% vs. 35.0%, respectively; p = 0.003), since it was not detected in any fecal

sample from CSe+ infants, corroborating the 16S sequencing results.

Discussion

In this study, we compared the fecal microbiota of 48 full-term, healthy, exclusively breastfed

infants from secretor mothers, according to the mode of birth. Cesarean born infants pre-

sented lower abundances of Bacteroides, lower prevalence of B. longum and higher abundances

of Akkermansia and Kluyvera. The overall microbiota composition (alpha and beta diversity)

was not different between cesarean and vaginally born infants breastfed by secretor mothers.

On the contrary to previous studies comparing the fecal microbiota of vaginally and cesar-

ean born infants without considering the maternal secretor status [6,7], we did not observe dif-

ferences in Bifidobacterium relative abundances between CSe+ and VSe+ infants. Besides the

relative amounts obtained by 16S sequencing, we measured absolute numbers of some clini-

cally relevant groups through qPCR, including six Bifidobacterium species, of which a differ-

ence between CSe+ and VSe+ infants was observed only in the concentration of B. longum.

Previous studies reported that the presence of α1–2 fucosylated HMOs in breast milk (or

maternal Se+ phenotype) affects Bifidobacterium establishment and abundance in the infant’s

gut, being higher in secretor-fed infants [22,23]. This may explain the lack of difference in the

relative abundances and counts of Bifidobacterium between CSe+ and VSe+ in our study. Bifi-
dobacterium is essential for inhibiting the growth of pathogenic organisms, modulating muco-

sal barrier function, and promoting immunological and inflammatory responses in the

infant’s gut [33,34]. The perturbance of Bifidobacterium establishment during the neonatal

period may be involved in the development of immune diseases, such as eczema [35]. Bifido-
bacterium is also a component of the human milk microbiota [36], and its occurrence in the

fecal microbiota of CSe+ infants observed in our study suggests that human milk may be an

important source of Bifidobacterium besides the birth canal, contributing to the establishment

of this genus in the infant gut microbiota.

Fig 1. Principal coordinate analysis (PCoA) of the overall microbiota composition of exclusively breastfed infants

from secretor mothers by birth mode using (A) unweighted and (B) weighted UniFrac distances. VSe+: vaginal,

secretor; CSe+: cesarean, secretor.

https://doi.org/10.1371/journal.pone.0246839.g001

Table 2. Fecal microbiota alpha diversity from vaginally and cesarean born, exclusively breastfed infants from secretor mothers.

Index VSe+ (n = 21) CSe+ (n = 27) p�

Observed OTUs 595.381 ± 151.699 577.889 ± 214.780 0.841

Chao 1 876.230 ± 169.751 866.394 ± 282.444 0.988

Shannon 1.871 ± 0.412 2.032 ± 0.483 0.394

Values are presented in mean ± SD; VSe+: Vaginally born, secretor; CSe+: Cesarean born, secretor.

�p-values were adjusted for age at inclusion using ANCOVA (analysis of covariance).

https://doi.org/10.1371/journal.pone.0246839.t002
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Our results broadly support the findings of the recent and only previous published study,

conducted in Finland, about the effects of maternal secretor phenotype on the microbiota of

cesarean and vaginally born infants [13]. The authors reported that cesarean born infants from

Se+ mothers presented a more modest deviation in the overall microbiota composition, com-

pared to those of non-secretor mothers. Similar to our findings, the authors reported that CSe

+ had significantly lower abundances of Bacteroidetes and Bacteroides and significantly higher

abundances of Verrucomicrobia and Akkermansia muciniphila in their gut microbiota, com-

pared to VSe+ infants. Considering that ethnicity and environmental factors are strongly asso-

ciated with the microbial composition and function in healthy individuals [37], it is

remarkable that similar associations were observed in such distinct populations as the Nordic

and Brazilian. Differently, they found significantly lower Actinobacteria and Bifidobacterium
and higher Firmicutes abundances in CSe+ compared to VSe+, which were not observed in

our cohort [13].

