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Abstract

We sought to determine if connective tissue growth factor (CTGF) is necessary for the for-

mation of corneal haze after corneal injury. Mice with post-natal, tamoxifen-induced, knock-

out of CTGF were subjected to excimer laser phototherapeutic keratectomy (PTK) and the

corneas were allowed to heal. The extent of scaring was observed in non-induced mice, het-

erozygotes, and full homozygous knockout mice and quantified by macrophotography. The

eyes from these mice were collected after euthanization for re-genotyping to control for pos-

sible Cre-mosaicism. Primary corneal fibroblasts from CTGF knockout corneas were estab-

lished in a gel plug assay. The plug was removed, simulating an injury, and the rate of hole

closure and the capacity for these cells to form light reflecting cells in response to CTGF and

platelet-derived growth factor B (PDGF-B) were tested and compared to wild-type cells. We

found that independent of genotype, each group of mice was still capable of forming light

reflecting haze in the cornea after laser ablation (p = 0.40). Results from the gel plug closure

rate in primary cell cultures of knockout cells were not statistically different from serum

starved wild-type cells, independent of treatment. Compared to the serum starved wild-type

cells, stimulation with PDGF-BB significantly increased the KO cell culture’s light reflection

(p = 0.03). Most interestingly, both reflective cultures were positive for α-SMA, but the cellu-

lar morphology and levels of α-SMA were distinct and not in proportion to the light reflection

seen. This new work demonstrates that corneas without CTGF can still form sub-epithelial

haze, and that the light reflecting phenotype can be reproduced in culture. These data sup-

port the possibilities of growth factor redundancy and that multiple pro-haze pathways exist.

Introduction

Based on observations from initial testing in cell culture systems, connective tissue growth fac-

tor (CTGF) was demonstrated to possess pro-fibrotic activities, and possibly to be a necessary

factor for transforming growth factor-β’s (TGF-β) well-known pro-fibrotic activities[1–13]. By

one hypothesis, the activity required the actions of yet other growth factors, resulting in a
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hypothetical combinatorial cell signaling mechanism[14]. Others have demonstrated in similar

models that platelet-derived growth factor (PDGF) possess the said-same activities[15–20], but

most research has focused on the chemotactic activities as opposed to cellular differentiation.

What remains to be demonstrated is whether these activities are redundant, a part of a parallel

signaling system, or if the previously observed effects are unique to cell culture systems. In

order to begin determining the role of these growth factors in haze formation in vivo, gene-tar-

geted approaches have been implemented to try and ascertain the necessity of one or another

of these factors, or even several of them simultaneously[21, 22].

Previously, we reported the timing and localization of CTGF expression in wounded

mouse and rabbit corneas with the intent of better understanding the potential role of

CTGF, potential side-effects of its absence, and to improve gene-targeted approaches by

knowing when, where, and for how long these therapies need to be active[8]. We have pri-

marily focused on developing and testing RNAi-based approaches to test CTGF’s role in

fibrosis[1, 21–24]. While we have had some promising results, the combination of testing

both vector and therapy has been too cumbersome. We sought a model to ultimately test

the necessity of CTGF for corneal scarring prior to continuing the development of the viral

and non-viral vectors delivering RNAi therapies to improve corneal healing. In order to

accomplish this, we began testing with a mouse model which possesses a floxed CTGF exon

and a tamoxifen-inducible Cre recombinase[8]. The initial results from this model revealed

the epithelial healing was delayed, but not prevented. The effect was statistically significant,

but the magnitude of the delay was slight; suggesting that CTGF isn’t necessary for re-epi-

thelialization, but that it does aid in more efficient closure.

In the time since we first formed our initial CTGF stimulated fibrosis hypothesis, others

have demonstrated a variety of non-fibrotic functions for CTGF[25]. Our own discoveries have

revealed CTGF’s expression in many tissues of the normal, unwounded, eye[8]; suggesting a

more generic role for CTGF in normal tissue homeostasis. These data, taken all together, indi-

cate a less fibrosis-specific activity for CTGF; meaning that while the process of fibrosis might

make use of CTGF’s activity, other normal processes appear to do so as well. The immediate

implication is that the risk of side-effects is now more certain, and in the case of re-epithelializa-

tion, demonstrated[8]. With this in mind, the presence of side-effects does not preclude the

therapeutic potential for a treatment, it does however, add additional constraints and does

necessitate a balanced discussion surrounding the cost versus benefit of a proposed treatment.

