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Difficulty in characterizing the relationship between climatic variability and

climate change vulnerability arises when we consider the multiple scales at

which this variation occurs, be it temporal (from minute to annual) or spatial

(from centimetres to kilometres). We studied populations of a single widely

distributed butterfly species, Chlosyne lacinia, to examine the physiological,

morphological, thermoregulatory and biophysical underpinnings of adap-

tation to tropical and temperate climates. Microclimatic and morphological

data along with a biophysical model documented the importance of solar

radiation in predicting butterfly body temperature. We also integrated the

biophysics with a physiologically based insect fitness model to quantify the

influence of solar radiation, morphology and behaviour on warming impact

projections. While warming is projected to have some detrimental impacts

on tropical ectotherms, fitness impacts in this study are not as negative

as models that assume body and air temperature equivalence would suggest.

We additionally show that behavioural thermoregulation can diminish direct

warming impacts, though indirect thermoregulatory consequences could

further complicate predictions. With these results, at multiple spatial and tem-

poral scales, we show the importance of biophysics and behaviour for

studying biodiversity consequences of global climate change, and stress

that tropical climate change impacts are likely to be context-dependent.
1. Introduction
While it has been suggested for decades that tropical species may have narrow

thermal tolerance ranges relative to temperate species due to lower seasonality

in the tropics [1], only in recent years has this pattern been demonstrated and

recognized as important for understanding global change [2–4]. Specifically,

while changes in temperature in future climates are projected to be smaller in

the tropics than in temperate or polar regions [5], impacts of warming could

be as great or greater for tropical species compared with species at higher lati-

tudes [6–9]. However, there is a great deal of uncertainty in how warming

might impact species globally as multiple evolutionary processes shape climatic

adaption, including physiology, ecology and genetic diversity [10–13].

Intra-annual variation in temperature (i.e. seasonality) can have important

implications for thermal tolerance, but thermal variation over other time

scales and variation over spatial gradients also affect climate change vulner-

ability [2,14,15]. Habitat and behavioural factors can additionally influence a

population’s capacity to respond to climatic change at a regional, landscape

or microclimatic scale [16–20]. For example, Huey et al. [21] showed that tropi-

cal forest lizards living in relatively homogeneous shaded habitats may be
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highly vulnerable to warming, while Logan et al. [22], using

finer-spatial-scale thermal data, argued that forest lizards

might not be so vulnerable due to high (and underestimated)

spatial variance in temperature. Behavioural thermoregula-

tion (e.g. shade-seeking) can also affect a species response

to climate change [23–26]. Species interactions are critical

such that extinction or distribution change of one species

could result in the extinction of other members of that species

interaction network [27].

Even before we are able to incorporate these additional fac-

tors, we must first understand the biophysical system and

physiological ecology of a given species to effectively project

how a regional warming trend is likely to affect it [28,29]. For

example, Janzen’s [1] hypothesis that lower intra-annual

variation in temperature experienced by tropical organisms

results in lower tolerance breadth has a largely untested, but

critical, assumption that air temperature is equivalent to

body temperature. If such variation is not equivalent (e.g. if

body temperatures are largely overlapping between temperate

and tropical species, in contrast to air temperature, as demon-

strated by Janzen [1]), then the predicted high vulnerability of

tropical species to warming might be overstated [30]. Incor-

porating biophysics and understanding variation in body

temperature (rather than simply air temperature) are therefore

important but frequently neglected components of climate

change impact research [13,23,31].

Through modelling and analysis of an array of data (e.g.

microclimate, morphology), we characterized the biophysics

and thermal ecology of tropical and temperate populations

of a single geographically widespread butterfly species,

Chlosyne lacinia (Lepidoptera: Nymphalidae). Specifically,

we used a biophysical model to incorporate local microcli-

matic variables (air temperature, ground temperature, wind

speed and solar radiation) for body temperature simulations

of the organisms in each population and used that model to

examine geographical variation in body temperature. We

integrated the biophysical model with a large-scale insect fit-

ness model that approximates thermal tolerance (i.e. thermal

performance curves) based on seasonal thermal variation

[6,15] to explore potential impacts of climate change on tem-

perate and tropical insect populations. Using the integrated

biophysical fitness model, we also examined the role of mor-

phology and behavioural thermoregulation in structuring

climate change responses across latitude.
2. Material and methods
(a) Study sites and organism
We studied populations of C. lacinia in North and Central

America. This species of the subfamily Nymphalinae was

chosen due to its close relatedness to the well-studied checker-

spot butterflies (e.g. Euphydryas editha and Melitaea cinxia) [32].

In addition, it is one of the most broadly distributed butterflies

in the Americas, with populations ranging from Argentina to

California and New Mexico. Where present, it tends to be locally

abundant so that sufficient sample sizes could be found at each

of the study sites.