The significantly higher abundance of Verrucomicrobia and its main genus Akkermansia
observed only in CSe+ infants is a curious finding of both studies. Akkermansia is a mucin-

degrading bacterium present in the human intestinal tract, which is involved in immune regu-

lation and promotes the gut barrier function [38]. Lower abundance and prevalence of Akker-
mansia have been associated with obesity and related metabolic complications [39] and also

with allergic diseases in children, such as atopy and asthma [40,41]. Akkermansia is also a com-

ponent of the breast milk microbiota, and positive correlations between α1–2 fucosylated

HMOs and Akkermansia muciniphila in human colostrum have been reported, as well as the

Table 3. The average relative abundance of the most abundant fecal bacterial groups from vaginally and cesarean

born, exclusively breastfed infants from secretor mothers.

Group Average relative abundance (%) p
VSe+ CSe+

Phyla

Actinobacteria 19.75 13.25 0.185a

Bacteroidetes 13.81 1.45 0.003�b

Firmicutes 28.43 35.36 0.465a

Proteobacteria 37.88 48.73 0.094a

Verrucomicrobia 0.00 1.08 0.030�b

Genera

Akkermansia 0.00 1.18 0.030�b

Bacteroides 13.94 1.32 0.006�b

Bifidobacterium 17.43 13.48 0.342b

Clostridium sensu stricto 1 9.99 8.47 0.149b

Kluyvera 13.13 33.82 0.001�b

Lactobacillus 0.87 2.99 0.283b

Serratia 19.78 13.91 0.950b

Streptococcus 5.50 4.66 0.975b

Veillonella 9.38 12.51 0.093b

The most abundant taxa were those with an average relative abundance� 1%; VSe+: Vaginally born, secretor; CSe+:

Cesarean born, secretor. p-values were adjusted for multiple comparisons using the Benjamini and Hochberg

method
a adjusted for age at inclusion using ANCOVA (analysis of covariance)
b adjusted for age at inclusion using a non-parametric ANCOVA (ranked analysis of covariance or Quade test)

�p< 0.05.

https://doi.org/10.1371/journal.pone.0246839.t003

PLOS ONE Infant gut microbiota, mode of birth, and human milk oligosaccharides

PLOS ONE | https://doi.org/10.1371/journal.pone.0246839 February 8, 2021 8 / 15

https://doi.org/10.1371/journal.pone.0246839.t003
https://doi.org/10.1371/journal.pone.0246839


ability of Akkermansia to degrade HMOs [42]. Interestingly, a study showed that CSe+ infants

with high hereditary allergy risk, but who did not develop IgE allergic disease and IgE eczema

at two years, consumed breast milk with higher levels of 2’-FL, suggesting a protective role of

α1–2 fucosylated HMOs in the manifestation of atopy [43]. A possible explanation for this

potential lower allergy risk in CSe+ infants is the higher abundance of Bifidobacterium and

Akkermansia in the microbiota of CSe+ infants demonstrated in our study.

Some studies have reported impairment on Bacteroides transmission from mother to child

by cesarean section [6–8,44], which remains absent from the microbiota at 12 months of age

[7]. Interestingly, we also observed a significantly lower abundance of Bacteroides and the

absence of B. fragilis in CSe+ compared to VSe+ infants, indicating that even exclusive breast-

feeding and the α1–2 fucosylated HMOs cannot repair the disruption on Bacteroides

Fig 2. Average relative abundances of the most abundant bacterial phyla (A) and genera (B) of the infant fecal

microbiota according to the birth mode and maternal secretor phenotype. The taxa with an average relative

abundance< 1% were removed and those with an average relative abundance� 1% were set to 100%; VSe+: Vaginally

born, secretor; CSe+: Cesarean born, secretor; VSe-: Vaginally born, non-secretor; CSe-: Cesarean born, non-secretor.