In the work reported herein, we sought to determine if CTGF was necessary for haze forma-

tion, and employed a model with the most complete ablation of the protein. Such an approach

traded the size and biological human-like similarities of rabbit corneas for the power of control

over our protein of interest (CTGF). At the outset of this project, it was well known that mouse

corneas do not form haze as frequently as rabbits after a partial thickness excimer laser wound.

While the limits of the animal model were known, we decided to both test the in-vivo injury

model as well as to establish primary cell cultures of the model mouse corneal fibroblasts. In

the event that the in-vivo work was inconclusive, we could still test the necessity of endoge-

nously produced CTGF for the fibroblasts to respond to other known pro-fibrotic factors

using the in-vitro models used to test these growth factors’ activities to date.

Materials and methods

Mice

All animals used in experiments reported herein were treated in a manner consistent with the

ARRIVE guidelines and were carried out in accordance with the National Institutes of Health

guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978).

Corneal haze without CTGF
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The protocols used to obtain the data presented herein were reviewed and approved by the

University of Florida Institutional Animal Care and Use Committee. Briefly, the mice were

observed daily after surgery by the study staff in addition to the daily rounds of the UF Animal

Care Services. Mice judged to be moribund by a veterinarian would be immediately eutha-

nized via cervical dislocation under general anesthesia with inhaled isoflurane, followed by

confirmation of death by thoracotomy. In the course of these experiments, no mice became ill,

were moribund, or died unexpectedly.

The conditional CTGF knockout mouse strain that was previously reported[8] were used in

these experiments. Genotyping for Ctgf was carried out using primers 5’ CTGTTCTAAGACC
TGTGGGATG3’ (sense)and 5’ GCCCTTCTAAGGAAGACAGAAG3’ (antisense).
Wild-type mice, floxed but non-induced, heterozygous knockout mice, and homozygous mice

underwent excimer laser surgery on their corneas as described before[8]. Prior to euthaniza-

tion, the eyes were exposed and a macrophotograph was taken of the eye to record the haze

[26]. The images were globally adjusted to make the retina black and to improve contrast

using ImageJ’s “Brightness & Contrast” adjustment using the same manual setting propagated

to all images (uniform global adjustment).

Post-hoc genotyping of the eye. To monitor the efficacy of knockout and to observe the

degree of Cre mosaicism, the eyes were enucleated, fixed, and embedded in OCT media. Be-

tween 300 to 400 μm of transverse tissue sections up until the middle of the eye were collected

and the genomic DNA (gDNA) was extracted using QIAamp DNA FFPE Tissue Kit (Qiagen,

Inc., Valencia, CA, USA). The gDNA was then used to genotype the eye of the mice ensuring

an accurate account of the tissue genotype to pair with the haze outcome using primers 5’
AATACCAATGCACTTGCCTGGATGG 3’ (sense)and 5’ GAAACAGCAATTACTACAACG
GGAGTGG3’ (antisense).

Primary corneal fibroblast cell culture

Briefly, cell cultures of mouse corneal fibroblasts and CTGF knockout mouse corneal fibro-

blasts were established in a gel plug containing cell culture plate(Cell Biolabs, Inc., San Diego,

CA, USA). The goal was to replicate the in vivo injury conditions including allowing the cells

to become confluent and then “injuring” them with a circular defect upon removal of the gel

plug. The cells were grown in high glucose DMEM (Corning Cellgro DMEM, Mediatech, Inc.,

Manassas, VA, USA) supplemented with 10% FBS and antibiotic/antimycotic (Gibco, Thermo

Fisher Scientific, Waltham, MA, USA) until nearly confluent around the gel plug. The gel plug

was removed per the manufacturer’s instructions and the cells were treated either with serum

starvation, 25 ng/ml PDGF-BB (PeproTech: Rocky Hill, NJ, USA), or 250 ng/ml CTGF (US

Biological, Salem, MA, USA).

Wound healing model. The wells were imaged on a standard transmission mode inverted

microsope at 6 different time points over a 65 hour period. The images were opened in ImageJ

and the remaining hole was quantified and the % area remaining open was calculated (i.e. time

0 = 100% open).

Light reflection phenotype. The cells were incubated for 3 days prior to imaging. The

cells were washed in PBS and stored in PBS until imaging. The plate was placed on top of a low

reflection black cloth. A macrophotograph was taken in the same manner done in-vivo. The

PBS was removed from the cells and replaced with methanol to dehydrate and thereby mitigate

any potential turbidity in the cells. The cells were then re-imaged.