What is known of C. lacinia natural history mostly comes

from studies in Texas. Habitat requirements include open land,

high food plant density and nectar sources, including a variety

of host plants within Compositae [33]. Adults fly year round in

the tropics, but only in the summer in North America. However,

peak activity in Central America also typically occurs in the
summer, usually beginning in July and lasting through November.

Bonebrake et al. [34] explored the possibility that C. lacinia may

actually represent multiple cryptic species, and found that while

its evolutionary history is not straightforward, the phylogeny is

consistent with the hypothesis that one single butterfly species is

broadly distributed across temperate and tropical habitats.

We chose four main sites to conduct the study in 2007 and

2008: the Southwestern Research Station, Arizona (AZ; 318530

N, 1098130 W, altitude 1700 m); Indio, California (CA; 338430 N,

1168120 W, altitude –4 m); Santa Rosa National Park, Area de

Conservacion Guanacaste, Costa Rica (CR; 108480 N, 858360 W,

altitude 300 m); and Ahuachupan, El Salvador (ES; 138590 N,

898110 W, altitude 300 m). The ES and AZ sites under-

went the most intensive sampling and serve as focal sites (see

electronic supplementary material S1 for details on the sites

and populations).

(b) Biophysical model and microclimatic variation
We used a biophysical model to predict body temperatures of a

butterfly with given morphology under a set of microclimatic

conditions (for details, see [28,35–38]; electronic supplementary

material S2 and S3). The biophysical model incorporates a

simple behavioural thermoregulatory function. At cold tempera-

tures, butterflies orient themselves to maximize solar radiation,

whereas at high temperatures, butterflies will orient away from

direct solar radiation to minimize exposure to lethal tempera-

tures [39]. The model incorporates this into the solar radiative

heating rate by reducing the fractional absorption of direct sun-

light by a factor of 0.65 when in avoidance position (i.e.

reduction in radiative flux equivalent to 65% of a basking indi-

vidual) [38]. Thermoregulatory behaviour differs between

Chlosyne (dorsal basker) and Colias (lateral basker) [40]. However,

both butterflies maximize radiation by basking and orienting

towards direct sunlight and minimize radiation by avoiding

sunlight and orienting away from the sun.

For microclimatic inputs, we used a HOBO Micro Station

Data Loggers (Onset Computers Corporation, MAN-H21-002) to

record climatic data every minute. Four sensors were attached

to the micro station: a silicon pyranometer smart sensor (S-LIB-

M003: resolution 1.25 W m22), a wind speed smart sensor

(S-WSA-M003: resolution 0.38 m s21, starting threshold 1 m s21),

and two 8-bit temperature smart sensors (S-TMA-M0XX: resolution

0.48C). For morphological inputs, we collected individuals from

each of the sites and measured thorax diameter, body length, fore-

wing length, hindwing absorptivity and fur thickness (electronic

supplementary material, S1).

(c) Model validation
To validate the biophysical model, we measured body tempera-

ture directly with thermocouples. We inserted a fine-gauge

thermocouple wire (Omega TFIR-003-50) attached to a hand-

held thermocouple thermometer (Omega HH603A) into the

thoraces of anaesthetized or freshly killed females. The female

was then placed next to the microclimate station (in open sun)

and in a dorsal basking position. We recorded body temperature

of the female every minute during the validation procedure and

then compared the observed body temperature with the body

temperature predicted by the biophysical model. We used a simi-

lar procedure involving thermocouples and caged butterflies to

roughly characterize thermal performance curves (flight prob-

ability versus body temperature) in Arizona and El Salvador

(see electronic supplementary material S4 for more details).

(d) Climate change
To determine temperate and tropical population responses to

climate change and warming (changes in mean temperature
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annually), we integrated the biophysical model with a generalized

climate change impact model based on variation in thermal per-

formance curves for insect species (fitness versus temperature)

across latitude [6,15]. The impact model, as originally derived by

Deutsch et al. [6], relates the seasonality of surface air temperature

to site-specific insect physiology measures (specifically, warming

tolerance; critical thermal maximum minus the habitat tempera-

ture and thermal safety margin; optimum temperature minus the

habitat temperature) of 38 insect species, and uses that relationship

to estimate thermal performance curves for insects globally. Based

on projections of changes in air temperature over the next century,

the model can then project changes in insect fitness globally based

on the thermal performance curves.