https://doi.org/10.1371/journal.pone.0246839.g002

Fig 3. The average relative abundance of the most abundant bacterial genera in infants from secretor mothers, by

birth mode. VSe+: Vaginally born (blue); CSe+: Cesarean born (yellow). The asterisks indicate statistical significance

at p< 0.05.

https://doi.org/10.1371/journal.pone.0246839.g003
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transmission from mother to child caused by cesarean section. Cesarean birth has been associ-

ated with neurodevelopmental and psychiatric disorders, such as autism spectrum disorder

and attention-deficit/hyperactivity disorder [45]. Curiously, Bacteroides is a producer of the

neurotransmitter γ-aminobutyric acid (GABA)–whose misregulation has been linked to men-

tal diseases–and low fecal Bacteroides levels were associated with brain signatures of depression

[46]. In an experimental model, oral treatment with Bacteroides fragilis attenuated the behav-

ioral symptoms of autism [47]. Besides neurological effects, an association among cesarean

birth, delayed Bacteroidetes colonization, and reduced Th1 responses have also been described

[44]. Further studies are needed to investigate the clinical consequences of Bacteroides depriva-

tion at the neonatal period and early infancy.

We observed a high abundance of Proteobacteria in our cohort, of which Serratia and Kluy-
vera were the main genera. While Proteobacteria is one of the main phyla commonly reported

in infant fecal samples [7,13], high abundances of Serratia and Kluyvera have not been

reported in the literature. Serratia has been described as one of the dominant bacterial genera

in human milk [48] and was reported to be highly abundant in breast milk from women with

mastitis [49]. Kluyvera has been reported as a cause of pediatric infections [50,51]. Previous

studies conducted in Brazil found a predominance of Escherichia in the fecal microbiota of

healthy, vaginally born, one-month-old exclusively breastfed infants from low socioeconomic

levels [52,53]. Besides Escherichia, the authors did not observe significant amounts of other

Table 4. Prevalence and absolute amounts of selected species obtained by qPCR from the feces of vaginally and cesarean born, exclusively breastfed infants from

secretor mothers.

Species Prevalence, n (%) Absolute amounts, cells/g (median (p25 –p75)) k

VSe+ (n = 21) CSe+ (n = 27) p VSe+ (n = 21) CSe+ (n = 27) p l

Bifidobacterium infantis 11 (52.4) 13 (48.15) 1.000 i 4.00 ×104 (0–1.55 ×105) 0 (0–1.08 ×105) 0.950

Bifidobacterium longum 11 (52.4) 6 (22.2) 0.062 i 2.94 ×104 (0–8.67 ×105) 0 (0–0) 0.009�

Bifidobacterium bifidum a 20 (100.0) 21 (100.0) NA 7.76 ×107 (4.51 ×106–3.34 ×108) 3.65 ×107 (4.71 ×105–1.56 ×108) 0.708

Bifidobacterium breve b 3 (14.3) 6 (23.1) 0.711 j 0 (0–0) 0 (0–8.70 ×102) 0.342

Bifidobacterium catenulatum c 1 (4.8) 1 (4.0) 1.000 j 0 (0–0) 0 (0–0) 0.903

Bifidobacterium adolescentis d 12 (60.0) 14 (58.3) 0.845 j 2.70 ×104 (0–1.73 ×107) 2.58 ×104 (0–2.39 ×106) 0.769

Bacteroides fragilis e 7 (35.0) 0 (0.0) 0.003� j 0 (0–2.48 ×106) NA NA

Clostridioides difficile f 5 (25.0) 9 (45.0) 0.320 j 0 (0–3.84 ×104) 0 (0–1.16 ×104) 0.229

Escherichia coli g 16 (80.0) 14 (66.7) 0.541 j 1.86 ×106 (4.12 ×103–1.79 ×107) 5.01 ×104 (0–5.15 ×106) 0.820