α-smooth muscle actin staining. After the initial photographic imaging of the wells,

the wells were fixed with 10% neutral buffered formalin for 1 hour. The wells were again pho-

tographed as before. Each well was blocked with 10% normal goat serum (Vector Labs,

Corneal haze without CTGF
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Burlingame, CA). The wells were stained by direct immunofluorescence with a Cy3 labeled

mouse monoclonal antibody to α-SMA (Clone 1A4, Sigma-Alderich, St. Louis, MO). The

wells were washed 3 times prior to counterstaining with DAPI. The wells were permanently

mounted with hardening glycerol jelly and then imaged on an inverted cell-culture microscope

via epifluorescent imaging.

Haze quantification. The images taken of the mouse corneas and the cell culture wells

were quantified for light reflection using a previously reported method [26]. For the cell cul-

ture, the serum starved wild-type wells were averaged and used as background subtraction for

the other wells. The numbers represent how much more light was reflected by the experimen-

tal wells compared to the serum starved wild-type cells.

Statistical analysis

For all quantitative analyses, a one-way analysis of variance (ANOVA) was performed using

Microsoft Excel’s Data Analysis Pack using an α = 0.05. Based upon the resulting observation

of highly unequal variances, Tukey’s Honest Signficant Difference test was not considered

appropriate. Instead, a post hoc analysis using Fisher’s Least Significant Difference (LSD) was

performed via multiple unpaired, two-tailed Student’s t-Tests with unequal variance. A thresh-

old for statistical significance was set to p< 0.05. Fisher’s LSD test carries with it a higher risk

of false positives. To mitigate this risk, we have used the imaging and micrography data to vali-

date potentially significant findings.

Results

In-vivo haze formation

The wild type and homozygous knockout had clear genotypes whereas the heterozygous KO

had some degree of mosaicism (Fig 1), with some residual floxed allele remaining intact. The

key finding, however, is that even in the absence of full-length CTGF, the mouse corneas can

still form light reflecting haze (Fig 1). The images shown are the worst from each group, but a

quantitative analysis revealed an increased average haze in heterzygotes (+2.3 pixel units vs.

wild-type) and even higher in full knockouts (+8.3 pixel units vs. wild-type), though the

ANOVA did not find any statistically significant differences among the groups.

Growth factor response in vitro

A primary cell culture model in a gel-plug well was used to model both wound closure and

light reflection. An ANOVA found significant differences among the groups at the 65 h time

point. Post hoc analysis of the time course found no difference between either cell type when

serum starved. The wild-type cells significantly increased wound closure rates in response to

either CTGF (p = 0.02) or PDGF-BB (p = 0.01, Fig 2). The application of either CTGF of

PDGF-BB did not statistically improve wound closure on the CTGF KO cells.

Since the mouse corneas still formed haze, we sought to determine if the fibroblasts had any

differential sensitivity to known pro-fibrotic factors. We sought, for the first time, to determine

if the cell cultures possess the pathological light reflection seen in-vivo. While α-SMA is used

as a molecular marker for myofibroblasts in general, and sub-epithelial haze in the cornea, it is

ultimately light reflection of the cells that is pathological[27]. We found that the cells could

reflect light in a manner reminiscent of sub-epithelial haze, and that either PBS or methanol

were amenable to imaging (Fig 3).

The CTGF KO primary corneal fibroblasts and wild type corneal fibroblasts were similarly

treated with serum starvation, CTGF, or PDGF-BB (n = 3 each), and the wells were then

Corneal haze without CTGF
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inspected 3 days after treatment (Fig 4A). The results from a one-way ANOVA found that

there was a significant differences among these groups (p = 0.023, Fig 4B). In comparing the

WT cells and KO cells, the average amount of light reflection was higher in the CTGF KO cells

(Fig 4B). However post hoc analysis (Fig 4C) revealed that the PDGF-BB treated cells remained

a statistical trend (p = 0.18). In comparison to serum starved wild type cells, most wells were

statistically different, with starved wild type cells trending towards being more reflective

(p = 0.10) and CTGF treated cells trending towards being less reflective (p = 0.09).

While both CTGF and PDGF-BB treated wells were grossly more reflective than the control

(Fig 4), the PDGF-BB treated cells are more densely opaque. When viewed in higher detail

(Fig 5), the PDGF-BB treated cells have structural features that are more consistent with sub-

epithelial haze. Most striking is the appearance of a spreading-like phenotype, with regions in

each well appearing to not yet be affected. This pattern may represent a propagation of pheno-

type in a time-dependent manner.