Here, we modify the global impact model of Deutsch et al. [6]

by incorporating solar radiation and estimating Tb of C. lacinia
based on the biophysical model presented such that we have an

approximation of the impact model for the species throughout

the Americas. We input solar radiation data from the NASA Inter-

national Satellite Cloud Climatology Project (ISCCP) [41] into the

biophysical model as RS. For this model integration exercise, we

set ground temperature Tg equal to air temperature Ta and

assumed no wind. Following Deutsch et al. [6], we used 1950–

2000 Climate Research Unit (CRU) data [42] for present-day

surface air temperature data, but instead of calculating seasonality

directly, we entered these air temperature data into the biophysical

model. We then set the morphological parameters to match the

average female El Salvador C. lacinia (see electronic supplemen-

tary material S1 and table S1), assumed individuals were in

basking posture and solved for Tb as described in the biophysical

model above. This produced a climatology (global monthly

time series) in C. lacinia body temperature (specifically basking

C. lacinia) with which we estimated seasonality in Tb. We extracted

Tb seasonality at locations where insect physiology data were

available from Deutsch et al. [6] and then regressed the seasonality

to the physiological parameters (warming tolerance and thermal

safety margin).

Based on the statistical relationship between global insect

physiology and C. lacinia body temperature seasonality, we then

examined the impact of projected changes in body temperature

on C. lacinia fitness. We calculated body temperature changes by

using an average of two A2 emissions scenario GFDL model pro-

jections [15], and inputting changes in air temperature and solar

radiation into the biophysical model (see R script in electro-

nic supplementary material S5) as in the statistical evaluation

described previously. We used climate simulation data from

2070 to 2100 (air temperature and solar radiation) as the future cli-

mate and subtracted out the simulated baseline twentieth-century

climate to calculate body temperature change. We then examined

the effect of body temperature change on fitness for each point in

the grid of interest, which for C. lacinia encompasses most of the

Americas. We looked at the effect of morphology by using El Sal-

vador and Arizona morphology (average female characteristics) to

measure projected body temperature change, and we looked at

the effect of thermoregulation by using an avoidance posture

in the biophysical model for future butterflies (2070–2100) and

looking at the projected fitness changes.
3. Results
(a) Model validation, morphology and microclimate
The biophysical model effectively predicted variation in

C. lacinia body temperature (electronic supplementary material

S4). Based on the biophysical model, while the body tempera-

ture of C. lacinia individuals is lower at night and during early

morning hours, there is a great deal of overlap between El

Salvador and Arizona in the late morning and afternoon
hours (figure 1). Peak body temperatures (Tb) for butterflies at

both sites during late morning/early afternoon hours are pre-

dicted to be about 418C, although using avoidance posturing

butterflies can reduce peak Tb to between 358C and 398C. Diur-

nal variation (standard deviation of hourly means) in Tb

(basking body temperature) was 8.48C (s.d.) for El Salvador

and 11.68C for Arizona. Variation in air temperature (Ta) was

3.78C for El Salvador and 6.08C for Arizona.

(b) Impacts of climate change
Global modelling (versus microclimatic) of C. lacinia body

temperature projected with a biophysical model incorporating

solar radiation versus air temperature showed additional high

variability in body temperature relative to air temperature, par-

ticularly at high temporal resolution (figure 2). The positive

correlation between large-scale (1 km) variation in predicted

C. lacinia body temperature, insect warming tolerance and ther-

mal safety margins from available studies was significant

(R2 ¼ 0.43, p , 0.001 and R2 ¼ 0.43, p , 0.001, respectively),

but the relationship is not as strong as warming tolerance for

insects and air temperature as analysed by Deutsch et al. [6].

Using this relationship (body temperature variation versus

warming tolerance and thermal safety margin), we then esti-

mated thermal performance curves for C. lacinia globally. In

the absence of extensive C. lacinia thermal performance data,

this is a necessarily imperfect association between multiple

insect thermal performances and C. lacinia body temperature.

However, the relationship provides a first approximation of

how individual and thermoregulatory characteristics might

affect the impacts of climate change on insect species.

Using the climate projections and warming tolerance

relationship, climate change is projected to increase both body

temperatures and relative fitness in El Salvador and Arizona

C. lacinia populations (figure 3). Across latitude generally,

climate change is projected to differentially affect insect popu-

lations (figure 4). Regardless of morphology in C. lacinia,

which has little effect on the results, some tropical populations

are likely to experience negative fitness impacts (especially in

South America) due to warming, while temperate populations

(and some tropical populations) are expected to exhibit popu-

lation growth (figure 4). However, reductions in the effects of

solar radiation through thermoregulation (in this case, using

avoidance posturing) can largely diminish this threat and

erase much of the negative fitness impact for tropical insect

populations (figure 4).
4. Discussion
Based on the morphological, biophysical and climate change

model results, tropical ectotherm populations may be more vul-

nerable to climate change than temperate populations, but

impacts will depend heavily on thermoregulatory behaviour,

habitat and regional contexts. These results generally corrobo-

rate previous studies based on air temperature changes that

have demonstrated significant climate change threats to tropical

organisms [6,15]. On the other hand, the results also show that

heat avoidance behavioural responses can alter climate change

impact projections and the negative consequences for tropical

organisms can be diminished. Sunday et al. [20] suggested in a

recent analysis of multiple ectotherm taxa (using a lizard bio-

physics model) that thermoregulatory behaviour will be a

necessity for organisms to avoid warming impacts in the



0

10

20

30

40

50

60

ob
se

rv
ed

 a
ir

 te
m

pe
ra

tu
re

 (
°C

)
pr

ed
ic

te
d 

bo
dy

 te
m

pe
ra

tu
re

 (
°C

)

time (min)