Methanobrevibacter smithii h 6 (30.0) 14 (61.0) 0.086 j 0 (0–1.04 ×104) 2.30 × 103 (0–3.39 ×104) 0.071

VSe+: Vaginally born, secretor; CSe+: Cesarean born, secretor; NA: Not applicable
a Missing data from 1 infant from VSe+ group and 6 infants from CSe+ group
b Missing data from 1 infant from group CSe+
c Missing data from 2 infants from group CSe+
d Missing data from 1 infant from VSe+ group and 3 infants from CSe+ group
e Missing data from 1 infant from VSe+ group and 5 infants from CSe+ group
f Missing data from 1 infant from VSe+ group and 7 infants from CSe+ group
g Missing data from 1 infant from VSe+ group and 6 infants from CSe+ group
h Missing data from 1 infant from VSe+ group and 4 infants from CSe+ group
i Chi-square test
j Fisher exact test
k Zero/non-detected levels were included as zero values in the analysis. The detection limit was 1 cell/g for all organisms
l p-values were adjusted for multiple comparisons using the Benjamini and Hochberg method and for age at inclusion using a non-parametric ANCOVA (ranked

analysis of covariance or Quade test)

�p<0.05.

https://doi.org/10.1371/journal.pone.0246839.t004
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members of the Proteobacteria phylum [52]. This difference to our study may be attributed to

the middle-high socioeconomic level of our cohort, which possibly determines a different envi-

ronmental exposure since the infants from these studies were also exclusively breastfed. How-

ever, the relative abundances of other principal members of the infant microbiota reported by

these previous studies were very similar to the VSe+ group of our research, especially Bacter-
oides (~10%), Veillonella (~10%), and Streptococcus (~5%) [52].

Another novel finding of our study is the occurrence of Methanobrevibacter smithii on the

microbiota of exclusively breastfed infants, independent of the birth mode. In previous studies,

our group reported higher concentrations of M. smithii in the feces of school-aged children liv-

ing near a landfill, from families of low socioeconomic level and poor sanitary housing condi-

tions [54,55]. In the present study, we demonstrate that M. smithii is already present in the

neonatal period in exclusively breastfed infants, but in lower levels than in school-aged

children.

The limitations of the study include the absence of a bead-beating step during the DNA

extraction, which may lead to an under-detection of Bifidobacterium. However, Bifidobacter-
ium was still detected in high abundances, composing one of the main bacterial genera, both

in VSe+ and CSe+ infants. The low prevalence of the non-secretor phenotype required a larger

sample to compare the four groups according to the birth mode and maternal secretor status.

Because of the cross-sectional design of the study, we were unable to ascertain whether the par-

tial microbiota recovery in CSe+ infants is sustained or if other changes occur over time.

Although the exposure to antibiotics was an exclusion criterion for the infants, we did not col-

lect data on the maternal use of intra and postpartum antibiotics, which can be considered a

limitation. Among the strengths of our study is our cohort, composed of healthy and exclu-

sively breastfed infants, avoiding the bias on microbiota composition introduced by mixed

feeding. Other strengths include the identification of the maternal secretor phenotype through

the fucosylated HMOs profile and the use of high-throughput genetic sequencing comple-

mented with the absolute quantification of the main bacterial genera and species by qPCR to

profile the infant gut microbiota. Besides, we obtained a more balanced distribution of cesar-

ean and vaginally born infants relative to previous studies.

In conclusion, our results show that there is no difference in the overall gut microbiota

composition (alpha and beta diversity) and Bifidobacterium amounts between vaginally and

cesarean born infants fed with breast milk containing the α1–2 fucosylated HMOs fraction.

Differences between VSe+ and CSe+ infants were still observed in the abundances of the phyla

Bacteroidetes and Verrucomicrobia, in the genera Bacteroides, Akkermansia, and Kluyvera
and the species B. longum. Further studies are necessary to investigate the potential benefits of

the HMOs on the microbiota of cesarean born infants.
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