The role of CTGF in fibrosis has largely been supported by its in vitro activities. Other

growth factors, such as PDGF-BB, have been demonstrated to possess the same activity in
vitro. Wild-type cells and CTGF KO cells still possess the capacity to respond to full length

CTGF as well as PDGF-BB (Fig 3). The response to PDGF-BB was greater given that an

approximately 6.6-fold lower molar amount produced a visually more discernable amount of

light reflection.

Detailed examination of the light reflection in the untreated well (Fig 5A) versus the

PDGF-BB treated well (Fig 5B) shows that they are very different. The non-treated cells appear,

at most, to be like slightly opaque clouds (Fig 5C) while the PDGF-BB treated cells are highly

reflective (Fig 5E). We are not yet certain if the few cloudy cells are spontaneously formed

myofibroblasts, and their cloudiness is due to poor focus, or if they represent another pheno-

type. Both wells share the common feature of the residual gel plug area that has yet to be occu-

pied by cells (Fig 5D and 5F). There is a region in the PDGF-BB treated well that had not yet

taken on the highly filamentous and reflective phenotype (top-left of Fig 5G) and grossly looks

Fig 1. CTGF KO mouse corneas still form haze. A) Post hoc genotyping results in the injury corneas reveals good recombination in the homozygous KO

corneas, but some degree of Cre-mosaicism in the heterozygous corneas. B) Quantitative analysis via macrophotography reveals increase haze in the

absence of CTGF. An ANOVA did not detect any statistical significance among the groups.

doi:10.1371/journal.pone.0172304.g001
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similar to the untreated well. This patch of low reflectivity gives the appearance that the reflec-

tive phenotype also propagates by spreading[26], but that the process was incomplete at this

time point.

Staining the wells for α-SMA revealed an interesting finding that CTGF could still cause the

KO cells to make typical-looking myofibroblasts which were co-incident with the clusters of

light reflection (Fig 6). The highly-reflective PDGF-BB cells, however, had a different cellular

morphology and while present, the apparent level of α-SMA was drastically lower. This is evi-

dence of a potentially different class of light reflecting cell which may contribute to the overall

corneal light reflection.

Discussion

The model mice tested herein were still able to form sub-epithelial haze with one or both

CTGF alleles knocked out. This suggests that CTGF is not necessary for the formation of cor-

neal sub-epithelial haze subsequent to an injury. Fibroblasts from the model mice are highly

Fig 2. CTGF KO versus wild-type primary corneal fibroblast cultures. A) The rate at which primary fibroblasts can cover a circular defect in a monolayer

culture varies by cell type. B) Representative images for each of the test conditions at the first (left) and last (right) time point. C) The results of post hoc

comparisons among the test conditions.

doi:10.1371/journal.pone.0172304.g002
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responsive to PDGF-BB in vitro, and the in vitro response greatly mimicked the phenomenon

observed in vivo. PDGF-BB has been found in the tears of patients with corneas healing after

photorefractive keratectomy (PRK) surgery[19, 20]. However, the previous reports did not

find that tear-borne PDGF-BB levels correlated with fibrosis outcomes. The lack of a relation-

ship between the levels in the tears does not rule out PDGF-BB’s potential role, since no

relationship has been established between tear concentrations of a factor and intracorneal

concentrations of that factor. Since the cornea is a highly impermeable barrier, no such rela-

tionship is reasonably expected. Our data did not resolve the source of residual haze in the

mouse corneas, but did demonstrate in vitro, a plausible hypothesis centered on the action of

PDGF-BB.

For the first time, we have shown here that the cell culture system was capable of demon-

strating cellular reflectivity, which is arguably the most clinically-relevant physiological end

point in the study of corneal haze formation. To date, past research using in vitro work to

study growth factors’ roles in the formation of corneal haze have focused on molecular end

points including ECM synthesis, actin synthesis and polymerization, and cellular proliferation

and migration. On the basis of these molecules, many factors have been found to elicit similar

responses. For instance, others have shown that TGF-β1 with ascorbic acid can cause cells in
vitro to recapitulate the collagen III synthesis, actin polymerization, and new lamellae forma-

tion[28, 29]. What wasn’t shown in these and other reports are whether these constructs reflect

light, and one of the authors have confirmed that they have not looked at it (personal commu-

nication with Dr. Karamichos).