(a)

(b)

El Salvador

Arizona

Arizona

El Salvador

0

10

20

30

40

50

60

0.00 6.00 12.00 18.00

0.00 6.00 12.00 18.00

Figure 1. (a) Diurnal variation of Tb (mean, solid line; standard deviation, dotted lines) based on model for El Salvador and Arizona C. lacinia. Dip in Tb in the mid-
afternoon hours in Arizona is a shading effect of a nearby tree. (b) The same for air temperature.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20141264

4

future. Yet there are fitness costs to behavioural thermoregula-

tion (e.g. a butterfly cannot fly or reproduce when in heat

avoidance posture). That tropical ectotherms are likely to be

threatened by future climate change therefore remains a

troubling prospect given these results together.

Though we have long known that organismal body temp-

erature does not vary directly and linearly with changes in air

temperature [27], the importance of including body tempera-

ture at large spatial scales for global climate change impact

models is relatively new [22,28,43]. Here, we established

that air temperature variation was not a good surrogate for

body temperature variation in C. lacinia. Solar influences on

body temperatures are particularly likely to have critical

effects on organismal physiology [44,45]. Other regional cli-

matic factors not included in this model such as surface

temperatures (ground, plants, etc.), wind and precipitation

are furthermore likely to affect impacts of climate [27,46,47],

emphasizing the need for further research in biophysical

components of global change ecology models [29].

Similarly, using biophysical and solar radiative forcings

allows for more detailed behavioural analyses critical for

understanding of climate change impacts [48]. Our results
suggest that many tropical insects (and other organisms) of

open habitats may be able to escape many of the direct conse-

quences of warming by avoiding sun behaviourally through

shade-seeking, orienting away from the sun or otherwise mini-

mizing solar radiation. However, adult butterflies also have

high behavioural flexibility relative to other life stages (eggs,

larvae and pupae). Warming impacts may therefore not be

avoidable for much of an organism’s life cycle [23,45],

though individuals can further respond to stress through dia-

pause and plasticity, potentially [49]. The incorporation of

habitat and landscape features can further provide for more

complex behavioural responses to warming impacts [21,22].

Thermal variation is exhibited at multiple spatial and

temporal scales. Temporally, recent studies have shown the

importance of examining diurnal, seasonal and inter-annual

time scales for understanding warming impacts across lati-

tude [2,6,50,51]. In addition to altering performance curves

[49], temporal variation can be critical for species in buffering

climate change impacts, especially for species with limited

behavioural thermoregulation capacity [52]. As shown in

this study (figures 1 and 2), the variation in air temperature

at different scales (minutes, hours, years) may not be entirely
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sufficient to characterize the thermal environment given the

high variation in body temperature at these scales. Spatial

thermal heterogeneity can similarly complicate warming
predictions [15,26,43,53]. High-resolution spatial and tem-

poral data will probably therefore be key in understanding

larger-scale global change patterns [54].
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Biophysical and mechanistic studies have significant pre-

dictive advantages in ecological climate warming models

but also have the limitations that they are data-intensive

and often case-specific [55]. Worse yet, even the most detailed

biophysical models have limitations, such as lacking dynamic

thermal profiles as a function of height [56]. Each of these

concerns applies in this study because we include microcli-

mate, thermal performance and morphological data for one

species across latitude (C. lacinia), and yet even these data

are incomplete (e.g. biophysics of juvenile stages and latitudi-

nal variation in activity times in the field are not considered

in this model). However, despite these limitations, the results

presented here suggest that models that ignore biophysical

and physiological factors do so at the risk of misrepresenting

realistic thermal variation in the environment.

Starting at small temporal (e.g. minute) and spatial (e.g.

metre) scales, we were able to identify the climatic parameters
that dictate organismal experience of body temperature. Based

on those results, we integrated the small-scale observations

with a macroclimatic model that examined climate change effects

at large temporal (century) and spatial (kilometre) scales. Future

research will do well to manage the multiple scales at which cli-

matic variation and adaptation are operating to achieve the goal

of effectively assessing climate change vulnerability of species

globally, and tropical species in particular.
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