Fig 3. Pathological light reflection can be modeled in vitro in response to growth factor stimulation.

The light reflection is not grossly affected by immersion media, though those submersed in methanol did have

more bubbles (small white dots at the periphery of the well).

doi:10.1371/journal.pone.0172304.g003
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Fig 4. Changes in light reflection between the two cell types when stimulated by growth factors. A) A globally enhanced image of the replicated

treatment wells showing grossly more light reflection in the PDGF-BB treated wells. B) Light scatter quantities normalized to wild type serum starved cells,

with the results of the ANOVA. C) The p-value results from the post hoc comparisons among the treatment wells and cell types.

doi:10.1371/journal.pone.0172304.g004

Fig 5. Light reflecting cells qualitative differences. These images were equivalently globally enhanced for better visualization. A)

serum starved cells and b) PDGF-BB treated. C&E) the light reflective cells in the main body of the wells. D&F) the remaining gel-plug

hole which has yet to be completely closed. G) A detailed image of the 3 distinct portions of the PDGF-BB treated wells which shows very

haze-like cell phenotype which surrounds cells without such a phenotype (upper-left), in contrast to the still acellular hole.

doi:10.1371/journal.pone.0172304.g005
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In our study, we have shown two commonly studied growth factors were both capable of

eliciting a light scattering cellular phenotype in vitro which also included α-SMA expression

and organization; albeit with a drastically different appearance for both characteristics. At a

minimum, these data both support the hypothesis of growth factor redundancy, and give rise

to another hypothesis of multiple divergent light scattering phenotypes present in corneal

haze. Our findings indicate that CTGF-derived haze and PDGF-BB-derived haze may both be

present in normal corneas, and represent 2 of possibly many light reflecting cell phenotypes.

Hypothetically, the knockout mice may have solely had non-CTGF derived haze, but may have

light scattering cellular phenotypes derived from the actions of other growth factors. Under

this hypothesis, one might predict a decrease in haze in the knockout mice since the CTGF-

derived haze would be obviated. However, in both the corneas and cells, the light scatter

trended towards being greater, evidencing a lack of independence between the two hypotheti-

cal modes. Our studies were designed and powered to test solely the hypothesis of CTGF’s

necessity for haze, and were therefore underpowered to demonstrate mild modulations in

haze level. However, the trend in the data tend to support a the new hypothesis of a potential

competition between/among different light scattering phenotypes. Future work using both our

new in vitro model with growth factors in competition with one another and work with mice

with double knockouts would be necessary to test this emergent hypothesis.

Fig 6. Light reflection and α-SMA levels are not correlated. The phenotypic nature is grossly similar in that

both reflect light and have α-SMA, but the arrangement and level of reflection are drastically different.

doi:10.1371/journal.pone.0172304.g006
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Another key finding reported herein is the possible divergence of haze intensity and the

quantity of of α-SMA. A recent publication reported efficacy in reduction of α-SMA levels, but

no concurrent reduction in haze score by slit lamp[17]. While this observation may be due to

the short-comings of using immunofluorescently stained sections (including errors in section-

ing plane and the fact that sections represent such a small volumetric sample of the entire

wound), the data we have shared here support a possible split between the molecular marker

levels and the levels of pathological light scatter. Our data suggest that the cells with the marker

do scatter light, but the amount of light scatter is not proportional to the marker itself. Our

data do support the continued use of α-SMA as an histological “sign post” for where the light

reflecting tissue is. Furthermore, we believe its use is supported for micrographs imaged en
face as a means to classify cell types based on intracellular organization of α-SMA, as we have

done here. Future work may make use of these two applications, when paired with light scatter,

to qualify the type of light scattering cells present in a hazy cornea.

Conclusions

The work reported herein, in combination with our previous work, has demonstrated that

CTGF does have a role in corneal wound healing, but that it is more epithelial-centric and not

necessary for corneal haze formation. While our data do not support anti-CTGF therapy to

prevent haze formation, the results from our other work may indicate that CTGF may be a

good target to prevent corneal neovascularization[25]. However, the current most pressing

question for any growth factor-centric approach to modulate wound healing is whether there

are redundant stimulatory pathways[30, 31], or if each growth factor is responsible for a sepa-

rate light reflecting cell type. Finally, our work has revealed that while α-SMA has its uses, its

use as a surrogate for light scatter is not supported. Once light is shed on this question, more

potent and targeted therapies would be more readily designed to account for redundancy, or

timed and targeted to the growth factor-specific activities when and where they are needed.
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